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Community confounding in joint 
species distribution models
Justin J. Van Ee 1*, Jacob S. Ivan 2 & Mevin B. Hooten 3

Joint species distribution models have become ubiquitous for studying species-environment 
relationships and dependence among species. Accounting for community structure often improves 
predictive power, but can also affect inference on species-environment relationships. Specifically, 
some parameterizations of joint species distribution models allow interspecies dependence 
and environmental effects to explain the same sources of variability in species distributions, a 
phenomenon we call community confounding. We present a method for measuring community 
confounding and show how to orthogonalize the environmental and random species effects in suite 
of joint species distribution models. In a simulation study, we show that community confounding can 
lead to computational difficulties and that orthogonalizing the environmental and random species 
effects can alleviate these difficulties. We also discuss the inferential implications of community 
confounding and orthogonalizing the environmental and random species effects in a case study of 
mammalian responses to the Colorado bark beetle epidemic in the subalpine forest by comparing 
the outputs from occupancy models that treat species independently or account for interspecies 
dependence. We illustrate how joint species distribution models that restrict the random species 
effects to be orthogonal to the fixed effects can have computational benefits and still recover the 
inference provided by an unrestricted joint species distribution model.

Historically, species distributions have been modeled independently from each other due to unavailability of 
multispecies datasets and computational restraints. However, ecological datasets that provide insights about 
collections of organisms have become prevalent over the last decade thanks to efforts like Long Term Ecological 
Research Network (LTER), National Ecological Observatory Network (NEON), and citizen science  surveys1. 
In addition, technology has improved our ability to fit modern statistical models to these datasets that account 
for both species environmental preferences and interspecies dependence. These advancements have allowed 
for the development of joint species distribution models (JSDM)2–4 that can model dependence among species 
simultaneously with environmental drivers of occurrence and/or abundance.

Species distributions are shaped by both interspecies dynamics and environmental  preferences5–8. JSDMs 
integrate both sources of variability and adjust uncertainty to reflect that multiple confounded factors can 
contribute to similar patterns in species distributions. Some have proposed that JSDMs not only account for biotic 
interactions but also correct estimates of association between species distributions and environmental  drivers3,9, 
while others claim JSDMs cannot disentangle the roles of interspecies dependence and environmental  drivers5. 
We address why JSDMs can provide inference distinct from their concomitant independent SDMs, how certain 
parameterizations of a JSDM induce confounding between the environmental and random species effects, and 
when deconfounding these effects may be appealing for computation and interpretation.

Because of the prevalence of occupancy data for biomonitoring in ecology, we focus our discussion of 
community confounding in JSDMs on occupancy models, although we also consider a JSDM for species density 
data in the simulation study. The individual species occupancy model was first formulated by MacKenzie et al.10 
and has several joint species  extensions4,11–16. We chose to investigate the impacts of community confounding on 
the probit model since it has been widely used in the analysis of occupancy  data4,13,17. We also developed a joint 
species extension to the Royle-Nichols  model18 and consider community confounding in that model.

We use the probit and Royle-Nichols occupancy models to improve our understanding of montaine mammal 
communities in what follows. We show that including unstructured random species effects in either occupancy 
model induces confounding between the fixed environmental and random species effects. We demonstrate how 
to orthogonalize these effects in the model and compare the resulting inference compared to models where 
species are treated independently.
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Unlike previous approaches that have applied restricted regression techniques similar to ours, we use it in the 
context of well-known ecological models for species occupancy and intensity. While such approaches have been 
discussed in spatial statistics and environmental science, they have not been adopted in settings involving the 
multivariate analysis of community data. We draw parallels between restricted spatial regression and restricted 
JSDMs but also highlight where the methods differ in goals and outcomes. We find that the computational 
benefits conferred by performing restricted spatial regression also hold for some joint species distribution models.

Royle-Nichols joint species distribution model. We present a JSDM extension to the Royle-Nichols 
 model18. The Royle-Nichols model accounts for heterogeneity in detection induced by the species’ latent intensity, 
a surrogate related to true species abundance. Abundance, density, and occupancy estimation often requires an 
explicit spatial region that is closed to emmigration and immigration. In our model, the unobservable intensity 
variable helps us explain heterogeneity in the frequencies we observe a species at different sites without making 
assumptions about population closure. In the “Model” section, we further discuss the distinctions between 
abundance and intensity in the Royle-Nichols model.

The Royle-Nichols model utilizes occupancy survey data but provides inference distinct from the basic 
occupancy  model10. In the Royle-Nichols model, we estimate individual detection probability for homogeneous 
members of the population, whereas in an occupancy model, we estimate probability of observing at least one 
member of the population given that the site is occupied. Furthermore, the Royle-Nichols model allows us to 
relate environmental covariates to the latent intensity associated with a species at a site, while in an occupancy 
model, environmental covariates are associated with the species latent probability of occupancy at a site. Species 
intensity and occupancy may be governed by different mechanisms, and inference from an intensity model can be 
distinct from that provided by an occupancy  model19–21. Cingolani et al.20 proposed that, in plant communities, 
certain environmental filters preclude species from occupying a site and an additional set of filters may regulate 
if a species can flourish. Hence, certain covariates that were unimportant in an occupancy model may improve 
predictive power in an intensity model.

Community confounding. Species distributions are shaped by environment as well as competition 
and mutualism within the  community8,22,23. Community confounding occurs when species distributions are 
explained by a convolution of environmental and interspecies effects and can lead to inferential differences 
between a joint and single species distribution model as well as create difficulties for fitting JSDMs. Former 
studies have incorporated interspecies dependence into an occupancy  model4,11–16, and others have addressed 
spatial  confounding1,17,24,25, but none of these explicitly addressed community confounding. However, all 
Bayesian joint occupancy models naturally attenuate the effects of community confounding due to the prior on 
the regression coefficients. The prior, assuming it is proper, induces regularization on the regression  coefficients26 
that can lessen the inferential and computational impacts of  confounding27. Furthermore, latent factor models 
like that described by Tobler et al.4 restrict the dimensionality of the random species effect which should also 
reduce confounding with the environmental effects.

