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Thermal fluid fields reconstruction 
for nanofluids convection based 
on physics‑informed deep learning
Yunzhu Li1, Tianyuan Liu1,2 & Yonghui Xie1*

Based on physics-informed deep learning method, the deep learning model is proposed for thermal 
fluid fields reconstruction. This method applied fully-connected layers to establish the mapping 
function from design variables and space coordinates to physical fields of interest, and then the 
performance characteristics Nusselt number Nu and Fanning friction factor f can be calculated 
from the reconstructed fields. Compared with reconstruction model based on convolutional neural 
network, the improved model shows no constrains on mesh generation and it improves the physical 
interpretability by introducing conservation laws in loss functions. To validate this method, the forced 
convection of the water-Al2O3 nanofluids is utilized to construct training dataset. As shown in this 
paper, this deep neural network can reconstruct the physical fields and consequently the performance 
characteristics accurately. In the comparisons with other classical machine learning methods, our 
reconstruction model is superior for predicting performance characteristics. In addition to the effect of 
training size on prediction power, the extrapolation performance (an important but rarely investigated 
issue) for important design parameters are also explored on unseen testing datasets.

List of symbols
ψ	� True physical quantities
ψ̂	� Predicted physical quantities
R	� Conservation residual
x	� Coordinates vector
x
′	� Coordinate after normalization and nondimensionalization

x	� X coordinate (μm)
y	� Y coordinate (μm)
x*	� Non-dimensional x coordinate
y*	� Non-dimensional y coordinate
bf	� Body force
u	� Velocity vector
p	� Pressure (Pa)
t	� Temperature (K)
u	� Velocity along x coordinate (m/s)
v	� Velocity along y coordinate (m/s)
p*	� Non-dimensional pressure
t*	� Non-dimensional temperature
u*	� Non-dimensional x velocity
v*	� Non-dimensional y velocity
p̂	� Predicted pressure (Pa)
t̂ 	� Predicted temperature (K)
û	� Predicted x velocity (m/s)
v̂	� Predicted y velocity (m/s)
H	� Microchannel height (μm)
d	� Groove depth (μm)
a	� Length of microchannel
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a1	� Length of extension (μm)
a2	� Length between inlet and first groove/protrusion (μm)
a3	� Groove interval (μm)
u∞	� Inlet velocity (m·s−1)
CP	� Specific heat (J·kg−1·K−1)
q	� Heat flux of boundary (W·m−2)
R	� Groove radius (μm)
Dh	� Hydraulic length (μm)
Dθ	� The dimensions of variable parameters
Pr	� Prandtl number
Nu	� Nusselt number
f	� Fanning friction factor
Re	� Reynolds number
tf	� Mean temperature of fluid (K)
tw	� Mean temperature of walls (K)
Δt	� Temperature difference (Pa)
Δp	� Pressure drop along channel (Pa)
Ns	� Number of sample points in training dataset
F(•)	� Traditional numerical or experimental methods
F̃(•)	� Approximate mapping for physical fields
b*	� The optimal Bias of fully-connected layer
E[•]	� Expectation operation
V[•]	� Variance operation
W	� Weights of fully-connected layer
b	� Bias of fully-connected layer
B	� General differential operators that define boundary conditions
R	� Real vector space
s	� The first moment estimations
r	� The second moment estimations
R2	� Determination coefficient for performance characteristics
L1	� Relative field norm-1 error
L2	� Relative field norm-2 error
W*	� The optimal weight of fully-connected layer

Greek symbols
D	� Sampling space of dataset
N (•)	� Nonlinear partial differential equations operators
�	� Learnable parameter set
�∗	� Optimal learnable parameters
α	� Thermal diffusion coefficient
ξ	� Input vector
L(•)	� Loss function
�	� Computational domain
ρ	� Density (kg·m−3)
�	� Thermal conductivity (W∙m−1∙K−1)
ξ′	� Normalized input
μ	� Dynamic viscosity (Pa·s)
δ	� A small constant value for numerical stability
ϕ	� Volume fraction of nanofluids (%)
δ	� Groove relative depth
θ ′	� Normalized design variables
θ	� Variable parameters
σ (·)	� Active function operator
β	� Attenuation coefficients
η	� The output tensor of fully-connected layer

Subscripts
n	� Nanofluids
p	� Nanoparticle
b	� Base fluid
c	� Mass conservations
bottom	� Bottom wall
in	� Microchannel inlet
out	� Microchannel outlet
e	� Energy conservations
g	� Governing equation
mx	� Momentum conservations along x coordinate
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my	� Momentum conservations y coordinate
top	� Top wall

In recent decades, miniaturization technology facilitates the development of higher efficient equipment, such as 
electronic components, refrigeration, transportation and so on. However, increased performance has created an 
urgent need for removing the higher heat loads to protect device from high temperature1. To resolve this chal-
lenge, microchannel heat exchanger (MCHE), known as micro electromechanical systems (MEMS), is widely 
applied in microscale devices due to its large surface to volume ratios, high convective heat transfer coefficient 
and smaller size2. An obvious fact is that a heat transfer process is determined by the heat transfer device and 
the utilized working fluid. Thus, the conventional working fluids, such as water and other refrigerant showing 
scant improvement in thermal properties become one of the limiting factors for higher heat coefficient. The 
nanofluids combining the base fluid and solid nanoparticles with better thermal conductivity show a promising 
application in MCHE.

The concept of nanofluids is first proposed by Choi3 in 1995, their following works4,5 demonstrated that the 
nanofluids with metallic nanoparticles suspended in conventional heat transfer fluid enhanced heat transfer and 
reduced pressure drop dramatically. This excellent performance has led to a great upsurge in the study of nano-
fluids so far. Many state-of-art reviews have been reported on the investigations and applications of nanofluids. 
Gupta6 reviewed the experimental investigations of forced convective heat transfer with different nanofluids. 
In the review of Ghadimi7, the characteristics, numerical model and measurement of thermal conductivity and 
viscosity were introduced. The thermal and hydraulic performance of nanofluids flowing in mini and micro 
channels were reported by Sarkar8.

As reported above, nanofluids have higher thermal conductivity and corresponding heat transfer than base 
fluid. However, the heat transfer coefficient shows complicated relationship with not only thermal conductivity 
but several factors, such as heat capacity, viscosity, flow pattern and so on. Based on numerical and experimental 
results, many conventional correlations are derived for different operation and nanofluids. In the conventional 
fitting methods, they suppose that the mapping function from design parameters to target variables satisfies some 
specific type of function. And then the rest of the fitting work is how to determine the coefficients. This method 
is simple and convenient, and the precision is acceptable if a proper function is settled. However, the functions 
between the design variables and objective functions are unknown in most cases, and they are usually selected 
by experience and numerous attempts. The selection process of functions becomes laborious if massive design 
parameters are considered or the relationship shows strong nonlinear.

