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Evaluation of Neoproterozoic 
source rock potential in SE Pakistan 
and adjacent Bikaner–Nagaur Basin 
India
Qamar Yasin1,2, Syrine Baklouti3, Ghulam Mohyuddin Sohail4,5, Muhammad Asif6 & 
Gong Xufei1*

Discoveries of heavy crude oil in the Neoproterozoic rocks (Infracambrian rock sequence) from 
the Bikaner-Nagaur Basin of India emphasize the significance of studying and exploring the 
Neoproterozoic source rock potential in the southeastern part of Pakistan. This study evaluates the 
potential of the source rock in the Infracambrian rock sequence (Salt Range Formation) based on 
surface geochemical surveys, Rock–Eval pyrolysis, source biomarkers, geophysical characterization, 
and seismic inversion using machine learning for maturity index estimation. Core samples of 
Infracambrian rock were extracted for Rock–Eval pyrolysis and biomarker characterization. 
Additionally, 81 geomicrobial soil and gas samples were collected from the surface to explore the 
petroleum system and potential source rocks in the subsurface. Advanced interpretation techniques 
were used to investigate the origin and concentration of hydrocarbon gases at the surface, including 
Rock–Eval pyrolysis, thermal maturity, source biomarkers, and the environment of deposition of 
organic matter. The results show that the investigated samples are characterized by restricted 
marine clay devoid of sedimentary carbonate facies with thermal maturity in the early stage of 
the oil generation window. The seismic inverted maturity index profile demonstrates a reasonable 
correlation of thermal maturity with the biomarkers and Rock–Eval pyrolysis. Further scrutiny of the 
surface geochemical samples confirms the presence of higher concentrations of thermogenic C2–C4 
hydrocarbons in the vicinity of anticlinal structures, suggesting the existence of an effective migration 
path along deep-seated faults to the surface. This study concludes that the Infracambrian rocks on 
the eastern flank of Pakistan are thicker, thermally mature, and have deep-seated structural closures, 
indicating a greater probability of heavy and light oil in this area than in the Bikaner–Nagaur Basin, 
India.

Neoproterozoic rocks are among the oldest petroleum-producing rock units in the world, and several successful 
discoveries have been reported from these sequences in the Salt Basins of Oman, India, Morocco, Venezuela, 
China, and Siberia1–7. Although proven hydrocarbon plays exist in many regions of the world, the Infracambrian 
rock sequence has received less attention for petroleum exploration than younger sedimentary strata. Infracam-
brian rocks have been intensively investigated and generate economic hydrocarbons only in Russia, Oman, and 
China. The discovery of the world’s oldest oil from these countries illustrates the generation and migration of 
Proterozoic petroleum, implying that the hydrocarbon potential of certain unmetamorphosed Infracambrian 
rock sequences in various parts of the world should be carefully investigated6.

The paleogeographic plate reconstructions for the Infracambrian and Cambrian periods show restricted 
marine evaporites in the Salt Range Formation (Pakistan), Bikaner–Nagaur Basin (NW India), and Huqf Basin 
(southern Oman). They were all close together on a broad carbonate shelf on the northern margin of Gondwana 
during the Infracambrian and Cambrian periods8–11. Additionally, the age and lithologies of the Salt Range 

OPEN

1College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao  266590, 
China. 2Institute of Geophysics, Polish Academy of Sciences, Warszawa 01‑452, Poland. 3Department of Geological 
and Environmental Engineering, National School of Engineers of Sfax, Sfax, Tunisia. 4Department of Geological 
Engineering, University of Engineering and Technology, Lahore, Pakistan. 5Department of Civil, Geological and 
Environmental Engineering, University of Saskatchewan, Saskatoon  S7N 5C5, Canada. 6ExxonMobil Upstream 
Research Company, 22777 Springwoods Village Pkwy, Spring, TX 77389, USA. *email: gongxufei@sdust.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14831-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11102  | https://doi.org/10.1038/s41598-022-14831-5

