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Sustainable and green 
manufacturing of gravure printing 
cylinder for flexible packaging 
printing application
Bhavna Sharma1,4, Sauraj Singh2,4, Arun Pandey3, Dharm Dutt1 & Anurag Kulshreshtha1*

Rotogravure printing cylinders are engraved by electro-mechanical engraving (EME) process in India 
used for printing purpose. But this process has drawbacks of the emissions of hazardous gases, solid 
and water pollution. EME cylinders are better in cell size, depth and needed higher copper and chrome 
plating thickness. By laser engraving (LE) copper and chromium thickness were reduced by 75 µm and 
5 µm in a cylinder by laser engraving with also a reduction in power consumption and plating time. The 
carbon footprints were also reduced by 227 g per cylinder with a cost-effective solution for rotogravure 
printing process.

Abbreviations
EME	� Electro mechanical engraving
Cu	� Copper
DPI	� Dots per inch
ECE	� Electro chemical equivalent
AGPL	� Afflatus gravures private limited
LPI	� Lines per inch
IPA	� Iso propyl alcohol
LE	� Laser engraving
Cr	� Chromium or chrome
WB	� Water-based
CFP	� Carbon footprint
ISO	� International organization for standardization
SB	� Solvent-based
VOC	� Volatile organic compounds

The consumption trend of the flexible packaging market rapidly growing globally, and it was anticipated to grow 
from USD 102 billion in 2017 and to reach USD 132 billion by 2022, at an expected compound annual growth 
rate (CAGR) of 5.2%. Gravure printing also named as rotogravure printing or Intaglio printing was principally 
long-run or higher production quantity, high-speed, and high-quality printing method1. Printing is the key 
process of packaging to attract the consumer and promote the sales appeal of a package. Printing was defined by 
any reproduction activity of text and/or images in which, with the use of an image carrier like printing cylinder 
or plate for transfer of ink on paper or polymer substrate2. For printing the flexible packaging materials following 
are required for the printing process like printing cylinder, inks, solvents, substrate and printing machine mainly. 
Printing cylinder is a copper-plated and polished surface like a mirror-image appearance without scratches and 
lines. This cylinder was used for digging the engraving cell on the surface of copper plated cylinder to hold the 
ink so that only the intentional lines would be able to transfer the ink. The engraving process could be done by 
mechanical, chemical, laser and electro-chemical or electro-mechanical method3–6 The chemical etching method 
of engraving was based on using strong acid or mordant (e.g. ferric chloride) to remove the copper metal from 
a designated area of the unprotected parts of a metal surface to create a design in intaglio (gravure cylinder) 
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on the plated and polished copper metal as per required graphic design. The chemical etching method was the 
manual method and variable factors like strength of chemical, etching perfection were having the drawback of 
cell variation so later on, this process was replaced by EME7. EME was the process, where a cell was engraved 
on the hard copper plated cylinder by a fully automatic process8. The cylinder cell depth was around 20–50 µm 
and had highly précised and consistent engraved cells9. Electromechanical engraving has worked successfully for 
decades with organic solvent-based inks. Fig. 1 shows the flow chart of the cylinder making by EME processes. 
Some major issues associated with cylinder making process like high emission of VOCs in the printing process, 
electroplating process of copper, nickel and chrome-plating and cost of effluent treatment along with adherence 
with strict legal compliances10–12. Therefore, efforts had been made to use an environmentally benign approach 
to reduce the VOCs emission and materials consumption in-cylinder making process for flexible packaging13.

Solvent-based ink did not pose a drying problem due to its highly volatile nature with an electromechanical 
engraving system. The existing electromechanical engraving system was found unsuitable for water-based ink 
due to the transfer of high ink volume on printing substrate which created drying issues within the specified 
travel time of printing film from one station to the next printing station14. The laser-induced engraving was 
the latest cutting-edge technological development in engraving techniques. In which the depth of the cell was 
drastically reduced for achieving the same printing characteristics compared to electronic engraving9. Depth of 
the cell reduces in LE due to non-contact digging of engraving cells by laser. The laser technique is very useful 
for engraving cells very precisely and accurately on coated copper.