Recently, more and more researchers adopt machine learning methods, such as adaptive neuro-fuzzy infer-
ence system9, least squares support vector machine10, Gaussian process regression11, artificial neural network 
(ANN)12–15 and so on, to predict thermophysical properties and thermodynamic performance for nanofluids. 
The advantages of those machine learning methods include: no specific type of function should be supposed 
in advance; more design parameters can be included; higher calculation efficiency for prediction; and more 
importantly, the fitting ability is stronger for nonlinear functions. However, these approaches of conventional 
fitting methods or machine methods overlooked a fact that most target variables, such as the thermodynamic 
performance, can be regarded as a kind of refinement from physical fields. Those methods only focus on the 
mapping functions between design variables and some target variables, which cause the lack of physics inter-
pretability and limit their scope of application. Different from these traditional machine learning methods, we 
propose a reconstruction framework utilizing deep neural network (DNN) to reconstruct physical fields instead 
of thermodynamic performance in this study. Once the physical fields are reconstructed, any interested thermo-
dynamic performance can be extracted from fields directly.

As the most well-known methods in supervised learning, the neural network was demonstrated to approxi-
mate any function with sufficiently large and deep network by the universal approximation theorem in 198916. 
Recently, according to the widespread growth of data and the rapid advances of supercomputer, the power and 
flexibility of DNNs have led to a series of breakthroughs for computer vision, natural language processing and 
many other directions of artificial intelligence. In thermal and fluid mechanics, many complex tasks, such as 
super-resolution reconstruction17–19, turbulence model improvement20–22, field reconstruction23–27, flow control28, 
design and optimization29,30 and so on, can be accomplished impressively with deep learning architectures.

Traditionally, the physical fields are obtained by means of experiments measuring physical variables in limited 
space or numerical simulations solving conservation equations. Despite significant advances in experiments and 
numerical simulations in recent decades, the progress of experiments and simulations is still time-consuming, 
laborious and need prior experience. The advantages of DNN enables physical field prediction quickly without 
manual intervention. Mostly, the physical fields are treated as images (spatial data) or videos (spatial–temporal 
data), and then many prediction or reconstruction models inspired by computational vision31–33 are reported. 
Guo23 proposed an approximation model with encoder and decoder to predict flow field from geometry and 
boundary representations based on DNN. Hennigh24 proposed Lat-Net to compress numerical simulations 
obtained by Lattice Boltzmann Method using convolutional neural network (CNN). Lat-Net is composed of 
three parts, an encoder to compress the state of simulations, a compression mapping to learn the dynamics on 
compressed state and a decoder realizing the decompress process. Lee34 utilized a multi-scaled generative adver-
sarial network (GAN) to predict time series of laminar vortex shedding over a cylinder based on previous fields. 
Kim35 synthesized discrete velocity fields in space and time from a set of reduced parameters. In our previous 
study36,37, a reconstruction model with GAN and fields gradient loss is firstly proposed to predict the physical 
fields of nanofluids microchannel based on design variables, limited measurement and the effect of training size, 
measuring uncertainty and measuring layouts are discussed in detail. The image-inspired reconstruction models 
can obtain the overall physical fields in one prediction at the millisecond level and capture the spatial correlations 
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among grid points efficiently. Despite great potential, practical implementation applying CNN models to com-
putational or experimental fluid dynamics remains limited. Firstly, the field reconstruction task realized by CNN 
models is still a black box without physics interpretability, and the successes of CNN models mainly rely on the 
powerful feature extraction and the ability to resolve nonlinear problems. In essence, the thermal and fluids 
examples are driven by prior knowledge of conservation laws. Secondly, due to the special convolution operations 
on feature, the input or output fed to CNN model should be preprocessed to structure grid data. In addition to 
some examples with simple geometry or structure whose grids can be easily transformed to required structured 
data38, the physical fields of most thermal and fluids examples with complicated geometry should be interpolated 
to designed structured grid points, which may cause the lack of information around large gradience. Besides, the 
definition of default values in areas without fields information is a pending problem.

For thermal and fluid mechanics, there exists an obvious prior physical knowledge, which is conservation 
principles, and all available data respect the physical laws given by conservation principles. Many trials have 
been made to incorporate and enforce known flow physics in applications of DNN. Zhao39 combined domain 
knowledge and ANN to predict the critical heat flux. In the multi-scaled GAN constructed by Lee34, the conser-
vation principles are formulated using the triangle inequality to approximate to the original forms and the loss 
function of conservation principles is minimized to compare the difference between predicted fields and ground 
truth. However, the introduction of physical informed loss function requires the pre-designed nontrainable con-
volutional filters38 or loss equations around the whole fields34,35, and it heavily depends on the mesh information. 
Recently, physics-informed neural networks (PINNs) introduced by Karniadakis and Raissi40,41 that are trained 
to solve supervised tasks respecting physical laws are introduced. According to their explorations of physics 
informed neural network on surface breaking crack identification42, biological reactions43, compartmental disease 
transmission models44 vortex-induced vibrations45, heat transfer problems46 and other flow mechanism47, the 
physics conservation principles can be utilized to be loss function and regularization term with the automatic 
differentiation and the back-propagation mechanism, which can be essentially regarded as prior knowledge to 
constrain the space of admissible solutions. Another advantage is physics-informed neural networks can provide 
a mesh-free solver as the discrete interpolators in both space and time over the computational domain, which 
can efficiently handle the unstructured mesh of any numerical methods. Thus, the possibility of using PINNs 
to approximate flow in idealized stenosis48, arterial blood pressure49 and high-speed flow50 are investigated. 
Moreover, Karniadakis51 extended PINNs (XPINNs) to space–time domain decomposition for nonlinear partial 
differential equations in arbitrary complex-geometry domains. Based on XPINNs and another extension (namely 
the conservative PINNs52), a distributed framework for PINNs53 is proposed with several advantages, such as 
parallelization capacity, large representation ability, efficient hyperparameter tuning and is particularly effective 
for multi-scale and multi-physics problems.