We address community confounding by formulating a version of our model that orthogonalizes the 
environmental effects and random species effects. Orthogonalizing the fixed and random effects is common 
practice in spatial statistics and often referred to as restricted spatial  regression27–31. Restricted regression has 
been applied to spatial generalized linear mixed models (SGLMM) for observations y, which can be expressed as

where g(·) is a link function, ψ are additional parameters for the data model, and � is the covariance matrix of 
the spatial random effect. In the SGLMM, prior information facilitates the estimation of η, which would not be 
estimable otherwise due to its shared column space with β30. This is analogous to applying a ridge penalty to η, 
which stabilizes the likelihood. Another method for fitting the confounded SGLMM is to specify a restricted 
version:

where PX = X(XX)−1X ′ is the projection matrix onto the column space of X . In the unrestricted SGLMM, the 
regression coefficients β and random effect η in (1) compete to explain variability in the latent mean µ in the 
direction of X27. In the restricted model, however, all variability in the direction of X is explained solely by the 
regression coefficients δ in (4)31, and η explains residual variation that is orthogonal to X . We refer to β as the 
conditional effects because they depend on η , and δ as the unconditional effects.

Restricted regression, as specified in (4), was proposed by Reich et al.28. Reich et al.28 described a disease-
mapping example in which the inclusion of a spatial random effect rendered one covariate effect unimportant 
that was important in the non-spatial model. Spatial maps indicated an association between the covariate and 

(1)y ∼ [y|µ,ψ],

(2)g(µ) = Xβ + η,

(3)η ∼ N (0,�),

(4)y ∼ [y|µ,ψ],

(5)g(µ) = Xδ + (I − PX)η,

(6)η ∼ N (0,�),
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response, making inference from the spatial model appear untenable. Reich et al.28 proposed restricted spatial 
regression as a method for recovering the posterior expectations of the non-spatial model and shrinking the 
posterior variances which tend to be inflated for the unrestricted SGLMM.

Several modifications of restricted spatial regression have been  proposed30,32–35. All restricted spatial regres-
sion methods seek to provide posterior means E

(

δj|y
)

 and marginal posterior variances Var
(

δj|y
)

 , j = 1, ..., p 
that satisfy the following two  conditions36: 

1. E
(

δ|y
)

= E
(

βNS|y
)

 and,
2. Var

(

βNS,j|y
)

≤ Var
(

δj|y
)

≤ Var
(

βSpatial,j|y
)

 for j = 1, ..., p,

where βNS and βSpatial are the regression coefficients corresponding to the non-spatial and unrestricted spatial 
models, respectively.

The inferential impacts of spatial confounding on the regression coefficients has been debated. Hodges and 
 Reich29 outlined five viewpoints on spatial confounding and restricted regression in the literature and refuted 
the two following views: 

1. Adding the random effect η corrects for bias in β resulting from missing covariates.
2. Estimates of β in a SGLMM are shrunk by the random effect and hence conservative.

The random effect η can increase or decrease the magnitude of β , and the change may be galvanized by mecha-
nisms not related to missing covariates. Therefore, we cannot assume the regression coefficients in the SGLMM 
will exceed those of the restricted model, nor should we regard the estimates in either model as biased due to 
misspecification. Confounding in the SGLMM causes Var

(

βj|y
)

≥ Var
(

δj|y
)

 , j = 1, ..., p , because of the shared 
column space of the fixed and random effects. Thus, we refer to the conditional coefficients as conservative with 
regard to their credible intervals, not their posterior expectations.

Reich et al.28 argued that restricted spatial regression should always be applied because the spatial random 
effect is generally added to improve predictions and/or correct the fixed effect variance estimate. While it may 
be inappropriate to orthogonalize a set of fixed effects in an ordinary linear model, orthogonalizing the fixed 
and random effect in a spatial model is permissible because the random effect is generally not of inferential 
interest.  Paciorek37 provided the alternative perspective that, if confounding exists, it is inappropriate to attrib-
ute all contested variability in y to the fixed effects. Hanks et al.31 discussed factors for deciding between the 
unrestricted and restricted SGLMM on a continuous spatial support. The restricted SGLMM leads to improved 
computational stability, but the unconditional effects are less conservative under model misspecification and 
more prone to type-S errors: The Bayesian analogue of Type I error. Fitting the unrestricted SGLMM when the 
fixed and random effects are truly orthogonal does not introduce bias, but it will increase the fixed effect vari-
ance. Given these considerations, Hanks et al.31 suggested a hybrid approach where the conditional effects, β , 
are extracted from the restricted SGLMM. This is possible because the restricted SGLMM is a reparameteriza-
tion of the unrestricted SGLMM. This hybrid approach leads to improved computational stability but yields the 
more conservative parameter estimates. We describe how to implement this hybrid approach for joint species 
distribution models in the “Community confounding” section.

Restricted regression has also been applied in time series applications. Dominici et al.38 debiased estimates 
of fixed effects confounded by time using restricted smoothing splines. Without the temporal random effect, 
Dominici et al.38 asserted all temporal variation in the response would be wrongly attributed to temporally cor-
related fixed effects. Houseman et al.39 used restricted regression to ensure identifiability of a nonparametric 
temporal effect and highlighted certain covariate effects that were more evident in the restricted model (i.e., the 
unconditional effects’ magnitude was greater). Furthermore, restricted regression is implicit in restricted maxi-
mum likelihood estimation (REML). REML is often employed for debiasing the estimate of the variance of y in 
linear regression and fitting linear mixed models that are not estimable in their unrestricted  format40. Because 
REML is generally applied in the context of variance and covariance estimation, considerations regarding the 
effects of REML on inference for the fixed effects are lacking in the literature.