www.nature.com/scientificreports/

Formation and the Marwar Group of Bikaner-Nagaur (BK-N) are similar to those of the Huqf Group (southern 
Oman), which has proven to be the source rock2. In the BK-N Basin in India, nonbiodegradable heavy oil reserves 
have been discovered in the Infracambrian Jodhpur sandstone, the Bilara dolostone, and the thin siltstone layers 
in the Hanseran evaporite with porosities ranging from 16–25%, 7–15%, and 3–12%, respectively5,12. Heavy oil 
is nonbiodegradable, and biomarker ratios support the presence of crude oil from the source rock in the early 
oil generation window2,13–16. In the BK–N Basin, the biomarker study from the Baghewala-1 well reveals that 
mature hydrocarbons have been generated from a deeper buried source rock2. Several authors reported that the 
same quantities of petroleum could be generated from the Infracambrian source rock of the Salt Range (SR) 
Formation in southeastern (SE) Pakistan, where Infracambrian source rock beds are much deeper and thicker 
than those in the BK–N Basin2,9,12.

Biomarkers are organic compounds genetically related to their biological precursors and can be studied to 
establish the origin and evolution of organic matter (OM) during postdepositional processes17. Baghewala-1 oil 
was derived from Infracambrian rocks that contained algal and microbial OM that was deposited under anoxic 
marine conditions2. These findings showed that the organic-rich laminated dolomites in the Infracambrian rocks 
were developed locally and stimulated further investigation of the biomarker properties of the Infracambrian 
SR Formation.

Surface geochemical surveys allow rapid and low-cost preliminary identification of hydrocarbon-bearing 
regions from hydrocarbon microseepages18–21. The underlying concept of surface geochemical prospecting is 
that faults and fractures provide pathways for light gaseous hydrocarbon migration from subsurface geological 
formations to the surface or shallow environment by diffusion and effusion, resulting in anomalies of surface 
hydrocarbon gases22,23. The existence of all hydrocarbon gas components, such as methane, ethane, propane, 
butane, and pentane, in the surface soils indicates the possibility of the presence of an active petroleum system 
in the subsurface24. Additionally, anomalous concentrations of thermogenic C2–C4 hydrocarbons at the surface 
confirm the occurrence of mature source rock in the basin21.

In recent years, the Infracambrian play in SE Pakistan has been explored to assess the hydrocarbon potential 
by geological modeling or seismic data characterization9,12,25–27. However, previous attempts have focused only on 
the distribution of Infracambrian sources and reservoir rocks in SE Pakistan. Nevertheless, no study has directly 
investigated the potential and maturity of Infracambrian source rocks. In this study, we evaluate the distribu-
tion and potential of Infracambrian source rocks based on a combination of surface geochemical prospecting, 
biomarker parameters, geophysical characterization, and seismic inversion using supervised machine learning 
algorithms, i.e., particle swarm optimization (PSO) and multilayer linear calculator (MLC), to transform the 
seismic sections into maturity index (MI) profiles. This is the first time we have investigated the area utilizing 
a combination of all of these techniques. Furthermore, we correlated the origin of surface microbial gases with 
gravity modeling and seismic data interpretation. Additionally, the stratigraphic succession of the study area 
was compared with that of the BK-N Basin to understand the Infracambrian stratigraphic variation, thickness, 
and burial depth of source rocks.