To the best of authors’ knowledge, this is the first attempt of applying PINNs on the field reconstruction 
for nanofluids convection problem. In this study, we applied PINNs to reconstruct physical fields (pressure, 
temperature and velocity) of nanofluids convection from varying design variables, including Reynold number, 
nanofluids properties, geometric parameters and boundary conditions. The primary contributions of this work 
are listed as followed:

1.	 The physics-informed and mesh-free prediction model for nanofluids convection in microchannels is pro-
posed to reconstruct all interested physical fields and then extract the heat transfer characteristics (Nu and 
f for instance) directly.

2.	 This method enforces the conservation laws by introducing mass, momentum and energy continuity equa-
tions to guide the training of deep learning neural network.

3.	 To evaluate the accuracy of our model in the sense of theory and engineering, the performance of recon-
structed fields, conservational residual and the heat transfer and flow characteristics interested in engineering 
are discussed in detail.

4.	 Except for the effect of training size, we also focus on an important but lack of attention issue, that is the 
extrapolation ability of the neural network on the unknown domains.

The main context of this paper is organized as followed: In section B, the overall architecture of applied 
physics informed neural network is presented and the data set of nanofluids convection applied to train and test 
reconstruction network is described. Next, the prediction performance is analyzed for physical field visualiza-
tions. Detailed physical fields distributions, evaluation criteria and performance are conducted in section C. And 
then the comparisons of our method and other surrogate models on the prediction performance of performance 
characteristics are presented. Moreover, the effect of training size and the extrapolation performance are inves-
tigated in the latter part of section C. Finally, the conclusions are summarized in section D.

Methods
Overall architecture.  In physics-informed neural network, the mathematical physics is enforced as partial 
differential equations (PDE) or ordinary differential equations. The steady governing equations for heat transfer 
and flow of nanofluids can be expressed as Eq. (1), including the mass, momentum and energy conservation 
principles.

(1)N (x, θ) = 0 :=





∇ρu = 0
(u · ∇)ρu −∇ · (µ∇u)+∇p+ bf = 0

(u · ∇)cpρt −∇ · (�∇t)− st = 0
x ∈ � ⊂ R

Dx , θ ∈ R
Dθ
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where N (•) are the nonlinear PDE operators representing the conservation principles, x is the space coordinate, θ 
is a state parameters set to describe the physical system such as fluid properties, boundary conditions, and geom-
etry of the domain, which can be expressed as a Dθ-dimensional vector; ρ and ν represent density and viscosity 
of the fluid, respectively; bf is the body force; and Ω denotes the fluid computational domain. The velocities u, 
pressure p and temperature t can be regarded as functions of the space coordinate x, and variable parameters θ. 
Specifically, the physical fields can be uniquely determined when suitable boundary conditions are prescribed,

where B is the general differential operators that define the boundary conditions and ∂Ω denotes the boundary 
regions. Given a set of specific parameters θ, the mapping functions of physical fields, i.e. u(x), p(x) and t(x), 
can be obtained by discretizing corresponding governing equations in the Eq. (1) using numerical methods, 
such as Finite Difference /Finite Volume /Finite Element methods. However, the numerical process requires 
time-consuming mesh generation and iteratively solving large linear/nonlinear systems. Due to the tedious 
regeneration of computational mesh, the traditional numerical methods become more challenging with diverse 
geometries involved.

Different from the traditional numerical methods, the PINNs simply focuses on the reconstruction of physical 
scalars for single temporal and spatial point rather than the whole physical fields in one prediction. This strategy 
enables the deep neural network solving the conservation principle quickly without the trouble of mesh genera-
tion. To describe the process of numerical method and reconstruction model, some mathematic expressions 
are listed as follows.

As shown in Eq. (3), the training data is obtained by the traditional numerical or experimental methods based 
on design parameters θ and coordinates x, and the acquisition method of raw physical fields ψ = {p,uT ,t}T is 
considered as a mapping F(x,θ) . Correspondingly, the well-trained deep neural network model constructs an 
approximate mapping F̃(x, θ;�) with learnable parameters � substituting for the traditional method F(x,θ) 
to reconstruct physical fields ψ̂ = {p̂,ûT ,t̂}T . According to the description of the heat transfer and flow prob-
lem in Eq. (1–2), the key point of reconstructing physical fields is trying to conform with the nonlinear PDEs 
N (x, θ) = 0 and differential operator B(x, θ) = 0 . Thus, the cost function of the model is considered as the 
combination shown in Eq. (4). Remarkably, as described in Eq. (5), the training process of the model can be 
regarded as the optimization process of the proper learning parameters �∗ with the cost function L.

Nanofluids heat convection problem.  In this study, a two-dimensional convection problem for the 
water-Al2O3 nanofluids in microchannels are validated regarding to this physics informed neural network model. 
Though the application of nanofluids become engineering gradually and the application scenario becoming 
more and more complex, the fundamental researches on the heat and flow behavior in simplified microchannel 
is still important and necessary. Thus, a simple microchannel model as depicted in Fig. 1 is studied. The micro-
channel is composed by top wall and bottom wall, where the bottom wall is a smooth plate with infinite length 
while the top wall is a roughed infinite plated with two grooves/protrusions. The total length of the microchannel 
is a and the height is H. The inlet and outlet are extended to ensure fully developed and prevent the nanofluids 
from flowing backward. The lengths of extensions are both a1. The locations of two grooves/protrusions are 
determined by the interval of a3 and the length between the inlet and first groove/protrusion a2. And the geom-
etries of two grooves/protrusions are defined by two parameters: radius R1 and R2, and relative depth δ1 = d1/R2 
and δ2 = d2/R2. It should be noticed that the depth of the groove is positive d > 0 while the depth of protrusion is 
negative d < 0. Five geometric parameters related to the location and shapes of grooves/protrusions, including 
interval of a3, radius R1 and R2, and relative depth δ1 and δ2, are set as design variables and the other geometric 
constants are listed in Table 1.

The water-Al2O3 nanofluids is composed of base fluid water and nanoparticles Al2O3 with a diameter of 30 nm 
at a certain proportion. In practice, the heat transfer and flow problem for nanofluids is a kind of multiphase 

(2)B(x, θ) = 0 x ∈ ∂�, θ ∈ R
Dθ

(3)ψ̂ = {p̂,ûT ,t̂}T = F̃(x,θ;�) ≈ F(x,θ) ={p,uT ,t}T=ψ

(4)L(F̃;�) = �N (x, θ)�� + �B(x, θ)�∂�

(5)�∗ = argmin
�

L(F̃;�)

R1

a3

a2
a1 a1

Inlet
extension

Outlet
extension

Top wall

Bottom wall

a

R2

Water-Al2O3
Nanofluid

y

x
H

d1
d2

Figure 1.   Diagram of the physical configuration.
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flow. To simplify the simulation, the following assumptions are made: the nanoparticles are all spheres with a 
diameter of 30 nm and distributed uniformly in the base fluid, so the two-phase nanofluids can be equivalent 
to a single-phase fluid. The thermo-physical properties of base-fluid water and nanoparticle Al2O3 are shown in 
Table 2, and thermo-physical properties nanofluids are calculated as followed.