In ecological science, JSDMs often include an unstructured random effect like η in (1) to account for interspe-
cies dependence, and hence can also experience community confounding between X and η analogous to spatial 
confounding. Unlike a spatial or temporal random effect, we consider random species effects to be inferentially 
important, rather than a tool solely for improving predictions or catch-all for missing covariates. An orthogonali-
zation approach in a JSDM attributes contested variation between the fixed effects (environmental information) 
and random effect (community information) to the fixed effect.

We describe how to orthogonalize the fixed and random species effects in a suite of JSDMs and present a 
method for detecting community confounding. In the simulation study, we test the efficacy of our method for 
detecting confounding, show that community confounding can lead to computational difficulties similar to those 
caused by spatial  confounding31, and highlight that, for some models, restricted regression can improve model 
fitting. We also investigate the inferential implications of community confouding and restricted regression in 
JSDMs by comparing outputs from the SDM, unrestricted JSDM, and restricted JSDM of the Royle-Nichols and 
probit occupancy models fit to mammalian camera trap data. Lastly, we discuss other inferential and computa-
tional methods for confounded models and consider their appropriateness for joint species distribution modeling.
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Model
Data model. The probit and Royle-Nichols occupancy models were developed for analyzing multispecies 
binary detection data, yijk , arising from a zero-inflated Bernoulli process with probability of success pijk , where 
i = 1, . . . , n , j = 1, . . . , Ji , and k = 1, . . . ,K correspond to sites, occasions, and species, respectively. Occupancy 
data of this form have traditionally been analyzed in a latent variable  framework10,41,42. In what follows, we let 
zik ∼ Bern(ψik) be an indicator on whether species k occupies site i. Given a site is occupied, we detect species k 
on occasion j with some probability pijk , such that (yijk|zik = 1) ∼ Bern(pijk) , but if species k is absent from the 
site, we have zero probability of detecting it, P(yijk = 0|zik = 0) = 1.

The probit occupancy model is so named because it links ψik and pijk to occupancy and detection covariates 
xik and wijk , respectively, with the standard normal CDF � . The probit link function can be paired with data 
 augmentation17,43–45 to yield efficient Gibbs samplers for the occupancy and detection regression coefficients β 
and α , respectively.

Royle and  Nichols18 introduced a method for analyzing occupancy data that explicitly modeled the probability 
of detecting species k at a site as a function of a surrogate related to the true species abundance. Assuming there 
are Nik individuals of species k in sample region i and that all individuals in species k on the sample unit have 
identical detection probabilities and are detected independently of other individuals, the probability of detecting 
at least one of these individuals can be expressed as

where rjk is a binomial sampling probability that a particular individual of species k is detected on occasion j. 
While the Royle-Nichols model facilitates inference on number of individuals of species k, Nik , at each site when 
all the assumptions are met, we do not interpret them as such because sites are not necessarily closed in camera 
trap studies due to mobile species with home ranges larger than the sampling radius of the camera. Note that 
ρijk in (7) corresponds to the species probability of detection conditional on an intensity process. This is distinct 
from pijk in the probit model that is conditional on an occupancy process.

The nonlinear function of rjk and Nik in (7) involves more parameters than would be identifiable in a typical 
occupancy model, especially when the individual detection probability is heterogeneous across occasions (e.g., 
rjk are heterogeneous). In the heterogeneous case, rjk is connected to covariates with the logit link function:

where f (wijk ,αk) is a linear function of the detection covariates wijk and regression parameters αk.

Modeling interspecies dependence. We extend both occupancy models to account for interspecies 
dependence by including random species effects in their process models. Following Royle and  Nichols18, we 
assume Nik ∼ Pois(�ik) , where �ik is mean intensity of species k at site i. We let � denote the vector of site specific 
intensities stacked across the K species in the community. To model interspecies dependence, we specify the 
conditional multivariate normal distribution:

where X is a block-diagonal matrix of the K species design matrices, β = (β ′
1, . . . ,β

′
K )

′ is a stacked vector of 
species specific regression coefficients, η represents the random species effects, and �spp is a species covariance 
matrix, and �� is a matrix that allows for additional covariance structures such as spatial dependence. For our 
purposes of comparing the SDM, unrestricted JSDM, and restricted JSDM for differences galvanized by com-
munity confounding, we assumed a simple independent structure for log(�) and set �� = τ I.

In the probit model, we include a random species effect in the latent probability of occupancy: 
�(ψ) = Xβ + η , where ψ is a vector of site specific occupancy probabilities stacked across the K species in the 
community and X , β = (β ′

1, . . . ,β
′
K )

′ , and η are defined as above.
In both occupancy models, η allows for dependence between all K species in the community at each site. 

In the probit model, η characterizes interspecies dependence in the probability of occupancy, whereas in the 
Royle-Nichols model interspecies dependence is characterized in the species latent intensities. Just as certain 
environmental features may not preclude species occupancy but can curb intensity, some species may coexist in 
a region but not be able to jointly  flourish46. Hence, interspecies dependence on latent intensity is conceptually 
distinct from interspecies dependence on probability of occupancy and may lead to inferential differences in η 
in the two occupancy models.