Regional geological setting and stratigraphy
Geological setting.  The study area is located in the eastern segment of the central region of the Lower 
Indus Basin, which is divided into the Punjab Platform and the Suleiman Fold Belts, and the BK-N Basin in 
NW India is bounded by the Sargodha High to the north and the Pokaran High to the south (Fig. 1a,b). The 
entire area is covered by Quaternary alluvium that extends westward along with the Suleiman Fold Belts28,29. In 
SE Pakistan, the Punjab Platform covers approximately 58,000 km2 and extends to the BK-N Basin eastwards in 
Rajasthan, India (Fig. 1a). Seven exploratory wells have been drilled in the Late Neoproterozoic-Early Cambrian 
rocks in SE Pakistan, where heavy oil was observed in the SR Formation from the Karampur-1 well (Fig. 1b). 
This heavy oil geochemically resembled the heavy nonbiodegradable oil from the Jodhpur sandstone, the Bilara 
dolostone, and the Hanseran evaporite of the Baghewala-1 well in the BK–N Basin2,15,16. Similar geochemistry 
of heavy oil has been reported for the carbonate-evaporite facies of the Huqf Group (Infracambrian), located 
more than 2000 km to the SW, along the eastern flank of southern Oman2,12,25,27. These Infracambrian rocks 
were once within or near the western edge of Gondwanaland, which was marked by a subsiding rift system, and 
today, these rocks crop out to the west of the Aravalli ranges in the BK-N Basin and extend toward northern and 
northwestern Pakistan1,2,9. The exposures of the Aravalli Range in the northwestern Indian Shield allowed the 
development of sedimentary basins along its flanks (Fig. 1b). The movement of the tectonic plates is responsible 
for the Precambrian rocks’ deformation and caused several subsided and uplifted blocks. Tectonic subsidence 
resulted in the development of the BK–N Basin, which is related to the Kirana–Tosham Basin9. The local highs 
that existed in the study area were inferred from Early Infracambrian times that framed the basin configuration 
as more complicated. The seismic data show the eastward progradation of seismic reflections that could be inter-
preted as Paleozoic and Mesozoic nonorogenic movements (not severely deformed) in the central region of the 
Indus Basin25,29. The bedding is dominantly oriented to the west, i.e., nonorogenic movements tilted the central 
region of the basin eastward in the Paleozoic. Moreover, in the Mesozoic, it was inclined to the west. Thus, it is 
assumed that the Neoproterozoic deposition was primarily controlled by horst and graben structures, possibly 
accompanied by the breakup of Pannotia9,11.

The Infracambrian SR Formation is exposed in the northeastern part of Pakistan (Potwar Plateau)9,25. Expo-
sures of Precambrian rocks occur as many hillocks (volcanic and volcaniclastics) that are located in the Kirana 
Hills (Hachi volcanic) in the Sargodha–Shahkot–Sangla–Chiniot region of SE Pakistan30,31. These crystalline 
rocks, with or without Phanerozoic cover, lie at the bottom of the Indus Basin9. These Hachi volcanic rocks are 
analogous to the Infracambrian rocks in Nagar Parkar (Tosham-Malani volcanic India).
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Lithostratigraphy.  The lithostratigraphy of the study area was investigated using outcrops and well log data 
from the BK-N Basin India and SE Pakistan. The lithostratigraphy of the BK-N Basin is dominantly composed 
of nearly 1000 m of shales, sandstones, carbonates, and evaporites (Fig. 2). This lithology is similar to that of 
the Potwar subbasin (upper Indus Basin)12,25. The observed sedimentary succession indicated several regional 
unconformities, erosion, and hiatuses in the study area. The Infracambrian Salt Range (SR) Formation uncon-
formably overlies a Precambrian basement33. The maximum thickness of the SR Formation is 906 m.

Four stratigraphic units of the SR Formation are identified in the study area equivalent to the Infracambrian 
rocks in the BK-N Basin. The lithostratigraphy of the SR Formation is based on the depositional environment 
and lithological information from the Suji-1, Marot-1, Karampur-1, and Bahawalpur East-1 wells25,30,34. The SR 
Formation is subdivided, from oldest to youngest, into four formations: Sonia, Jodhpur, Bilara, and Hanseran 
(Fig. 2). The Hachi volcanic suite (equivalent to the Tosham Malani igneous suite) forms the basement. Both the 
Hachi and Tosham Malani volcanic rocks unconformably underlie the Basal conglomerates, which are composed 
of dolomites and volcanic clastics. The clastic sediments of the Jodhpur Formation form the primary potential 
reservoir in the basin and can be classified into Sonia shale and sandstone members. The Bilara–Hanseran 
sequence lies conformably over the Jodhpur Formation. Bilara–Hanseran acts as a source rock with a total 
organic carbon (TOC) ranging from 5 to 6%35. The calcareous Bilara Group comprises dolomite, limestone, 
stromatolitic limestone, and occasional clay beds. The Hanseran Evaporite Group comprises halite, anhydrite, 
dolomite, and reddish sandstone with thin shale beds. The Bilara-Hanseran sequence has a total estimated thick-
ness of approximately 200 m35. A comparison of the Infracambrian and Cambrian successions between the BK-N 
Basin and SE Pakistan is described in Table 1.