The density of applied nanofluids ρn is calculated as:

where φ denotes the volume fraction of nanofluids, ρb and ρp represent the density of base fluid water and nano-
particles Al2O3, respectively. The specific heat capacity54 of applied nanofluids Cpn is calculated as:

where Cpb and Cpp represent the specific heat capacity of base fluid water and nanoparticles Al2O3, respectively. 
The thermal conductivity55 of nanofluids λn is defined as:

where λb and λp represent the specific heat capacity of base fluid water and nanoparticles Al2O3, and � is shown 
as below:

The dynamic viscosity coefficient1 of nanofluids µn is formulated as

where µb dynamic viscosity coefficient of water.
Considering the infinite microchannel studied in this work, the calculation models are simplified to two-

dimensional models. Thus, mathematic expression of conservation equations for incompressible nanofluids in 
Eq. (1) can be written as:

where u and v are the velocity along x and y coordinate; p and t represent temperature and pressure quantities; 
αn=�n/ρnCpn is defined as the thermal diffusion coefficient.

The numerical simulations are all obtained by solving conservation equations with the commercial numeri-
cal software FLUENT. To confirm the simulation accuracy, the SIMPLE algorithm is adopted to couple pressure 
and velocity item and the calculation domains are discretized by the second-order upwind scheme. As listed 
in Eq. (14–15), the inlet condition is set as velocity input and the inlet temperature of nanofluids is defined at 
293 K; the non-slip wall condition is imposed on both up and down walls and the same constant heat flux is set 
for top and bottom walls.; the outlet pressure of atmosphere is utilized.

Reynold number Re is defined as:

(6)ρn = (1− ϕ/100)ρb + ϕ · ρp/100

(7)Cpn = [(1− ϕ/100)Cpbρb + ϕCppρp/100]/ρn

(8)�n = 0.25[(3ϕ/100− 1)�p + (2− 3ϕ/100)�b +
√
�

(9)� = [(3ϕ/100− 1)�p + (2− 3ϕ/100)�b]2 + 8�p�b

(10)µn = µb[123(ϕ/100)2 + 7.3ϕ/100+ 1]

(11)N (x, θ) = 0 :=





∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y + 1
ρn

∂p
∂x − µn

ρn

�
∂2u
∂x2

+ ∂2u
∂y2

�
= 0

u ∂u
∂x + v ∂u

∂y + 1
ρn

∂p
∂x − µn

ρn

�
∂2u
∂x2

+ ∂2u
∂y2

�
= 0

u ∂t
∂x + v ∂t

∂y − αn

�
∂2t
∂x2

+ ∂2t
∂y2

�
= 0

(12)B(x, θ) = 0 :=





p|x=L = 0
u|x=0 − u∞ = 0; v|x=0 = 0

u|top;bottom = 0; v|top;bottom = 0

t|x=0 − 293 = 0;= ∂t
∂n
|top;bottom − q = 0

Table 1.   The list of geometric constants.

Geometric constants H/μm a/μm a1/μm a2/μm

Value 200 5000 750 1750

Table 2.   Physical properties of materials at 293 K and atmosphere.

Material Density/kg∙m−3 Specific heat/J∙kg−1∙K−1 Thermal conductivity/W∙m−1∙K−1 Dynamic viscosity/Pa∙s

Water 998.2 4182.0 0.597 9.93 × 10–4

Al2O3 3880.0 773.0 36.0 \
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where the hydraulic diameter Dh is 2H, and u∞ is the inlet velocity. The mesh generations for all cases are per-
formed by software ICEMCFD. As shown in Fig. 2, the structured grids are divided into the whole computational 
domain and the grids around grooves/protrusions are refined. According to the physical geometry, the mesh 
model is composed of three parts: inlet extension, outlet extension and reconstruction region which is utilized 
as training and testing datasets.

Dataset description.  To embrace the physics information as much as possible, about 6000 cases with eight 
design variables for the water-Al2O3 nanofluids in the microchannel including properties of nanofluids, geomet-
ric parameters and boundary conditions are sampled by Latin Hypercubic Sampling method. The raw dataset is 
divided into two parts: the training dataset (50%, 3000 cases) and the testing dataset (50%, 3000 cases).

The configurations and layouts of two protrusions and grooves are important for heat transfer and flow 
behavior. Thus, the geometric parameters including radium R1/R2, relative depth δ1/δ2 of grooves/protrusions 
and the interval length a3 between two grooves/protrusions are taken as design variables. Besides, the volume 
fraction φ of nanofluids is set as one of the design variables because it becomes a determining factor for the 
thermo-physical properties once the nanoparticle is determined. Finally, the boundary conditions including 
Reynold number Re indicating the inlet velocity and the heat flux q imposed on top and bottom walls are also 
taken into consideration. All the design variables and their ranges are listed in Table 3.

Apparently, each case for microchannel with nanofluids is determined by design variables 
θ = {θ1, θ2, · · · , θDθ

}T , which is θ = {Re,ϕ, a3,R1,R2, δ1, δ2, q}T in this study. For each case, the computational 
domain is divided by 800 × 40 grid points and only 550 × 40 grid points containing main heat transfer and flow 
characteristics in the reconstruction region are used. Every grid point is considered as a sample point located by 
corresponding coordinates x = {x, y}T for training and testing dataset. Therefore, the input for a sample point 
is the combination of design variables and coordinates ξ = {xT , θT }T and the output is the interested physical 
quantities ψ = {p, u, v, t}T , that is pressure p, temperature t and velocity attributes along two coordinates u and v.

With 550 × 40 sample points in each case, there are 132,000,000 sample points can be collected in all 6000 
cases. The input of the training dataset is represented as DN

ξ = {ξ 1, ξ2, . . . , ξN } , while the output physical fields 
can be defined as DN

ψ = {ψ1,ψ2, . . . ,ψN } . The number of sample points in training dataset is Ns = 66, 000, 000 
for 3000 cases. It should be emphasized that 3000 cases for training are selected randomly and then all the sample 
points are disrupted together. In the testing process, all the sample points in one specific case with same design 
variables should be taken as input to predict the whole physical fields.