Several studies were conducted to reduce VOCs emissions in the printing process but none of them was 
focused on the technological development of gravure cylinders and reduction in carbon footprints in the pro-
duction of printing cylinders. Only a few studies focused on engraving methods and advancements in cylinder-
making systems were available.

In India, National Green Tribunal (NGT) and Central Pollution Control Board (CPCB) forced the printing 
industries to reduce hazardous gases especially during chrome and copper-plating operations15. Most of the 
chrome-plating industries either shut down or shifted to remote locations in many parts of India16.

Laser engraving is a highly advanced technology in the field of rotogravure printing cylinder manufacturing. 
LASER (light amplification by stimulated emission of radiation) is consisting of three basic steps i.e., absorp-
tion, spontaneous emission, and stimulated emission. When engraving was performed by stylus, control over 
the depth and width is depended on the actual condition of the stylus. Class IV laser is used for this engraving 
process. Lasers deliver the ability to very precise and accurately deliver huge amounts of energy into confined 
regions of a material or surfaces in order to achieve an anticipated response. The absorption coefficient, which is 
derived from the material’s dielectric function and conductivity, regulates the absorption of light as a function of 
depth but these mechanisms for absorption strongly depend on the type of material. In laser engraving process, 
vaporizes materials into fumes takes place in the process. The laser beam acts as a carve, cutting of copper by 
eliminating copper plating layer from the surface of the printing cylinder. Vaporization temperature of copper is 

Figure 1.   Flow chart showing the EME cylinders making processes.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16266  | https://doi.org/10.1038/s41598-022-15893-1

www.nature.com/scientificreports/

approximately 2595 °C. The laser beam hits the polished copper plated cylinder surface with enormous levels of 
energy to generate the high heat required for vaporization of copper plating. In laser etching process for engrav-
ing, laser beams melt the copper plated surface to change its roughness; laser engraving sublimates the material 
surface to create deep crevices (engraving cells) within milliseconds. The effects formed by this laser energy 
interacting with targeted material depend upon the wavelength, power level of the laser, absorption characteristics 
and chemical composition of the material17. By this process, copper surface instantly absorbs enough energy to 
change from solid to gas without ever becoming a liquid phase in whole mechanism. It is noteworthy here that 
laser engraving process area must having the facility of fume extraction system to keep the work environment 
safe and an air knife to protect the laser’s lens also.

Laser engraving on cylinders is highly precise and accurate compared to electromechanical engraving18. Laser 
engraving technology did not comprise the use of any kind of tool bits and diamond stylus, which contacted or 
dig the polished copper surface for engraving and possibly will wear out. To provide resistance to wear during 
long printing runs, the engraving cells or images on cylinder were protected. The coating layer of chromium was 
electroplated onto the cylinder’s surface within 10–12 µm for electromechanical engraving and 6–8 µm for the 
laser engraving cylinder. Therefore, it made it possible to reduce the high ink volume and opened the doors for 
the use of water-based inks by improving the ink drying rate and its adhesion on the substrate.

The reduction in the depth of engraving cell with improved cell geometry on LE cylinder minimized the 
transfer of high ink volume. The printing properties were checked to benchmark the performance of printing 
from EME and LE cylinders. The difference in consumption of raw materials used for copper and chrome-plating 
was intended from the study conducted at AGPL. This novel study highlighted the significance of copper and 
chrome-plating role and assessment of reduction of cost and CFP in gravure printing cylinder making process. 
Many studies were conducted for rotogravure printing and water-based ink, but none of the studies is reported 
for the reduction of carbon footprint and cost from raw materials and power consumption.

Materials and methods
To bridge this extended technical gap, the present study was focused on the configuration of the cell geometry 
for electromechanical and laser engraved cylinders and compared the printing parameters and cost benefits. 
Two cylinders with having a circumference of 520 mm and a length of 1100 mm were taken for engraving by 
EMR and LE methods to compare the printing parameters. This study covered the reduction in consumption 
of plated materials and power along with cost-saving per cylinder. The CFP was calculated from the difference 
in the consumption of copper and chrome-plating processes and power consumption in rotogravure printing 
cylinder manufacturing units.