Structural style
The regional schematic section of structural interpretation from the basement to the Eocene based on a cross-
section across the wells (Fig. 1b) of Ahmedpur-1, Bahawalpur-1, Marot-1, Fort Abbas-1, Suji-1, Bijnot-1, and 
Baghewala-1 in SE Pakistan and BK–N Basin India is shown in Fig. 3. The correlation of these exploratory 
wells identifies the Infracambrian rock sequence (SR Formation) at depths varying from 1100 to 2600 m (NE 
to SW). It highlights several unconformities in the stratigraphic succession. From the figure, we observe that 
the Miocene, Paleocene, Permian, and Cambrian sediments gradually thin toward the east, contrasting with the 
Infracambrian deposits. The lithological log correlation classifies the Infracambrian rock into four lithofacies, 
i.e., shale, sandstone, dolomite, and evaporites36.

The basement rocks in the Karampur-1, Marot-1, Fort Abbas-1, Suji-1, Bijnot-1, and Baghewala-1 (India) 
wells are composed of rhyolite, weathered tuff, ash, and brittle clay with interbedded flows of basalt and trachyte. 
At approximately 1000 Ma, a mantle plume and rifting initiated by Infracambrian time generated widespread 
igneous activity during the post-Aravalli period. This wide variation in volcanic activity suggests extensional 
tectonics followed by deposition in the BK-N and Indus Basins.

From the rifting to the collision and underthrusting of the Indian Plate during the Infracambrian to Meso-
zoic, the basin is associated with deep-seated normal faults, salt-induced structures, horst and graben structural 
highs and lows (Fig. 3).

Figure 1.   (a) Tectonic map of Pakistan indicating structural features and locations of the study area, and (b) a 
map showing wells located in SE Pakistan and Bikaner–Nagaur Basin India2,32. The samples were collected from 
the wells labeled in red font. A yellow line indicates a stratigraphic cross-section in Fig. 3. CorelDRAW X5 was 
used to create the illustration (www.​corel​draw.​com).

http://www.coreldraw.com
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Materials and methods
Data description.  Logs and core data, including well cuttings from nine wells, as shown in Table 2, were 
used for estimating the total organic carbon (TOC), Rock–Eval pyrolysis, biomarkers, mineralogy, saturation, 
porosity, and permeability in the Infracambrian to Permian rocks. Additionally, surface geomicrobial soil and 
gas samples were investigated to evaluate the petroleum potential of source rocks in the subsurface. Moreover, 
1000  km 2D seismic data were interpreted to mark the stratigraphic horizons and structural style, focusing 
mainly on the top and bottom reflectors of the Infracambrian–Cambrian rocks.

Figure 2.   Stratigraphic column and petroleum system of the Cambrian–Infracambrian Salt Range Formation 
in the SE Pakistan Bikaner–Nagaur Basin10.

Table 1.   Maximum thickness and petroleum system of the Cambrian-Infracambrian succession in SE 
Pakistan and the Bikaner-Nagaur Basin10.

Age BK-N Basin India Thickness (m) SE Pakistan Thickness (m) Petroleum system

Cambrian
Upper carbonate 230

Jutana Dolomite 12–112

Kussak Formation 93–217

Nagaur Formation 180 Khewra Sandstone 101–152

Infracambrian

Hanseran Evaporite 170
Salt, marl, gypsum, and dolomite (SR Formation) 140–1143 Source, reservoir, seal, Source

Bilara Dolomite 40

Jodhpur Formation 50
Conglomerate, shale (Sharaban Formation)
Hadda Quartzite, quartzite (Asianwala Formation), phyllite (Taguwali 
Formation)

2300

Reservoir

Precambrian
Volcanic rocks
Basement
(Malani Suite)

+ 150 Hachi Volcanics
Basement
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Methodology.  The following sequence was adopted to achieve the study’s objectives (see Fig. 4).