Implementation of deep learning model.  Focusing on the nanofluids convection, we establish the deep 
learning model as shown in Fig. 2 by deep neural network. To ensure the network convergence, the nondimen-
sionalization and normalization methods are involved to scale the input and output tensor. Thus, the input 

(13)Re = ρnu∞Dh

µn
= 2ρnu|x=0H

µn

Table 3.   Varying scope for design parameters.

Design variables Re φ/% a3/μm R1/μm R2/μm δ1 δ2 q/W∙m−2

Lower limit 10 0.1 30 5 5 − 0.8 − 0.8 100,00

Upper limit 1000 10 150 35 35 0.8 0.8 1,000,00

Figure 2.   The overall architecture.
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coordinates should be nondimensionalized and normalized while the input parameters of governing equations 
just need to be normalized. After subsequent operations of deep neural network, interested physical quantities 
experienced nondimensionalization and normalization operations are predicted. Generally, the measurement 
loss of the difference between true and predicted normalized physical scalars (the output of DNN after inverse 
normalization) along with proper optimization algorithm can be utilized to drive the training process of DNN. 
However, for incorporating the first principle, the conservation loss constructed based on normalized govern-
ing equations are required by leveraging automatic difference mechanism. If the output fields are need, then 
an inverse nondimensionalization should be conducted after the inverse normalization. In the following, we 
introduce the nondimensionalization and normalization methods applied, the detailed network structure and 
loss function, and the learning strategy employed in this deep learning framework.

Nondimensionalization and normalization.  The order of magnitude of the different physical quantities, pres-
sure, velocities, temperature have a significant relative difference, e.g., p ∼ 104 Pa, u ∼ 1 m/s, v ∼ 10–1 m/s and t ∼ 
102 K, which casts great difficulty on the training of the neural network. The significant difference in magnitude 
of the parameters creates a systematic problem for the training of the physics-informed neural network, as this 
difference in scales will have a severe impact on the magnitude of the back-propagated gradients that adjust the 
neural network parameters during training. To overcome this problem, we employ a nondimensionalization 
and normalization technique with the purpose of scaling the input and the output of the neural networks in a 
proper scale (e.g., (p*, t*, u*, v*) ∼ O(1)) and normalizing the spatial and temporal coordinates to have zero mean 
and unit variance for training the neural networks more efficiently. Although there could be a way to weight the 
components of the loss function to mitigate the bias casted into the loss function due to this discrepancy across 
scales, this process would require a lot of guess-work and tuning. On the other hand, the proposed nondimen-
sionalization strategy achieves the goal of normalizing the variables in a physically justified and intuitive manner 
that adheres to the requirements of standard neural net initialization strategies (e.g., Xavier initialization) and 
yields a robust workflow that is free from ad-hoc hacks and guesswork. For the purpose of nondimensionaliza-
tion we introduce some characteristic variables, which are commonly used in multi-scale physics modeling50 
in order to simplify the equations. For this problem the characteristic length H and the characteristic velocity 
U∞. are applied. Thus, u* and v* are the non-dimensional velocity along x and y coordinate; p* and t* represent 
non-dimensional pressure and temperature quantities. The non-dimensional quantities are defined as following:

Substituting the Eqs. (14) into the Eq. (11), then the conservation equations can be simplified as Eq. (15).

The Prandtl Number Pr applied in governing equations are shown as below:

After the dimension, eight design variables and two coordinates are considered as input. However, the dis-
tributions for different variables show a large deviation. Thus, the Z-score normalization method56 is utilized to 
scale input. The formulation of the normalization method for each sample point is:

where x′ means the normalized coordinate and θ ′ means the normalized design variables; ξ′ indicates the normal-
ized input; E[•] and V[•] indicate the expectation and variance operation along the column vectors.

Network structure and loss functions.  As described, the input information is a 1-D vector and the output, inter-
ested physical quantities, is also a 1-D vector with different size. Thus, the fully-connected (FC) operations are 
utilized to transform the input feature space to target feature space. For a further description, we use a 1-D vector 
η
Di
i ∈ R

Di with a length of Di to represent the output tensor of i-th FC layer. Specially, the input information can 
be indicated by i = 0. Then the mathematic expressions of FC layers can be defined as follows:

where WDi−1,Di
i ∈ R

Di−1×Di is the weights of i-th FC layer with the size of Di-1 × Di , bDi ∈ R
Di is the bias of i-th FC 

layer with size of 1 × Di and Nl means the number of FC layers. As shown in Eq. (16), a FC layer consists of three 
operations in sequence: multiply of input vector and weights, the addition of bias and the activation function 
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operation σ which is used to perform nonlinear transformation. To prevent the problem of vanishing gradient, 
the activation function ReLU is utilized and the expression can be written as:

It should be noted that the selection of activation function has an important effect on the training and con-
vergence of the deep learning methods. There have been some works on providing more efficient and appropriate 
activation functions for PINN model. For example, Jagtap et al.57 proposed an adaptive activation function with 
the additional scalable parameter introduced in the network. By leveraging the scalable hyper-parameter, the 
increased convergence and better performance can be achieved. In the following, they58 further extended this 
scalable parameter from global adjustment to the hidden layer even the neurons, and the results demonstrate the 
improved training speed and accuracy. Based on the idea of adaptive activation functions, the deep Kronecker 
neural networks59 is proposed by Jagtap. In this paper, we mainly focused on the physical field prediction for the 
nanofluid in microchannel. Thus, the standard activation function of ReLU is utilized.

In this heat transfer and flow of nanofluids, we employ 10 hidden layers and 32 neurons per hidden layer 
per output variable (i.e. 4 × 32 = 128 neurons per hidden layer). Since the active function is settled, the learnable 
parameters � in this network will be the weight matrix and bias vector in each FC layer.

After series transformation of all the FC layers, the direct output is the normalized physical quantities and a 
reverse normalization operation as shown below is required to get proper predicted physical quantities.

In this reverse normalization method, ψ̂ is the predicted physical quantities and ψ′ is the normalized physical 
quantities after inverse nondimensionalization obtained at the last layer of the model.