All the materials and chemicals used in this study were purchased by AGPL. Copper anode purchased from 
Luvata Corporation, Italy, chrome solution from Atotech Chemicals, Bengaluru, Sulphuric acid from Merck 
Chemicals, India, Ballard powder from MDC Max Daetwyler, Switzerland and other chemicals purchased from 
the local market. Inks used for printing the samples were purchased from Sakata inks, India. Corona treated Poly 
Ethylene Terephthalate (PET) film was purchased from Uflex Ltd, Noida.

Sampling site and location.  Delhi-NCR (National Capital Region of India) is the largest manufacturing 
base for flexible packaging laminates production facilities with high volume market demand, well-developed 
supporting vendors with basic amenities. AGPL is the largest cylinder-making unit of India with an export 
facility to many countries and all necessary trials and studies were conducted at AGPL. AGPL has well estab-
lished and has a state-of-the-art facility for manufacturing rotogravure printing cylinders, flexographic plates 
and embossing rollers.

Alternation of cell geometry and depth of engraving cell.  In electromechanical engraving, control 
of cell depth was due to the mechanical process of the stylus which dig the cell on a finished copper surface15. 
Stylus needed some range of copper thickness so that it should not hit the mild steel surface of base cylinder due 
to ovality. Stylus, which dig the cell on cylinder is made of diamond and highly brittle, sharp, and costly. Any 
sudden impact may cause a break or loss of the sharpness of the diamond stylus. A stylus having a certain angle 
and length to dig the cell on the electroplated copper surface but damages in stylus are the prime source of cell 
depth variation19. But in laser engraving system, there is no mechanical or physical process of digging the cell on 
copper surface of the printing cylinder as shown in Fig. 2. Engraving or cell digging process is governed by laser 
beam. Electromechanical engraving has certain limitations because it could not provide a minimum (5 µm) and 
maximum (80 µm) cell depth as a laser can achieve.

Cell parameters played a significant role in achieving the transfer of ink volume on a substrate and this mecha-
nism is governed by some parameters like cell depth, lines per inch, cell size, stylus, and copper-plating quality20. 
In this study, two cylinders were prepared, one cylinder was engraved by electromechanical engraving and the 
other by laser engraving method to study the minimum engraved cell depth, color values and shade within the 
standard range. Ballard skin method was used to study the thickness of copper and chrome-plating separately21.

Cylinder preparation.  Copper can not be directly plated on mild steel cylinders due to iron present in mild 
steel, so the surface of mild steel not having a bond with copper plating. So, cylinders were first fabricated on 
a lathe machine according to the dimensions of the pouch. The steel cylinders were electro-plated with nickel 
to get the final thickness ranging between 10 and 12 µm so that layer of Cu could be bonded to the mild steel 
base cylinder. The minimum thickness of Cu must be in the range of 150–200 µm as per the machine standard 
of MDC Max Daetwyler (Switzerland). A Cu layer of thickness of about 50 µm was polished to get a uniform 
surface with surface roughness (Rz) ranging between 0.2 and 0.4 µm. After that, the Cu-plated polished surface 
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was engraved with stylus in oscillating motion and hitting the Cu surface (Fig. 2a,b). A stylus is made of diamond 
and sharpened at the desired angle varying from 100° to 130° separately, which dig the Cu surface and engraved 
the cell.

Preparation of ballard skin.  In the Ballard skin test, 2  g of Ballard powder was mixed in one litre of 
deionised water and poured slowly on the entire surface of the cylinder before copper plating process on the 
semi-finished surface of copper. After completion of the chrome-plating process, the Ballard layer peeled off 
manually from the semi-finished surface of copper-plating. Ballard skin test was performed to check the copper 
and chrome-plating thickness for ECE and LE cylinders. Copper and chrome thickness was measured by FE-
SEM (Mira 3Tescan) to evaluate the difference in thickness21.