Rock–Eval pyrolysis.  Rock–Eval pyrolysis was used to identify the maturity of OM and hydrocarbon gen-
eration potential of the Infracambrian rock. Four basic parameters, the oxygen index (OI), production index 
(PI), hydrogen index (HI), and maximum temperature (Tmax), were obtained by pyrolysis. The chosen samples 
(Table 3) were measured using a Vinci Rock–Eval 6 apparatus following previously reported procedures37–39. 
Ten well cuttings samples from Bijnot-1 were investigated to measure the OI, HI, PI, Tmax, and TOC. LECO’s 
CS230-series carbon and sulfur determinator was used to measure the TOC content of the well cutting samples 
following the formal standards process (CNS GB/T19145-2003).

Pyrolysis generates peaks that are transformed into measurable surfaces of S1, S2, and S3. The P1 peak 
corresponds to thermovaporizable hydrocarbons released at 300 °C, whereas the P2 peaks refer to pyrolyzable 
hydrocarbons produced by cracking kerogen over 300 °C. The pyrolysis temperatures are calibrated to ramp 
up at an average of 25 °C/minute for 20 min. Tmax (°C) is the temperature at the top of the P2 peak (maximum 
hydrocarbon genesis). Organic CO2 determination is theoretically possible if trapping is interrupted when the 
oven temperature exceeds 400 °C.

Biomarker analysis.  Ten well cutting samples were also extracted for sedimentary OM characterization. 
Extracts were separated by liquid chromatography into aliphatic and aromatic fractions of hydrocarbons and 
further analyzed by gas chromatography–mass spectrometry (GC–MS). Aliphatic and aromatic biomarkers 
were analyzed to evaluate the organic matter source facies, thermal maturity, and deposition environment. The 
methods, techniques, and guidelines that were used are similar to those reported in the literature40–42.

Maturity index (MI) calculation.  Zhao et al.43 developed a relationship between MI and Tmax to determine the 
kerogen type. They established two baselines, i.e., MI < 5 referring to the oil with some dissolved gases and MI > 7 
indicating dry gases without any condensate. The values of MI between 5 and 6 indicate oil (or condensate) and 
wet gas.

Figure 3.   Regional schematic stratigraphic cross-section and structural interpretation along with the SE 
Pakistan and part of Bikaner–Nagaur Basin India. CorelDRAW X5 was used to create the illustration (www.​
corel​draw.​com).

Table 2.   Summary of the exploratory wells drilled through the Infracambrian to Permian play in SE Pakistan 
and Bikaner–Nagaur Basin India.

Exploratory well Time Depth (m) Drilled up to Target reservoir Comments

Karampur-1 1959 3034 Basement Base Permian Heavy asphaltic oil

Bahawalpur East-1 1980 3024 Basement Base Permian Gas shows

Marot-1 1981 2596 Basement Base Permian Fluorescence

Baghewala-1 (India) 1991 1570 Basement Infracambrian Oil discovery

Pugal-1 1991 0678 Precambrian Infracambrian Heavy oil

Fort Abbas-1 1994 1651 Precambrian Base Permian Abandoned

Bijnot-1 1996 1914 Basement Infracambrian Good oil shows

Suji-1 2000 2628 Basement Infracambrian Low maturity

Maharvi-1 2007 2980 Basement Infracambrian Low maturity

http://www.coreldraw.com
http://www.coreldraw.com
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The bulk density, neutron porosity, shear and compressional sonic and deep resistivity logs of the Bijnot well, 
which are sensitive to maturity variations, were utilized to compute the MI in the Infracambrian rock by employ-
ing Eq. (1). In this equation, Zhao et al.43 evaluated the total and effective porosities of the formation from the 
core samples and correlated it with porosity calculated from the density log in the same interval to determine 
the threshold values of MI.