Tobler et al.4 developed a joint occupancy model that accounts for community structure using a latent variable 
approach. They express the latent probability of occupancy of species k at site i as

where l′i is a vector of length T of latent variables, and θk are species specific regression coefficients. The latent 
variable model (LVM) is a computationally efficient and implicitly accounts for community structure. Other 
occupancy models have included interspecies dependence in the structure of the regression coefficients. Known 
as multispecies models, these models assume the species specific regression coefficients βk stem from a common 
multivariate normal distribution βk ∼ N (µ,�β) where µ is the typical response of a species to covariates x and 
�β allows for dependence in different species response to the same  covariates47. In our study of mammalian 

(7)ρijk = 1− (1− rjk)
Nik ,

(8)logit(rjk) = f (wjk ,αk),

(9)log(�) ∼ N (Xβ + η,��),

(10)η ∼ N (0,�spp ⊗ In),

(11)�(ψik) = x′iβk + l′iθk ,
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camera trap data, each species is modeled with unique covariates, and we do not consider shared environmental 
responses.

Scheffe48 stipulated that the levels of a random effect are draws from a population, and the draws are not of 
interest in themselves but only as samples from the larger population, which is of interest. In more recent lit-
erature, the term random effect is used more broadly. Hodges and  Clayton49 categorized modern definitions of 
a random effect into three different varieties. The definition commonly used in spatial statistics is, the levels of 
the effect arise from a meaningful population, but they are the whole population and these particular levels are 
of interest. We adopt this definition for the random species effects in (9). In practice, some levels of the popula-
tion will likely not be included in the random species effects. For example, in Ivan et al.50, cameras were baited 
and arranged to capture all members of the mammalian community, but several species were excluded from the 
random species effects due to a lack of detections.

Priors. We specified normal priors for the regression coefficients, β , in the intensity and occupancy processes 
of the Royle-Nichols and probit models, respectively to facilitate comparison with the occupancy and spatial 
confounding literature. We also specified normal priors for the detection coefficients, α , in the observation model 
and the conjugate Inverse-Wishart prior for the species covariance matrix �spp . A more general alternative to 
the Inverse-Wishart prior is to apply a Cholesky decomposition, �spp = LD−1L′ , where L is lower diagonal 
with ones along the diagonal and D is diagonal with positive diagonal elements, and specify priors for the 
lower diagonal elements of L and diagonal elements of D51. We found the Inverse-Wishart prior suitable for our 
inferential goals, but see Chan and  Jeliazkov51 for alternative covariance matrix priors.

The joint posterior distribution associated with our model is

See Appendix A for the full statements of both the joint probit and Royle-Nichols occupancy models.

Community confounding
Restricted regression approach. We fit a restricted version of the each JSDM that orthogonalizes 
the fixed and random species effects. In the Royle-Nichols model, we express the species latent intensity and 
occupancy process conditionally as

where PX is the projection matrix onto the column space of X . Likewise, in the probit model we specify 
�(ψ) = Xδ + (I − PX)η and retain the same prior for η as in (14). This specification forces the random species 
effects to explain patterns in the community that are orthogonal to the fixed effects. The latent variables and fixed 
effects in the LVM can also be orthogonalized. Writing (11) in matrix form, we have

where X and L are the matrices of covariates and latent variables vertically stacked across sites, respectively. If 
we assume common covariates across all K species, we can specify a restricted LVM as follows:

However, if covariates differ by species, i.e., X = Xk , then the posterior distribution of latent variables will differ 
by species. To retain a common posterior distribution of latent variables across all species, the latent variables 
need to be orthogonalized against all covariates among the k species,

The specification of (17) is more restrictive than the orthogalization in the Royle-Nichols and probit model, and 
so we omit the LVM from our case study.

Hanks et al.31 showed that the restricted (13) and unrestricted (9) generalized linear mixed models GLMM 
are reparameterizations of the same model and derived the following relationship between the unconditional δ 
and conditional β fixed effects:

Using (18), one can easily sample both sets of fixed effects by fitting either the restricted or unrestricted param-
eterization. We can also sample the covariance structure of the restricted random species effect from either model 
fit by drawing samples from the distribution

(12)

[α,β , �,N ,�spp|y] ∝

K
�

k=1





n
�

i=1





Ji
�

j=1

�

[yijk|Nik ,αk]

�

[Nik|�ik]



[αk][βk]



[�|β1, · · · ,βK ,�spp][�spp].

(13)log(�) ∼ N (Xδ + (I − PX)η, τ
2I),

(14)η ∼ N (0,�spp ⊗ In),

(15)�(ψk) = X ′δk + Lθk ,

(16)�(ψk) = X ′δk + (I − PX)Lθk .

(17)LR =

K
∏

k=1

(I − PXk
)L.

(18)δ ≡ β + (X ′X)−1X ′η.
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Hence, regardless of which model is fit, we can obtain both the unconditional and conditional habitat effects as 
well as the unrestricted and restricted species covariance matrices.

Measuring confounding. Hefley et  al.27 showed how to assess confounding in SGLMM models by 
computing the Pearson correlation coefficient between each pair of covariates and eigenvectors from the spectral 
decomposition of the spatial covariance matrix. Likewise, Prates et al.35 proposed a test for spatial confounding 
that can be calculated prior to model fitting. We propose another approach relevant to our method that aids 
in interpretation. We compute the coefficient of determination of each covariate for species k regressed on the 
estimated random species effects. Because the latent intensities are unknown, the coefficents of determination of 
all covariates are derived quantities and can be computed at each iteration of the MCMC algorithm:

where x̄k = (x̄k , . . . , x̄k)
′ is the mean of the covariate xk for species k repeated n times, �(l) =

(

η
(l)
1 , . . . , η

(l)
K

)

 is 
a matrix of the random species effects sampled for MCMC iteration l, and θ̂

(l)
 are estimated regression coefficients 

relating the estimated species intensities at iteration l to xk . The posterior mean E
(

R2(xk)|Y
)

 provides a measure 
of community confounding for the covariate xk and can help identify which fixed effects will vary between the 
unrestricted and restricted models. Furthermore, we can use the global F-test of the linear relationship between 
xk and � to determine if confounding exists.