Comparison of printing properties.  Printing was performed with Sakata ink by proofing machine (JM 
Heaford, UK) and printing parameters were studied to benchmark the printing performance from EME and LE 
cylinders printed ink.

Ink transferred on PET films formed as a film, thickness of ink layer by EME and LE cylinders were analysed 
by a Field Emission Scanning Electron microscopy (TESCAN MIRA3). Following parameters were measured 
for comparative study of both engraving systems.

Thickness of printed ink.  Transferred ink thickness on printing substrate on PET film by EME and LE 
cylinders was analysed by a Field Emission Scanning Electron microscopy (TESCAN MIRA3, USA) operat-
ing at an acceleration voltage of 10–20 kV. After ink transfer, printed samples were cut into the required size of 
the sample and kept in the sample holder. After that samples were sputter-coated with gold before the FE-SEM 
experiment started.

Measurement of color strength.  Ink specific color components strength (L*, a*, b*) of the image trans-
ferred on printing substrate (PET film) were determined by Spectrox Eye spectrophotometer. The ink printed 
on PET films was measured for color coordinates (LAB values) at randomly chosen five distinct points as per 
the method given by22.

Viscosity.  Ink consistency was determined by using PAINTLAB + Viscomixer (Rhopoint Instrument Ltd, 
U.K). The viscomixer’s probe was dipped into the 50 ml ink, and the viscosity of ink was measured in the tripli-
cates as per method given by23.

Surface energy.  The surface energy of ink was determined by using Tensiometer (KSV Instruments Ltd, 
Finland) with rectangular platinum (Pt) plate method at 25°C. 12 g of ink was taken from both the inks and 
dissolved in a 24 ml solution of deionised water and IPA (80:20) for water-based ink and 24 ml of ethyl acetate 
for solvent-based ink. Both the inks were kept for 10  min on a magnetic stirrer for making a homogenous 
solution24,25.

Adhesion study of ink on PET film.  The adhesion of both the inks on the printing film surface was con-
ducted by using the 3 M standard tape (1.5 cm) method. A standard tape having a width of 1.5 cm was stuck and 

Figure 2.   Images show (a) EME engraving process, (b) EME engraved cell on Cu plated cylinder, (c) laser 
engraving process and (d) laser engraved cells. Source: (youtube.com/watch?v=5hb3EKQv4ic).
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pasted on PET film’s surface and pulled off manually. The removal of printed ink from the surface of the printed 
sample was observed. The percentage of adhesion (%) was calculated using the following equation:

A0 and A signify the number of grids covered by the standard tape and rest by the ink, respectively26,27.

Calculation of power consumption.  Cu deposition on cylinder is principally governed by Faraday’s laws 
of electrolysis. Cu of purity 98–99% was deposited on a nickel-plated mild steel base cylinder. Standard param-
eters for the electroplating process were maintained at 50% immersion, an efficiency of 98%, and current density 
at 25 A/dm2 for plating the cylinder. The electrolyte of the Cu plating machine was maintained as copper sul-
phate (220–240 g/l) and H2SO4 (60–65 g/l) and hardener were used to increase the hardness of deposited Cu28. 
The consumption of Cu for the required thickness was calculated by using Eq. (2):

where thickness represents the amount of deposited copper, the surface area is the area of cylinder and density 
represents the density of pure Cu.

Similarly, chromium deposition on ECE and LE printing cylinders was calculated conferring Faraday’s laws 
of electrolysis. The standard parameters for electroplating of chrome-plating were maintained at 50–55°C, cur-
rent density—50 A/dm2, efficiency—21% and immersion 50%. Chrome-plating electrolyte was maintained as 
hexavalent chrome—250–280 g/l, trivalent chrome—5–10 g/l and sulphate content—2.5–5.0 g/l. The weight of 
chromium was calculated according to Eq. (1), where copper was replaced with chromium.