In this study, data of samples with log density porosity greater than 9% and water saturation less than 75% 
were included in the calculations of MI by the following equation:

where N denotes the number of those samples with log density porosity greater than 9% and saturation of water 
less than 75%, φn9i denotes the neutron porosity of those samples having log density porosity greater than 9%, 
and Sw75i is the saturation of water of such samples.

Calibration of the seismic data.  Both the conventional logs (sonic and bulk density) and check shot data (time–
depth relation) of the Bijnot-1 well along the seismic line were loaded into the computer program to calculate the 
synthetic seismogram. The acoustic impedance (AI) was obtained as the product of the sonic velocity (VP) and 
bulk density log, as given in Eq. (2). Using AI, the reflection coefficient (reflectivity) at each interface was then 
calculated by Eq. (3). In the process, we extracted the wavelet from the seismic dataset, specifically the seismic 
traces from the seismic data. The wavelet extraction derived from digitized AI and bulk density logs was con-
volved with the series of reflectivity to compute a synthetic seismogram. The reflectivity was converted from the 

(1)MI =

N
∑

i=1

(

N

ϕn9i(1− SW75i)
0.5

)

Figure 4.   Flow chart of the methodology.

Table 3.   Rock–Eval pyrolysis of Bijnot-1 well cuttings from the SR Formation.

Sample Depth (m)
S1 (mg HC/g 
Rock)

S2 (mg HC/g 
Rock)

S3 (mg HC/g 
Rock)

HI (mg HC/g 
TOC)

OI (mg 
CO2/g TOC) PI Tmax (°C) TOC (wt%)

BJ-01 1622 0.73 1.01 1.32 127 165 0.42 424 0.81

BJ-02 1634 0.74 0.95 1.45 122 178 0.43 420 0.82

BJ-04 1642 0.81 10.55 2.11 451 94 0.08 425 2.41

BJ-05 1662 0.25 3.10 1.51 342 166 0.08 432 0.92

BJ-06 1682 0.22 0.81 1.36 203 338 0.20 432 0.61

BJ-08 1700 0.32 0.63 1.50 141 328 0.32 432 0.65

BJ-09 1742 0.36 0.42 1.41 104 338 0.44 433 0.62

BJ-10 1762 0.52 0.58 1.64 113 322 0.46 424 0.51

BJ-12 1794 1.41 2.40 1.90 212 170 0.38 429 1.32
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depth domain to the time domain using available check shot data from wells. Finally, the synthetic seismogram 
was correlated with the seismic traces to build an impedance model. The AI curve closely matched the lithofacies 
(e.g., high AI is related to dolomite and shale). Mainly for this dataset, we selected the Ricker wavelet with a 2-ms 
sample rate, 25 Hz frequency, and 128-ms sample lengths to generate the synthetic trace. Substitutions such as 
sonic data calibration, datum, drift corrections, and seismic trace correlation were also performed during the 
construction of the synthetic seismogram. Figure 5 shows the synthetic seismogram, AI, reflectivity series, and 
the computed extracted wavelet for seismic line FABS-11.

Seismic data inversion.  We applied a joint inversion strategy in this work that incorporates MLC and PSO 
algorithms to convert seismic reflection data to spatial variability in the AI and MI profiles in the Infracambrian 
SR formation over the studied region44,45. Open-source rock star seismic inversion software (www.​China​rocks​
tar.​com) was used to predict the MI profile. Seismic line and MI data (input) were loaded into the inversion 
software, and the parameters according to the provisions of input data were adjusted to estimate MI (output).