Simulation study
We performed a simulation study to investigate the effects of community confounding and orthogonalization 
of the fixed and random species effects on model fitting. Specifically, we compared the effective sample sizes 
of β and η for three different models for confounded and unconfounded data with unrestricted and restricted 
parameterizations. The effective sample size (ESS) is the number of independent MCMC samples of a quantity 
and is a metric for measuring the sampling efficiency of an MCMC algorithm. Higher ESS are preferable as 
posterior distributions of quantities of interest can be obtained in fewer iterations.

We considered three models: The joint probit occupancy model, joint Royle-Nichols model, and joint normal 
model, which is derived from the scenario where � in the Royle-Nichols is known (e.g., species density data). For 
each model, 150 datasets were generated with the fixed and random species effects independent and another 150 
datasets were generated with confounding between the fixed and random species effects. To induce confounding 
between the fixed and random species effect, we expressed one covariate of the first species as a linear combina-
tion of the random species effects (i.e., x1 = �θ).

Because the ratio of the random effects and random error magnitude is known to affect the severity of 
confounding in the spatial  context29,31,35, we varied the magnitude of the random species effect in each model 
while holding the random error magnitude constant. Specifically, each dataset was subdivided into thirds with 
50 datasets simulated to have small, medium, and large random species effects relative to the random error.

All 900 simulated datasets across models and confounding levels were for K = 2 species across n = 50 sites 
with J = 10 occasions per site for the occupancy models. The correlation between the two species was allowed 
to vary for each dataset. Each habitat design matrix included an intercept and one continuous covariate. Each 
MCMC algorithm was run for a burn-in period of L = 10000 to ensure convergence. The next L = 10000 itera-
tions were used to calculate the posterior quantities in Table 1. Code for performing the simulation study in R 
are available in the supplementary electronic files.

For both β and η , ESS was lower on average for the confounded data than the unconfounded data for all three 
models demonstrating the negative impacts confounding can have on model fitting. For all three models, the 
computational impact of fitting the restricted parameterization did not differ depending on whether confounding 

(19)�−1
spp,R ∼ Wishart(Sν + η′(I − PX)η, ν + n).

(20)R2(l)(xk) =
SSR(l)(xk)

SST(xk)
=

(

�(l)θ̂
(l)

− x̄k

)′(

�(l)θ̂
(l)

− x̄k

)

(xk − x̄k)
′(xk − x̄k)

,

Table 1.  Summary of simulations results. All results are averaged across 3 magnitudes of random species 
effects and 50 simulated datasets. ESS Ratio is the effective sample size of the restricted parameterizations 
over the unrestricted and the mean ESS is the average of the two. E

(

R
2(x1)|Y

)

 is the posterior mean R2 of 
confounding for species 1 continuous habitat covariate. Rejection rate is the portion of times the the posterior 
mean p-value from overall F-test of a linear relationship between x1 and � was below 0.05.

Model Data β ESS Ratio β Mean ESS η ESS Ratio η Mean ESS E
(

R
2(x1)|Y

)

Rejection rate

Normal Unconfounded 18.69 5143 6.20 5670 0.04 0.01

Normal Confounded 8.67 4219 5.79 4800 0.51 0.87

Probit Unconfounded 1.73 959 1.08 534 0.04 0.00

Probit Confounded 1.96 444 1.23 293 0.19 0.63

Royle-Nichols Unconfounded 0.81 232 0.98 307 0.04 0.00

Royle-Nichols Confounded 0.80 186 0.98 301 0.18 0.51
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exists or not. In the case of the normal and probit models, fitting the restricted parameterization improved ESS 
for both β and η , although the gains were much greater for the normal model. On the other hand, the restricted 
parameterization of the Royle-Nichols model did not improve ESS for β or η . The success of our method for 
detecting community confounding differed across models. The method was most powerful for the normal model 
followed by the probit and Royle-Nichols models.

Camera trap survey
Study area. We analyzed data arising from a study area comprised of subalpine forests in the state of 
Colorado between 2590 and 3660 m elevation (Fig. 1). Sites were restricted to public lands managed by the 
United States Forest Service, National Park Service, Bureau of Land Management, and Colorado State Forest 
Service. Forests in our study area were primarily composed of Lodgepole pine (Pinus contorta), Engelmann 
spruce (Picea engelmannii), and subalpine fir (Abies lasiocarpa). Lodgepole pine was dominant at lower elevations 
as well as higher elevations that were drier and/or on south-facing slopes; high elevation regions that had cool 
north-facing slopes were co-dominated by Engelmann spruce and subalpine fir. Lodgepole pine is restricted 
to the northern two-thirds of Colorado, so all sites in the southern region of the study area were Engelmann 
spruce, subalpine fir co-dominated. Quaking aspen (Populus tremuloides), Douglas-fir (Pseudotsuga menziesii), 
bristlecone pine (Pinus aristata), limber pine (Pinus flexilis), and blue spruce (Picea pungens) were also present 
at some sites. Mean July and January temperature across the study area were 14 and − 6.1 °C respectively. All 
camera data were collected during summers 2013–2014.

Sampling design. The primary goal of Ivan et  al.50 was to assess mammalian responses to bark beetle 
outbreaks, thus sites were randomly selected to facilitate inference on the beetle outbreak covariates. Beetle 
outbreak covariates included the number of years since the initial outbreak (YSO) and the severity of the 
outbreak measured by mean overstory mortality (severity). The sample of n = 300 , 1  km2 sites was evenly split 
across the two dominant forest types, spruce-fir and lodgepole pine. Additional environmental covariates were 
collected at each site, and a description of these is included in Appendix B.