Power consumption was calculated during the process of electroplating of trial cylinders. General or ideal 
electric power consumption was not considered but power consumed by the rectifier for the electroplating 
process was studied. The total current in amperes required for plating of one cylinder was calculated by using 
the following Eq. (3):

Here, immersion was the % area of cylinder dipped in the electrolyte, current density for copper 25 A/dm2and 
for chromium 50 A/dm2 as per ISO standard.

The power consumption in Ah is calculated according to the following equation;

Weight was the consumed quantity of anode, ECE is electrochemical equivalence and efficiency is the % of 
machine set at the scale of 100%.

Plating time for one cylinder can be calculated by using the following equation.

Reduction in carbon footprints.  AGPL manufactured approximately 1,65,000 cylinders annually and 
out of which 40% were produced by laser engraving process. In the present study, 60,000 cylinders were taken 
for total carbon footprints and calculated for the reduction in plated materials quantity and power consumption 
during manufacturing. Another company X is also having almost same production capacity in Noida plant for 
EME and LE cylinder manufacturing, the outcome of this study was also calculated.

CFP was calculated by using following equation.

where, P was in kW, I was the current (I) in amps (A), and V was the voltage in volts (V) (https://​www.​rapid​
tables.​com).

The CFP for copper was calculated according to the factor given by Chesnokov et al. and the factor for CFP of 
chromium was taken from the standard factors given for CO2 emissions13. Carbon footprints were calculated as 
a reduction in power consumption according to Eq. (7):

Consent to participate.  All authors consent to participate.

Consent for publication.  All authors consent to publish.

(1)Adhesion(%) =
A

A0
∗ 100

(2)Copper weight =
thickness ∗ surface area ∗ density

100

(3)Current inAmp = circumference ∗ length ∗ immersion ∗ current density

(4)Power consumption in Ah =

Weight ∗ 100

ECE ∗ Efficiency

(5)Plating time for one cylinder =
Time in second ∗ Ah

Current in A

(6)P = I × V/1000

(7)Output value in
(

kg of CO2

)

= Input value
(

in kWh/year
)

∗ 0.85(Emission factor)

https://www.rapidtables.com
https://www.rapidtables.com
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Results and discussion
Difference in consistency of engraving cell.  In rotogravure printing, the geometry of engraved cells 
played a key role in transferring the ink on printing substrate. In EME, the cell was helical in shape which could 
not be changed while in laser engraving, it was possible to modify the shape of the engraving cell. In an engrav-
ing process, lines per inch (LPI) and dots per inch (DPI) played an imperative role in the quality and clarity of 
a printed image. LPI referred to the lines in a one-inch area of a halftone or screen. Higher the LPI, the smaller 
the screen size due to covering the area by dots. DPI was the resolution of a print image indicating the number 
of dots per inch printed on a substrate. The more the dots, the finer will be the printing.

The depth of the laser engraved cells was reduced due to a reduction in the depth of Cu and Cr plating com-
pared to electromechanical engraved cells. Therefore, laser cells contained less quantity of ink during printing 
and transferred the same quantity of ink on the substrate. To achieve this quality, all the cells engraved on the 
surface of copper, must transfer the ink on the printing substrate. When few of the cells fail to transfer the ink 
on printing substrate during printing process is known as dot missing.

Figure 3 shows that cell missing was also observed less in LE engraving, which was good for text and halftone 
printing due to an increase in dot transfer.

Surface morphology and thickness of copper and chromium plating.  Ballard skin test was con-
ducted to measure the surface properties and thickness of Cu and chrome plated EME and LE cylinders. The 
thickness in EME cylinder plated with Cu ranged from 145 to 195 µm whereas the thickness of the chrome-
plated cylinder was measured between 9.5 and 11.5 (Fig. 4a,b).The thickness of Cu in the LE cylinder varied 
between 75 and 110 µm and 4.5–6.5 µm for chrome-plated cylinder (Fig. 4c,d). The surface of chrome-plated 
cylinder had a good number of cracks, which helped the cylinder for a long printing life. Chrome cracks gener-
ally provided lubrication through tiny canal of chrome cracks (Fig. 4e,f) to doctor blade while squeezing the ink 
from the chrome surface during printing.