Surface geochemical survey.  Surface geomicrobial soil and soil gases were studied to explore the prospective 
areas of hydrocarbon microseepage and their origin. For this purpose, we collected 81 soil and gas samples along 
seismic lines over the study area, as shown in Fig. 1b. The samples were extracted from varying depths, 0.8 to 
1.5 m, using a soil sampler, mechanical auger, sterilized soil sampling bags, and vacuum gas sampling bags. To 
evacuate the gas, a syringe was injected into the septum after sealing the annulus between the sampling tube and 
the borehole, as described by Tedesco24. While the area of interest was situated within the arid climate zone, all 
necessary measures were taken into consideration during sampling, e.g., avoiding sampling the soils from water-
saturated as well as excavated areas and land contaminated by hydrocarbons, animal feces, the flow of chemicals, 
marshes, and the areas under the water table21.

We incubated soil samples with light hydrocarbon gases in the mineral salt medium for geomicrobial analy-
sis and counted the hydrocarbon-oxidizing bacteria that had developed. For gas analysis, hydrocarbon gases 
desorbed from soil samples through acid–base extraction were analyzed by gas chromatography. The results are 
shown using concentration distribution maps to identify areas with anomalously high concentrations. Anomalies 
were marked through a statistical analysis approach, where the mean plus half of the standard deviation was 
assumed to be the background value.

(2)AI = ρ× VP

(3)RC =
(AI)layer−1 − (AI)layer−2

(AI)layer−1 + (AI)layer−2

Figure 5.   Synthetic seismogram (red traces) for the Bijnot-1 well (Salt Range Formation), showing from left to 
right: true vertical depth in meters, sonic velocity (µs/ft) and bulk density (g/cm3) logs, reflectivity (reflection 
coefficient), acoustic impedance (AI), lithology, synthetic seismogram, traces from a part of seismic line FABS-
11, and two-way time in milliseconds.

http://www.Chinarockstar.com
http://www.Chinarockstar.com
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Result and interpretation
Rock–Eval pyrolysis.  The results of Rock–Eval pyrolysis of the Bijnot-1 well cuttings (Table 3) show TOC 
and HI values varying between 0.61 and 2.41 wt% with an average of 1.01 wt% and 104–451 mg HC/g TOC with 
a mean value of 209.7 mg HC/g TOC, respectively, in the Infracambrian SR Formation. The HI versus Tmax plot 
reveals that more than half of the samples have reached an early mature stage of oil window generation. A mix-
ture of types II and III is present in the SR Formation source rock with predominantly type III kerogen (Fig. 6a). 
This mixture with the predominance of type III explains the enrichment of the original OM in the oxygenated 
components and, consequently, the high values of OI. This OM could be cellulose and lignin consisting of high 
plants or ancestors, with a mixture of bacteria and phytoplankton source biota. In the PI versus Tmax plot, the 
PI values fall between 0.08 to 0.46 and the Tmax values range from 420 to 435 °C, further confirming that the 
Infracambrian SR Formation is thermally immature to early-mature (stage of oil generation window) (Fig. 6b).

Burial history: maturation and hydrocarbon generation.  Burial and thermal history modeling.  The 
regional erosional unconformity between the Cretaceous and Paleocene, which is the most critical erosional 
surface in the study area, was considered when modeling the burial history. While developing the models, we as-
sumed that the total erosion was between 40 and 180 m. However, we found that erosion had a negligible impact 
on present-day maturity and temperature trends after conducting comprehensive sensitivity analysis.

In the Bijnot-1 well, a constant heat flow of approximately 72 mW/m2 results in the best calibration between 
the measured and calculated vitrinite reflectance. Burial history and thermal maturity modeling of Infracam-
brian rock demonstrated that Sonia, Jodhpur, Bilara, and Hanseran reached the early stages of the oil generation 
window, with a maximum burial temperature of approximately 102 °C and calculated vitrinite reflectance of 
0.40 to 0.76% Ro (Fig. 7a,b).

Thermal maturity.  For the maturity profile, the Infracambrian rock (Sonia, Jodhpur, Bilara, and Hanseran 
Evaporites) falls within the oil generation window. The present-day calculated time–temperature index (TTI) is 
35. The vitrinite reflectance (Ro) and temperature in the Infracambrian source rocks encountered in the Bijnot-1 
well of SE Pakistan suggest an immature to early stage oil generation window (Fig. 7b).