The field reconstruction completed by the deep learning model is a kind of regression method to predict 
physical quantities from input information. Thus, we utilize a loss function Lψ evaluating the distance between 
predicted physical quantities and the real ones, which is a loss function of the physical field measurements:

For a heat transfer and flow problem, the final simulation results in each control volume should approximately 
satisfy the conservation laws, including mass, momentum, and energy conservations. To make the most of physi-
cal principles, the partial derivatives for physical quantities ψ̂={p̂, t̂, û, v̂}T are solved by the automatic differential 
mechanism of PyTorch to acquire the residuals of conservations. The applied residuals of mass, momentum along 
x and y coordinate and energy conservations are formulated as follows:

where Lc , Lmx , Lmy and Le means the loss function of mass, momentum along x coordinate, momentum along 
y coordinate, and energy conservations, respectively, and p̂ , t̂  , û and v̂  denotes the predicted physical quanti-
ties. The more accurate the predicted physical fields ψ̂ , the closer to zero the loss function of conservation laws 
Lg = {Lc ,Lmx ,Lmy ,Le} is, which means that the control volumes approximately respect the conservation laws. 
The total loss function is composed by the field loss function and a weighted sum of conservation loss functions:

The weight of conservations �L aims at balancing the scale of field loss and conservation loss. The training 
is a search process for a pair of optimal weight matrix W∗ and bias b∗ to minimize the total loss function. As 
shown in Eq. (28), the optimal weight matrix W∗ and bias b∗ are the hyperparameters when total loss function 
Ltotal reaches minimized value. It should be emphasized that this work focuses on the improvement of the 
incorporation with conservation laws, thus the boundary condition and initial conditions are removed from 
loss functions. The investigation of boundary and initial conditions can be found in the application of PINN on 
cardiovascular flows49.
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∥∥+
∥∥v − v̂

∥∥+
∥∥t − t̂

∥∥

(23)Lc(ψ̂;W,b) =
∥∥∥∥
∂ û
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∂y
+ 1

ρn

∂ p̂

∂x
− µn

ρn

(
∂2û
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∂ v̂

∂x
+ v̂

∂ v̂

∂y
+ 1

ρn

∂ p̂

∂y
− µn

ρn

(
∂2v̂

∂x2
+ ∂2v̂

∂y2

)∥∥∥∥

(26)Le(ψ̂;W,b) =
∥∥∥∥û
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Performance criteria.  Since the deep learning model can predict physical quantities for one sample point in one 
set, the whole physical fields of a case can be reconstructed by all corresponding sample points fed to model. For 
better testing and verifying the model, we evaluate the reconstruction power with four criteria in whole fields.

Two field error criteria named relative L1 and relative L2 for each field are used as a metric for evaluation45. 
The calculation for them are presented as follows:

where � · �1 means the norm-1 operation, � · �2 means the norm-2 operation, and N is the number of sample 
points of the field in one case. Except for those two normal criteria indicating the deviations of predicted quanti-
ties, we also adopt the residuals of governing equations (mass conservation Rc, x momentum conservation Rmx, 
y momentum conservation Rmy and energy conservation Re) referencing from the numerical software FLUENT 
(Eq. (28–5) in chapter 28.15 of Fluent help document) to evaluate the accuracy of physical fields.

In addition, two common performance characteristics, Nusselt number Nu and fanning friction factor f to 
test the accuracy of predicted fields. The Nu representing thermal performance is calculated as:

where h is heat transfer coefficient; q is heat flux density which is a constant for each case; tw and tf  denote 
the averaged wall temperature and averaged bulk temperature. The f indicating the hydraulic performance is 
calculated as:

where tw is the mean temperature of top and bottom walls; tf  is mean fluid temperature; pin is the average pres-
sure at inlet; and pout is the average pressure at outlet. They are shown in Eq. (34).

The relative error (RE) for performance characteristics Nu or f can be calculated as:

where y is the parameter calculated from original fields and ŷ is the predicted value extracted from the recon-
structed fields. On some level, Nu and f criteria can be considered as another integral weighted form of the field 
error.

Results
Performance analysis of reconstruction.  In this section, we demonstrate that the improved model can 
reliably reconstruct physical fields for nanofluids flowing in microchannels. The training dataset consists of 
3000 unique cases (3000 × 550 × 40 sample points) randomly selected from 6000 cases in total. And the remain-
ing 3000 cases are used as test dataset to illustrate the reconstruction performance from four aspects: physical 
field visualizations, physical field error, residuals of conservation equations and relative error of performance 
characteristics.

A collection of examples with varying design parameters is presented to visualize the true, predicted physical 
fields and absolute error distributions in Fig. 3. Based on the geometry, the microchannels can be divided into 
four types: protrusion-groove, groove-protrusion, protrusion-protrusion and groove-groove microchannels. 
Considering the different flow and heat transfer behaviors for four types of microchannels, two examples for 
each type of microchannels are displayed. Besides, the design variables ( [Re, q,ϕ,R1,R2, δ1, δ2, a3] ) are listed at 
the top of each image to describe the corresponding case.

It can be seen from Fig. 3 that true and predicted pressure both drop down along microchannel and reduces 
to zero at the outlet as nanofluids developing. Compared with smooth pressure fields of ground truth, the model 
can reconstruct the pressure field identically in a coarse structure with few discontinuous lines in dramatically 
changing parts. Due to the heat flux conditions on walls, the nanofluids near walls is heated along microchan-
nel while the temperature of nanofluids in middle keeps around the inlet temperature of 293 K. It should be 
noted that the two obvious high-temperature zones are found in the leading edge of groove or the trailing edge 
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of protrusion, respectively. Even with some dramatic changes in temperature distributions, our approach can 
generate plausible temperature fields that close to ground truth. And the prediction error mainly concentrated 
around dramatical changes areas, especially for the leading and trailing edge of groove/protrusion. As for velocity 
u, different phenomena are observed around grooves and protrusions. In protrusion, a high-velocity zone forms 
when the microchannel narrows and then flows towards the top wall after the groove. No significant change is 
found in groove except for lower u in the expansion of microchannel. From the plots in Fig. 3, the reconstructed 

Figure 3.   Flow field reconstructions with different geometry (two specific examples for each geometric type of 
microchannels) and the corresponding ground truth.
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u distributions are consistent with the true distributions. The distribution of velocity v is much more complex, 
which a low-velocity zone and a high-velocity zone are formed around grooves and protrusions. Though it can 
be found that the absolute error is much large compared with the velocity field, the large errors only exist at 
local points, making little influence on global velocity distributions. It can be inferred that predicted velocity v 
fields resemble the ground truth flow fields. As discussed above, our model can predict plausible physical fields, 
including pressure, temperature, and velocities, for all kinds of microchannels.

Figure 3.   (continued)
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In Fig. 4, three curves A, B and C are plotted in microchannels to describe the prediction performance near 
bottom wall, the center of microchannel and near top wall, respectively. Along three curves, the comparisons 
between predicted pressure, temperature and velocity (u, v) attributes and true fields are presented in Fig. 5, 
where the shaded areas indicate the groove and protrusion. As shown in plots, the model can favorably predict 
four field attributes in detail, while velocity v is found close to ground truth with marginal deviations in curve 
A. This may be partly due to the low values of velocity v near wall. This brilliant prediction ability enables the 
deep learning model to gather arbitrary points of physical attributes with favorable accuracy and analyze the 
heat transfer and flow behavior.