Comparison of printing quality.  Printed samples from EME and LE engraved cylinders were compared 
for the post-printing properties and required quality parameters for printing were examined for flexible packag-
ing as per existing industry parameters.

Thickness of printed ink.  Printing inks thickness transferred in printing process on polymer film reflected 
as a very substantial property to achieve the targeted color values. Gloss, brightness, pigment distribution and 
LAB values were depended on the thickness of transferred ink. The thickness of printed ink on substrate should 
be maintained between 3 and 6 µm for printing applications. Pigments dispersed upon the surface gave the 
appropriate color values. Further, the thickness of the printed ink layer on the PET film was also measured 
by FE-SEM spectroscopy (TISCON) (Fig. 5) which showed that the developed inks demonstrated good film-
forming properties on the PET film with the essential thickness of ink. Average ink thickness imparted by EME 
and LE cylinders was measured 5.36 µm and 4.13 µm, respectively.

Viscosity.  Viscosity plays a vital in the chemistry of water-based ink due to ink transfer from the engraving 
cell is strongly depended on flow behaviour of ink. The viscosity of the inks used for the printing trial was meas-
ured 40 ± 1.3 cp, 40 ± 1.6 cp, and 25 ± 1.28 cp for black, cyan and yellow inks, respectively. Viscosity of printing 
inks played a dynamic role during printing operation because ink composition and solid content influenced ink 
viscosity. Frequent changes in the viscosity of ink might affect the desired color and shade during printing pro-
cess adversely. Viscosity was concerned with a fluid’s resistance to flow, changing with temperature and agitation 

Figure 3.   (a) Missing dots in EME printing (b) Less missing dot in LE printing.
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or rate of flow and it directly influenced printing quality, printability, drying time, adhesion, gloss, etc. Most of 
the printing units had an online monitoring facility to control viscosity by the addition of solvent2.

Surface energy.  The surface tension of inks must be kept lower compared to the wetting tension of sub-
strate for getting good printability, adhesive bonding, or distribution of ink. Surface tension of printing ink 
ensured the wetting of substrate, spreading over and retracting from the substrate. Ink had both adhesive and 
cohesive forces which determined the extent of association and self-adhesion to the substrate respectively. Typi-

Figure 4.   FE-SEM images of Ballard skin test Cu and chrome-plated cylinder’s surface (a, b) shows the left and 
right sides of LE cylinder’s copper and chrome thickness, (c, d) shows the left and right sides of EME cylinder’s 
copper and chrome thickness, and (e, f) shows the cracks on chrome surface.
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cally, the surface tension of solvent inks was in the 20–30 dynes/cm range29. Results show that surface tension 
of printing inks was measured in between the range of 26–28 dyne/cm. These values were related to the good 
adhesion properties of ink on PET films.

Adhesion.  Bonding of ink composition with plastic film is a very critical property of ink due to readability 
and visibility of printed material are subject to legal concern. Adhesion of ink on the printing substrate decided 
the adhesion period of printed ink. In surface printing, adhesion is a very critical parameter because it interacted 
with the other impacting surfaces directly. As shown in Fig. 6, 70–80 ± 4% adhesion was measured from trial 
ink for yellow and cyan ink by standard 3 M tape (width, 1.5 cm). Rub resistance and scuff resistance are highly 
depended on the physical and chemical bonding between the ink and printing substrate. These results showed 
that by reducing the cell depth, adhesion of ink on printing substrate did not reduce in comparison to EME 
printing samples30.

Color values of inks.  Color is strongly influenced by the pigment concentration and the distribution of pig-
ment particles. Color is the inherent property of any ink, which was directly related to aesthetics and delivered 
all the legal compliance information to the consumer. The L*, a*, and b* values of printed PET films are shown 
in Table 1 and Fig. 7. L* value of black ink showed lightness, and no change in cyan ink but yellow inks showed 

Figure 5.   (a) Shows the printed ink deposition by EME, and (b) shows the ink deposition by LE cylinder.