Figure 1.  Randomly selected sampling sites (gray circles) where passive infrared game cameras were deployed 
in spruce-fir (green) and lodgepole pine (yellow) forests in Colorado, USA, 2013-2014. Brown and orange are 
the approximate extents of spruce beetle and mountain pine beetle impacts in spruce-fir and lodgepole pine 
forests, respectively, as of 2014. Reprinted from “Mammalian responses to changed forest conditions resulting 
from bark beetle outbreaks in the southern Rocky Mountains,” by J. S. Ivan, 2018, Ecosphere, 9(8), e02369. 
Figure produced with ArcMap 10.7 available at: https:// deskt op. arcgis. com/ en/ arcmap/ 10.7/ get- start ed/ setup/ 
arcgis- deskt op- quick- start- guide. html.

https://desktop.arcgis.com/en/arcmap/10.7/get-started/setup/arcgis-desktop-quick-start-guide.html
https://desktop.arcgis.com/en/arcmap/10.7/get-started/setup/arcgis-desktop-quick-start-guide.html
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Passive infrared camera traps (Reconyx PC800, Holmen, Wisconsin, USA) were deployed near the center of 
each site. Cameras were approximately 0.5 m above the ground and pointed toward a lure tree 4–5 m  away52. The 
setup was designed to maximize detections of both large and small-bodied mammals in the local community 
while minimizing attraction of individuals from outside the sampling region of the site. The sampling regions 
were likely not closed to immigration/emigration; thus, we interpret elevated detections at a site as more 
individuals using, as opposed to occupying, that  site53. For additional details regarding the sampling design and 
study area see Ivan et al.50.

Model fitting. We fit both the Royle-Nichols and probit occupancy models to the camera trap data binned 
into 20 two-day occasions because simulations showed this was the number of replications needed to identify 
a quadratic effect of occasion on individual detection probability. Not all cameras were operational for the 
entire 40 day sampling period, and thus the number of occasions varied from 7-20. We discarded four sites at 
which the camera was operational for less than one occasion. We also discarded another 12 sites that had been 
infested by bark beetles for more than 10 years. Ivan et al.50 truncated the bark beetle infestation covariate at 
10 years because estimates of response curves beyond 10 years would be unreliable with so few sites. The final 
sample size was n = 284 sites. We built distribution models for the 13 species for which Ivan et al.50 performed 
a single species analysis; several rare species were excluded from analysis due to insufficient detections. We 
note, however, that these rare species parameters may be identifiable in the joint model as has been the case 
in previous  studies2,47,54–57. Our final dataset then included 3692 unique encounter histories at n = 284 sites, 
stacked across K = 13 species.

Ivan et al.50 used a sequential procedure similar to that described in Lebreton et al.58 to select the covariates 
in the occupancy and detection processes for each species. We adopted their detection model and used the 
same covariates but a different set of basis functions for YSO. Ivan et al.50 treated YSO as a grouping variable and 
considered probability of use response curves that allowed for cubic associations and delayed responses to bark 
beetle infestation. Multiple response curves were model averaged to produce predictive YSO response curves for 
each species. We used orthogonal polynomial basis functions for the YSO variable in the species intensity models. 
The basis functions included a linear (YSO1) and quadratic (YSO2) effect. Appendix E provides a full descrip-
tion of the intensity and detection models. All continuous covariates were scaled to have mean 0 and variance 1.

We fit all models using Markov chain Monte Carlo (MCMC). To improve mixing and predictive ability, we 
regularized the coefficients β and α with informative priors: β ∼ N (0, I) and α ∼ N (0, I)26. We specified a 
vague prior of �−1

spp ∼ Wishart(15, (15I)−1) for the species variance-covariance  matrix59. For the Royle-Nichols 
model, we used Gibbs sampling based on conjugate priors for parameters �spp , η , and β and Metropolis-Hastings 
updates for N  , � , and α . Derivations of the conjugate full-conditional distributions are provided in Appendix C 
with details about the Metropolis-Hastings updates. We tuned the Metropolis-Hastings updates so that accept-
ance rates varied between 20 and 40% for α , N  , and � . Using data  augmentation17,43–45, all the parameters of the 
probit model can be sampled with Gibbs updates.

We set τ 2 = 2.25 in both (9) and (13). This choice was supported by the asymptotic equivalence between Pois-
son and logistic regression. In a generalized occupancy model, the latent probability of occupancy is specified as 
logit(ψi) ∼ N (x′iβ , τ

2) . Hanson et al.60 investigated the relationship between the prior on β and induced prior 
on the latent probability of success ψi in logistic regression; their work showed that specifying an uninformative 
normal prior on β (i.e., setting τ 2 large) induces a U-shaped prior for ψi with most of the density concentrated 
near 0 and 1. Broms et al.14 recommended setting τ 2 = 2.25 in occupancy models, which results in a relatively 
flat prior for ψ . For rare species, �i in (9) and (13) is analogous to ψi , and specifying a variance of τ 2 = 2.25 is 
minimally informative.

Baddeley61 motivated the asymptotic equivalence of Poisson and logistic regression in a spatial context where 
counts of points from a non-homogeneous Poisson process are recorded in a lattice; they showed that, as the 
grid cells of the lattice become infinitesimally small, the inference yielded from Poisson and logistic regression 
are equivalent. This result can be applied more generally to any dataset where there is a high proportion of zero 
counts. We demonstrate the asymptotic equivalence between Poisson and logistic regression in the Royle-Nichols 
model in Appendix D.