To quantitatively investigate the reconstruction performance, the two evaluation criteria relative L1 and L2 
error as well as the residuals of four conservation equations, mass, momentum, and energy, are discussed in 
Fig. 6. For four physical attributes, all averaged L1 and L2 error is lower than 0.02 and 0.1. The low field criteria 
distributions indicate that our approach can reconstruct fields for different design variables with high fidelity. 
From Fig. 6b, the residuals of predicted conservation equations are close to the true residuals and the maximum 
deviation may be the residual of predicted mass equation which is tenfold true residual. This result illustrates that 
the reconstructed physical fields almost satisfy the conservation equations. In some way, it can be conjectured 
that the physical-informed model no longer simply reconstructed physical fields, but approximate the inherent 
physical laws based on prior information of conservation equations to improve the reconstruction performance.

In flow and heat transfer problem, the most important performance characteristics are Nusselt number Nu 
representing thermal performance and Fanning friction factor f representing hydraulic performance. In recent 
decades, numerous studies focused on the surrogate models predicting Nu and f based on measurements or 
design variables. Herein, the surrogate model is replaced by the reconstruction model, and the characteristics 
can be extracted from generated fields by integral  operations shown in Eq. (32). In Fig. 7, we present the char-
acteristics prediction performance. It is observed that the relative errors of two performance characteristics 
distributed around 0 with negligible bias. Besides, the relative error of Nu is high to -13% while it is less than 5% 
for most examples. Likewise, though the maximum relative error of f is high to 23%, most errors are less than 
10%. It can be inferred that the accuracies of performance characteristics are high enough to complete diverse 
engineering applications in the range of studied cases. Overall, the proposed physics-informed reconstruction 
framework generalizes well for the tasks of field reconstruction and performance prediction.

Compared with classical surrogate models.  In the traditional design process, numerical simulations 
are conducted over and over upon the previous unqualified designs until a satisfying result is obtained. Although 
the computational ability is powerful nowadays, the design periodic is still dragged by massive numerical simu-
lations which is time-consuming for iterative solution of high-dimensional equations. To accelerate the design 
process, numerical simulations are replaced by surrogate models to approximate the objective functions, such as 
Nu and f. However, single surrogate model can only construct one mapping function, and the surrogate model 
should be renewed once the objective functions changed. Nearly all the objective function is a kind of abstract 
for physical fields which means that they can be extracted from fields by mathematical methods. Based on this 
fact, our approach obtains the objective functions directly from physical fields predicted by PINNs, which makes 
it possible to get any multiple mapping functions together.

In flow and heat transfer problems, performance characteristics Nu and f are widely used as objective func-
tions. Thus, the prediction performance of different traditional surrogate models including Linear Regression 
(LR), Polynomial Regression (PR), Supported Vector Regression (SVR), Artificial Neural Network (ANN), Gauss 
Process Regression (GPR), Random Forest (RF), Extreme Gradient Boosting (XGB), our previous reconstruction 
model constructed by the deep convolutional neural network36 (RDCNN) and our approach in this paper for Nu 
and f are plotted in Fig. 8. It should be noted that RDCNN and PINNs are both reconstruction models and they 
adopt same extraction method of Nu and f from physical fields. However, the RDCNN is different from PINNs 
by its image-treated physical fields and deep convolutional neural network for reconstruction. To distinguish 
the prediction performance, three global criteria R-square (R2), mean squared error (MSE) and mean absolute 
error (MAE) and relative error (RE) of performance characteristics are utilized. The mathematical expressions 
of three global criteria are described below:
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Figure 4.   The three curves A, B and C in microchannel.
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where y means the original performance characteristics, y′ means the performance characteristics predicted by 
surrogate models, y is the mean value of original performance characteristics and N is the total number of testing 
dataset, which is 3000 for this comparison (3000 samples are applied as training dataset).

It can be observed from Fig. 8a,b that reconstruction model RDCNN shows the best prediction performance 
of Nu ,and our model is slightly lower than RDCNN with 0.992 R2 score, 0.081 MSE, 0.152 MAE and 88.6% 
for ± 10% Relative Error (RE), respectively. Among other classical surrogate models, XGB provides best prediction 
accuracy which is still lower than our reconstruction models. For the prediction performance of f, the improved 
model outperforms other models with 0.994 R2 score, 3.89 × 10–5 MSE, 2.58 × 10–4 MAE and 92.6% for ± 10% 
Relative Error (RE). As for other classical surrogate models, the prediction power of XGB is far more than oth-
ers, but it is still inferior to reconstruction models considering comprehensive performance. The results confirm 
that the reconstruction models are beneficial to predict performance characteristics based on predicted physical 
fields compared with regular surrogate models.

Figure 5.   The detailed distributions along curve A, B and C.
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Effect of training size.  An inherent problem of data-driven machine learning approaches is that model 
performance strongly depends on the quality of training dataset. Thus, it is significant to investigate the effect of 
training size on the reconstruction performance of our reconstruction model. In this section, four training sizes 
are utilized: 3000 groups of sample points (50%), 2000 groups (33%), 1000 groups (17%) and 500 groups (8%) 
for all 6000 groups in raw data. Besides, the remain 3000 groups of sample points are taken as testing dataset 
for all the models with different training size. In the following, the effect of training size is studied from three 
factors: relative errors of physical fields, residuals of conservation equations and relative errors of performance 
characteristics.

Figure 9 shows the comparisons of relative field errors L1 and L2 for four different training size. It is apparent 
that physical relative errors decrease as training size enlarges from 500 to 3000 groups of sample points and the 
decrement drops down gradually. Averaged physical errors L1 and L2 for all physical fields are under 0.05 with 
training size greater than 2000 (33%). Once the training size is up to 2000, increasing training size shows a very 
limited improvement of reconstruction accuracy.

(a) Relative field errors (b) Residuals of conservation equations
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Figure 6.   Prediction performance of relative field error and conservation equations.
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In Fig. 10, it is observed that the residuals of predicted conservation equations with four training size are 
all below 2 × 10–3, while the residuals of true conservation equations are lower than 10–4. Similar to the physical 
field relative errors, the residuals of conservation equations keep decreasing till training size is higher than 2000. 
The varying trend indicates that the reconstruction performance is difficult to be improved through reducing 
residuals of conservation equations with adequate training samples (2000 groups of sample points in this study).