Figure 6.   Shows the adhesion of printed ink on PEL film.
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a marginal increase*, on LE printed samples compared to EME printed samples. a*, and b* showed light changes 
in color zone of LE printed samples compared to EME printed samples. The high L* values for all the inks indi-
cated good color strength and print quality on the corona-treated PET films31. Results show that ink transferred 
by both the engraving system is complying with the required LAB values.

Influence on printing properties.  Figure 8 shows that the readability and sharpness of text matter were 
better in LE printed samples compared to EME process. It was also observed that text readability was better in 
laser engraved cylinders due to even cell and consistent dot transfer (Fig. 8), whereas in EME cylinder text is not 
as clear. Difference in this arises due to wear and tear condition of engraving stylus, which digs the non-uniform 
cell.

Reduction in consumption of copper and chromium in LE and EME cylinder.  Metals are precious 
and Cu and Cr are used in the cylinder making process. Due to present global issues, prices of all the metals are 
in increasing trend. So, industries are forced to reduce the operating cost without compromising the quality of 
the product. Data were compared for the manufacturing process and raw materials required for both the process. 
The LE cylinder of size 520 mm × 1100 mm showed a reduction in Cu by 43.83% compared to EME cylinder. 
The plating on LE cylinder required 38.44 g less copper anode per cylinder compared to EME cylinder (Table 2). 
Cr-plating was required to protect the engraved surface of Cu and stand under the pressure of doctor blade dur-

Table 1.   LAB values of black, cyan and yellow inks.

Sl. no. Parameters

EME printed sample LE printed samples

L* a* b* L* a* b*

1 Black 15 ± 0.24 1 ± 0.02 3 ± 0.47 13 ± 0.48 0 ± 0.02 2 ± 0.011

2 Cyan 19 ± 0.37 9 ± 0.36 − 30 ± 0.68 19 ± 0.22 14 ± 0.18 − 39 ± 0.72

3 Yellow 82 ± 1.23 7 ± 0.38 82 ± 1.15 84 ± 1.16 7 ± 0.27 84 ± 1.12

Figure 7.   (a) Black, (b) cyan, and, (c) yellow inks sample respectively printed on LE and EME cylinders.

Figure 8.   Proofing results from (a) EME method (b) LE method.
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ing printing. The thickness for Cr-plating was maintained between 10 and 12 µm for EME cylinder as per the 
ISO standard, whereas the thickness for Cr-plating was between 4 and 6 µm in case of LE cylinder. A high Cr 
thickness was required for EME cylinder due to higher cell depth. The consumption of Cr was 45.3 g for EME 
cylinder and it was reduced to 20.6 g for LE cylinder. Difference in consumption of copper and chrome metal 
was not compromising the quality of printing.

The Cu-plating of LE cylinder showed a reduction in power consumption by 327.40 Amp-h and time 29.3 min 
compared to plating of EME cylinder. While Cr-plating showed a reduction in power consumption by 363.96 
Amp-h and time 15.3 min (Table 3). The time saving might be used to improve productivity without increasing 
any manpower, and investment to improve infrastructure. Zhang showed that reduction in thickness during 
plating of EME and LE cylinders also reduced plating material and time32. This study concluded that use of the 
LE method is very beneficial for raw materials and power consumption, thus adopting this recent technological 
development for manufacturing of rotogravure printing cylinder method will be favouring industries.

Cost saving in LE cylinder.  Globally industries are facing lots of challenges like moving towards automi-
zation, 4.0, increase in raw materials cost as well employee cost. So, it is the need of the hour for industries 
to reduce the operating cost and move for cost saving projects. Reduction in cost for producing high-quality 
products is the key to continual growth for any organization as well as its employees also. It is also noteworthy 
that when the thickness of copper plating reduces then the demand for power and other chemicals also reduces. 
Table 4 shows that the Cu and Cr-plated LE cylinder saved US$ 4.08 per cylinder compared to EME cylinder. If 
AGPL manufactured 60000 LE cylinders per annum, the total saving will be US$ 27,502.2 per annum and power 
saving will be US$ 376.2 compared to EME cylinder33.