We ran the MCMC algorithm for L = 50000 iterations, and discarded the first 12500 iterations as burn-in. We 
fit an SDM, unrestricted JSDM, and restricted JSDM of both the Royle-Nichols and probit occupancy models. 
The “Results” section presents inference for regression coefficients for all six model fits.

Results. Ivan et  al.50 fit SDMs to infer changes in mammalian use of stands impacted by the bark beetle 
epidemic. The impact of bark beetle damage was measured by years since initial infestation (YSO) and severity 
of outbreak quantified by mean overstory mortality (DeafConif). The posterior distributions of the regression 
coefficients varied between the probit SDM and unrestricted JSDM, although the magnitude of difference 
differed by species (Fig. 2). The posterior variances of the SDM regression coefficients were smaller than the 
unrestricted JSDM. Posterior variances and means of the restricted probit JSDM regression coefficients quite 
similar to those from unrestricted JSDM. The only noticeable difference between the unrestricted and restricted 
regression coefficients was that the restricted coefficients had slightly smaller posterior variances on average.

As with the probit modeling results, posterior distributions of the regression coefficients in the Royle-Nichols 
SDM were more concentrated near zero than those of the JSDM (Fig. 3). Also, posterior distributions of the 
restricted JSDM regression coefficients were slightly tighter and centered closer to zero.

We calculated the unrestricted and restricted posterior correlation matrices for both the probit and Royle-
Nichols models. Pairwise differences between each entry of the posterior mean of the four correlation matrices 
were bounded between (−0.2, 0.2) , so only the correlation matrix of the unrestricted Royle-Nichols model 
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Figure 2.  Marginal posterior distributions of infestation regression parameters. Posterior distributions shown 
are from the probit SDM, unrestricted JSDM, and restricted JSDM. DeadConif is the overstory mortality 
percentage, a proxy for severity of bark beetle infestation. YSO1 is the linear effect of the number of years since a 
site was infested with bark beetles. YSO2 is the quadratic effect. Figure created in R 4.1.262.
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Figure 3.  Marginal posterior distributions of infestation regression parameters. Posterior distributions 
shown are from the Royle-Nichols SDM, unrestricted JSDM, and restricted JSDM. DeadConif is the overstory 
mortality percentage, a proxy for severity of bark beetle infestation. YSO1 is the linear effect of the number of 
years since a site was infested with bark beetles. YSO2 is the quadratic effect. Figure created in R 4.1.262.
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is shown (Fig. 4). The posterior distributions of the pairwise correlations all overlapped zero except for the 
pairwise correlations between coyotes and golden-mantled ground squirrels, coyotes and red squirrels, and 
golden-mantled ground squirrels and red squirrels. In the restricted probit JSDM, the correlations between 
coyotes and snowshoe hares, and snowshoe hares and red squirrels also did not overlap zero.

We calculated the posterior R2 of confounding for each covariate in each species specific model as described 
in (20). All posterior R2 were below 0.05 for both the Royle-Nichols and probit models giving no indication of 
community confounding for all covariates considered.

Discussion
We found that confounding between the fixed and random species effects can reduce sampling efficiency in 
MCMC algorithms and that orthogonalizing the fixed and random species effects can alleviate this problem 
when fitting some joint species distribution models. In the simulation study, we discovered that, even when the 
data were not confounded, orthogonalizing the fixed and random species effects still conferred a computational 
benefit for the normal and probit model. This was also true for our case study where the mean effective sample 
size of the conditional habitat effects β in the probit model was 32% larger when fit with the restricted param-
eterization. The effective sample size of η in the probit model was 3% greater for the restricted parameterization.

The case study indicated that inference on species-environment associations in occupancy models can change 
based on whether the distribution model accounts for community structure. Orthogonalizing the fixed and ran-
dom species effects in the probit and Royle-Nichols model slightly reduced but did not nullify the differences as 
in the case for normal data. The similarity between the restricted and unrestricted JSDM coupled with the lack 
of evidence for community confounding suggests additional mechanisms lead inference in SDMs and JSDMs to 
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differ, a finding consistent with Caradima et al.63. Overall, there was still large agreement in posterior inference 
produced by the SDM and JSDMs for both occupancy models. In additional simulation studies on the probit and 
Rolye-Nichols occopancy models, we found that community confounding can lead to larger differences between 
the SDM and unrestricted JSDM and that the restricted JSDM again mitigates but rarely nullifies these differences.

We were also interested in whether the Royle-Nichols model could identify additional associations compared 
with the probit model. The Royle-Nichols model measures associations conditional on an intensity process 
rather than an occupancy process, and intensity is likely a function of additional factors beyond those influenc-
ing  occupancy19–21. For the camera trap data, the opposite was true, in that the probit model identified more 
environmental-species and species-species associations. One possible explanation for this is that the probit model 
is more parsimonious which sharpens posterior distributions.