In addition, the relative errors of attention-attracting performance characteristics Nu and f are presented in 
Fig. 11. From the box plots for relative error of Nu, it can be found that the relative error of thermal performance 
is distributed around 0 and the maximum relative error decreases from 12 to 5% with training size increasing 
from 500 to 3000 groups. As for hydraulic performance f, the averaged relative error fluctuates around 0 and 

Figure 8.   Comparison of prediction performance between different models.
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Figure 9.   Relative L1 and L2 errors vs. Train size.
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the maximum relative error also decreases from 15 to 8% with larger training size. The higher relative error for 
f may due to the much smaller values of f and the higher relative errors of pressure attribute. Similar to physical 
fields relative errors and residuals of conservation equations, the relative errors of performance characteristics 
show little reduction when training size is larger than 2000.

Overall, the increase of training size has an obvious positive effect on reconstruction performance, including 
reducing physical fields relative errors, regulating residuals of conservation equations and decreasing relative 
errors of performance characteristics. However, this improvement of reconstruction power is constrained if the 
training samples are adequate. In the light of this study, training data of 2000 groups is enough to attain excellent 
PINN model with acceptable accuracy.

Extrapolation performance.  As discussed above, the applied physics-informed model shows excellent 
capability for multiple evaluation criteria of interested fields and characteristics. However, it should be noted 
that the reconstruction of fields above can be regarded as interpolation due to randomly divided datasets whose 
design variables of training and testing set are under the same probability distribution. To demonstrate the gen-
erality and scalability of our method, it is an intuitive idea to investigate extrapolation power of the approach—
one of the most important problem but perhaps rarely mentioned in recent research. In this section, we evaluate 
the extrapolation capabilities from two aspects: physical fields relative errors L2 and relative errors of perfor-
mance characteristics, Nu and f. Moreover, we repartition different training data set based on the extrapolation 
of four important parameters Re, q, φ and a3, covering the design information related to geometry, nanofluids 
and boundary conditions.

From Figs. 12, 13, 14, 15, the relative L2 error of physical fields and relative error of characteristics are plot-
ted with varying design variables for training and testing datasets. In addition, the pressure fields in the testing 
dataset are displayed for visual observation. An obvious result can be found that relative L2 error and relative 
error of performance rise gradually as design variables extend outward the training ranges. This indicates a 
noticeable conclusion that the farther the design variables are away from the training interval, the worse the 
reconstruction performance. The design variable a3, which provides the least impact on the physical fields, has 
the best extrapolation performance. It is observed that the reconstructed fields in testing dataset show a relatively 
good match with the ground truth, the relative error L2 is less than 0.1 except some special cases and the relative 
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Figure 10.   Residuals of conservation equations vs. train size.

Figure 11.   Relative errors of performance vs. Train size.
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error of characteristics concentrated between -10% and 10%. Then the extrapolation performance of φ ranks 
second, with reasonable physical fields, slightly higher relative error L2 and larger relative error of performance.

As for the boundary conditions of Re and q, the extrapolation performance along increasing variables is pretty 
good while a clear accelerating downward trend of relative L2 error and an increasing bias of increasing relative 
error of performance can be observed with decreasing variable. For the extrapolation of Re, the relative L2 errors 
of pressure and velocity u up to 0.5 and the relative error of f ups to 50% with lower Re while the relative error 
of Nu is much smaller. Besides, the reconstructed pressure fields can only obtain coarse flow patterns in low Re 
while plausible predictions of pressure fields are found with high Re. The reason for this result is the significant 
influence of varying Re on pressure. Likewise, due to the close relationship between q and temperature field, the 
relative L2 errors of temperature field (maximum of 0.5) and the relative error of Nu (maximum of 25%) is much 
higher with decreasing q. Besides, the reconstructed physical fields agree well with ground truth with lower q. The 
results show that our model can predict multiple physical fields and performance characteristics with favorable 
accuracy if Re and q increase, and acceptable accuracy if Re and q slightly decrease.

In summary, the prediction performance become worse with design variables deviated from training ranges 
and this is determined by the regression essence of neural network. Besides, the larger the influence of design 
variable on fields, the less satisfactory the extrapolation performance. Even though the accuracy decreases with 
the design variable extending, our approach can reconstruct plausible physical fields and predict the thermal and 
hydraulic performance accurately. Especially for φ and a3, the relative error of performance characteristics rang-
ing from -10% to 10% for almost all cases and the physical fields visualizations are in good agreement with ground 
truths. It indicates that our model enables relatively accurate prediction out of the training range to some extent.

(a) Pressure field comparison (top: original, bottom: predicted)

(c) Relative error of performance characteristics

Re=50

Re=250

Re=800

Re=1000

(b) Relative L2 error 

Figure 12.   Extrapolation performance of Re. 
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Conclusion
In this study, a physics informed deep neural network incorporating the first principle, which is conservation 
laws in thermal and fluids mechanism, is proposed to reconstruct physical fields for nanofluids convection with 
design variables as input, including nanofluids volume fraction, geometric parameters and boundary conditions 
parameters. The main results are concluded as follows:

1.	 The prediction power of our model is validated from four factors: the physical fields visualizations resemble 
the ground truth with reasonable details; the relative L1 and L2 for physical fields are quite lower than 0.02 
and 0.1; the residuals of conservations close to the results of numerical simulations and the relative error for 
Nu and f are less than 10% for most cases.

2.	 Compared with classical surrogate models, reconstruction models show superior prediction performance 
of either Nu or f due to reconstructed fields (RDCNN ranks 1 for Nu and our model ranks 1 for f).

3.	 As indicated in the results with different training sizes, the more sample points involved in training, the 
more powerful the physics-informed model is for reconstructing physical fields. In nanofluids convection, 
2000 groups of sample points enable the physics-informed model to achieve best prediction performance 
approximately.

4.	 The evaluations of reconstruction performance with extended design variables demonstrate that the proposed 
model shows certain parametric extrapolation ability for the heat transfer and flow of nanofluids.

q = 10000

q = 28000

q = 80000

q = 95000

(a) Pressure field comparison (top: original, bottom: predicted)

(b) Relative L2 error 

(c) Relative error of performance characteristics

Figure 13.   Extrapolation performance of q. 
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(a) Pressure field comparison (top: original, bottom: predicted)

(b) Prediction criteria

φ = 0.2%

φ = 3.0%

φ = 8.0%

φ = 9.8%

(c) Relative error of performance characteristics

Figure 14.   Extrapolation performance of φ. 
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