Figure 9 shows that a total 13,639 kg of carbon dioxide was reduced by AGPL after 40% conversion EME 
cylinders to LE cylinders (production of 60,000 cylinders from LE). The maximum CFP were saved in chrome 
electroplating process and minimum in CFPs in copper-electroplating. These results demonstrated that industries 
can reduce the operating cost for manufacturing high end product, which not only reducing the cost but also 
reducing the carbon footprint.

Uncertainty analysis
In this present research work, there were some uncertain factors analysed which were due to the lack of related 
parameters and various limitations. We monitored and analysed different sizes of cylinders for conducting the 
trial. Cylinder circumference varies from 400 to 1100 mm and length has a variation from 800 to 1400 mm in 
routine production.

During the study period, electrolyte used for plating purposes was maintained as per the testing standards of 
ISO. SOPs were followed to prepare the trial cylinder and conducting the trial at several steps as per Fig. 1. One 
cylinder was prepared in one day in all three working shifts to improve the monitoring results, accuracy and 
precision of parameters maintained at the site. Printing from prepared cylinder (Proofing) was taken at room 

Table 2.   Consumption of copper and chrome during plating.

Engraving types Circumference (mm) Length (mm) Total thickness, (µm) Density (g/cm3) Copper consumption (kg)

Copper-plating

EME 520 1100 170 ± 5 8.96 0.87 ± 0.03

LE 520 1100 95 ± 2 8.96 0.49 ± 0.02

Copper saved per cylinder 0.38 ± .03

Chrome-plating

EME 520 1100 11 ± 0.5 7.19 0.045

LE 520 1100 5 ± 0.2 7.19 0.020

Chrome saved per cylinder 0.024

Table 3.   Saving in power consumption and time for copper and Cr-plating of EME and LE cylinders.

Engraving type Circumference (mm) Length (mm) Plating thickness (µm) Current (A) Ah Time (min)

Copper-plating

EME 520 1100 170 ± 5 715 ± 6.17 742.40 ± 0.35 64.1 ± 0.50

LE 520 1100 95 ± 2 715 ± 5.86 415 ± 0.28 34.8 ± 0.35

Saving in power consumption and time 327.40 ± 0.29 29.3 ± 0.43

Chrome-plating

EME 520 1100 11 ± 0.5 1430 ± 8.46 667.26 ± 0.38 28 ± 0.26

LE 520 1100 5 ± 0.2 1430 ± 9.23 303.30 ± 0.42 12.7 ± 0.15

Saving in power consumption and time 363.96 ± 0.39 15.3 ± 0.19
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temp and 50% relative humidity to get the consistent ink transfer on PET films. All calibration certificates of 
monitoring and measuring devices and masterpiece of calibration tool were evidenced by authorized certifica-
tion agencies. These measures were taken to eliminate the impact of circumstantial issues on monitored results 
to a certain level to reduce the uncertainty factor of this trial work.

Conclusions
This study reveals that by adopting the LE process, the thickness of Cu and Cr layers could be reduced to 75 µm 
and 5 µm respectively. Raw materials and power consumption was also compared and data shows that LE process 
is having cost saving advantages over LE process. By converting 40% of production by laser engraving, data of 
AGPL confirmed that 13,639 kg emission of CO2 could be reduced. It means producing one cylinder will save 
227 g of CO2 emissions in the environment. In this way, it contributed to green and sustainable production 
activity and favoured a better environment for humans.

Based on derived results and conclusions in the manufacturing of rotogravure printing cylinders, cylinder-
making companies could contribute to environment-friendly, competitive, and sustainable production in the 
future. This advanced technology for LE cylinder required to aware by other business owners, managers and 
employers of printing and packaging units. The outcome of the presented model can facilitate government 
authorities to take futuristic decisions to reduce the CFP and cost from other units of cylinder making units in 
India.
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