A related method to restricted regression, which orthogonalizes the fixed and random effects, is principal 
components regression, which performs an orthogonalization procedure solely among the fixed effects. To 
motivate their similarities, consider a simpler case where the latent intensities, � , of the K species in our com-
munity were known. We could construct K regression models for predicting each species intensity as follows:

where �−k =
(

�1, . . . , �k−1, �k+1, . . . , �K
)

 is a matrix of the K − 1 other species intensities. If Xk and �−k were 
highly collinear, principal component regression might be applied. Principal components regression is so named 
because  it decomposes the variation explained by Xk and �−k into p = p1 + p2 principal components, 
Ŵk =

(

γ 1, . . . , γ p

)

, where p1 and p2 are the number of columns of Xk and �−k respectively. The p principal 
components retain all the information explained by Xk and �−k but are orthogonal. The regression model

often improves sampling efficiency and can recover the posterior means and variances of βk and ηk in (21). 
However, inference on βk and ηk is often adjusted by truncating off the last p− r , for r < p , eigenvectors of Ŵk 
and employing the new design matrix

By retaining only the first r principal components, the smallest sources of variation are ignored in the estimation 
of βk and ηk .  Jeffers64 implemented this approach truncating off the last 7 of 13 principal components to adjust 
the estimates of regression coefficients relating various tree characteristics to maximum compressive strength. 
Other studies have selected a subset of principal components based on their strength of association with the 
response  variable65–68. In some cases, the coefficient estimates from these reduced rank approaches appeared 
more tenable than those from the full rank specifications based on known physical relationships between the 
predictors and response. Thus, like restricted regression, principal components regression can be used for solely 
computation purposes or to adjust inference.

Recently, concerns regarding the coverage properties of the fixed effects estimator under restricted regression 
have been  expressed36,69. For example, Zimmerman and Ver  Hoef69 showed that applying any restricted regres-
sion method to a SGLMM leads to frequentest coverage of the fixed effects that is lower than the corresponding 
non-spatial model. Similarly, Khan and  Calder36 found that when fitting a restricted version of the SGLMM with 
an intrinsic conditional autoregressive prior, credible intervals of the fixed effects from the restricted model were 
generally nested inside those yielded by the non-spatial model. Given these results, both Zimmerman and Ver 
 Hoef69 and Khan and  Calder36 recommended reverting to inference from the non-spatial model, rather than that 
of the restricted SGLMM, when inference from the unrestricted SGLMM appears untenable.

We did not observe the same pattern in our restricted JSDM but found the length of credible intervals of the 
restricted regression coefficients to generally be between that of the SDM and unrestricted JSDM. Nonetheless, 
if higher coverage is desired, one can always extract the conditional coefficients from the restricted JSDM while 
still benefiting from the increased stability that results from orthogonalizing the fixed and random effets. When 
deciding between inference from the restricted and unrestricted JSDM, one should also consider the random 
species effects η . Because the random effect η is rarely of interest in spatial applications, there has been little 
investigation on the inferential impacts of restricted regression on η . Such investigation, however, may be helpful 
in determining the appropriateness of restricted regression for JSDMs.

There are several conceptual facets to consider regarding the application of restricted regression in joint 
species distribution modeling. Frequently, JSDMs are described as accounting for residual correlations between 
species that cannot be explained by the environmental  covariates4,5,63. We have shown, however, that in some 
JSDMs, the random species effect can explain variation that is collinear with environmental covariates. Only 
in the restricted JSDM, does the random species effect explain variation that is residual to the environmental 
covariates attributing all contested sources of variation to the fixed effect. Yet, given that species environmental 
requirements can fluctuate based on their symbiotic relationships, one might argue that interplay between the 
environmental effects and interspecies dependence is ecology warranted. Therefore, any method that removes 
the conditional nature of these effects like restricted regression is inappropriate.

(21)�k = Xkβk +�−kηk + ε,

(22)�k = Wkθ + ε,

(23)Wk =
(

Xk ,�−k

)

Ŵk ,

(24)W⋆
k =

(

Xk ,�−k

)

Ŵ⋆
k ,

(25)Ŵ⋆
k =

(

γ 1, . . . , γ r

)

.
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JSDMs have been described as correcting our knowledge of species-environment relationship by accounting 
for interspecies  dependence5. Poggiato et al.5 argued that JSDMs help us better quantify uncertainty regard-
ing species-environment relationships, but they cannot explain discrepancies in a species theoretical and real-
ized niche. We agree that phenomenological JSDMs should not be used to disentangle the marginal effects of 
environment and interspecies dependence on species distributions and would recommend the development of 
mechanistic models to investigate interspecies-environment associations.

Experimental methods and modeling techniques for alleviating confounding have been proposed in ecology. 
Hefley et al.70 showed that replicate populations can help disentangle confounded fixed and random effects. In 
the context of joint species distribution modeling, replication involves analyzing several communities simul-
taneously, which is often infeasible. Hefley et al.70 also recommended explicit population models rather than 
phenomenological regression-based models for analysis of temporally confounded count data. Similarly, Fieberg 
et al.71 advocated for mechanistic models guided by causal diagrams for analyzing temporally confounded animal 
movement data. An avenue of future research for joint species distribution modeling is to compare inference from 
phenomenological regression-based models, such as the one proposed here, with that of models that explicitly 
include ecological mechanisms such as competitive exclusion, mutualism, and predation. Because community 
and temporal confounding have the same mathematical framework, mechanistic models are a promising solu-
tion for confounded multispecies data.

In summary, we specified a JSDM that accounts for interspecies dependence at the intensity level, and exam-
ined how inference from the joint model differed from the joint probit model. We performed a simulation study 
on three JSDMs to examine the computational difficulties associated with community confounding and investi-
gated whether orthogonalizing the fixed and random species effect could alleviate these difficulties. Further, we 
considered how inference in both occupancy models differed depending on the assumed community structure. 
Lastly, we discussed how joint species distribution modeling is distinct from spatial and time series applications 
in that the random effect is almost always of inferential interest, and hence, adjustments to the regression coef-
ficients, β , and random effects, η , should both be considered. Our main conclusion is that, even for researchers 
who desire inference solely on the conditional relationship between the fixed species-environment and random 
species effects, fitting the JSDM with a restricted parameterization can give computational benefits.

Data availability
The data are available in the Supplementary Information files.

Code availability
All algorithms and code for fitting and analyzing results from the six model variants are available in the 
Supplementary Information files. All MCMC algorithms and analyses were coded in R 4.1.262.
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