Biomarkers.  Source rock depositional environment.  A representative sediment whole extract gas chromato-
gram (WEGC) is shown in Fig. 8a. The n-alkanes distribution profile shows a higher abundance of even-carbon 
number n-alkanes than odd-carbon number n-alkanes. This suggests a reducing environment of organic matter 
deposition where even-carbon number n-alkanes were preferably preserved compared to odd-carbon number 
n-alkanes46. An exclusive abundance of lower carbon range alkanes ~ C16–C20 in the WEGC suggests that marine 
organic matter dominates in the sediments37,47. Pristane/phytane (Pr/Ph) is a good indicator of OM depositional 
conditions48. The obtained Pr/Ph values were approximately 1 in the upper part of the analyzed interval and then 
decreased significantly with depth to relatively lower values (0.40) at the bottom (Table 4). These values suggest 
a suboxic environment of deposition in the upper part (1622–1634 m), while the middle section showed anoxic 
depositional conditions40,41,49.

Figure 6.   Thermal maturation assessment of the Infracambrian Salt Range Formation: (a) plot of HI versus 
Tmax, and (b) PI versus Tmax

39.
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Possible source facies.  The distribution of tricyclic terpanes, steranes, and hopanes in the cutting extracts 
(1742 m) was applied to determine the variation in source facies in the SR Formation (Fig. 8b,c). Hopanes are 
present in higher relative abundance than tricyclic terpanes. The C23 compound is the predominant peak among 
the tricyclic terpanes and is particularly abundant compared to the C24 tetracyclic compound. The C23/C24 ratio 
is approximately 1.5. This ratio reflects the importance of tricyclic terpanes with regard to tetracyclic terpanes 
and is significant for the abundance of the precursor of these compounds (tricyclohexaprenol) synthesized by 
bacteria as a stabilizer of microorganism membranes17. The tricyclic terpanes are known as "orphan biomarkers", 
as their precise sources are unknown. In fact, these could be derivatives of algae. This indicates that the OM of 
the SR Formation source rock could have originated from a marine source facies enriched with microorganisms. 
In addition, the presence of C24 at small but significant concentrations reflects a possible minor contribution 
of terrestrial OM sources. Peters and Moldowan50 found that the C24 tricyclic terpane is related to source rocks 
containing continental organic matter in respectable amounts. Additionally, C20 and C21 are relatively abundant, 
and C20 tricyclic terpane abundance is related to terrestrial plant sources. The abundances of C25 and C26 hopanes 
are similar, with C26/C25 tricyclic terpane ratios less than 0.917, indicating a prevalent marine deposit environ-
ment. Similarly, the C24 tetracyclic terpane is more abundant than the C26 tricyclic terpanes at almost all depths, 
revealing marine carbonates to marl facies.

Stable 17α(H)-, 18α(H)-, 21β(H)-28-, and 30-bisnorhopane was detected at low concentrations compared 
to the hopane ratios. This confirms that the depositional environments in SE Pakistan during the Infracambrian 
were generally suboxic. In contrast, the high C28 bisnorhopane is related to reducing physicochemical conditions 
in organic matter deposition environments51. For the pentacyclic terpanes, the C29 and C30 hopane contents are 
relatively high. The C29/C30 hopane ratio has been used to differentiate shale- and carbonate-sourced oils50,52. The 
C29/C30 hopane ratios are relatively high in carbonate- and evaporate-sourced oils (~ 0.7 or greater) and lower 
for shale-source oil (0.4–0.75). However, this ratio is influenced by thermal maturity. In our analysis, the C29/C30 
hopane ratio varies from 0.61 to 0.84, indicating carbonate source rock. Gammacerane is present in low concen-
trations, which indicates a stratified water column induced by salinity differences. It is commonly considered of 
tetrahymanol origin, which is a chemical that occurs in saline waters53. The C31R/C30 ratio is generally used to 
distinguish between lacustrine and marine depositional environments, and sediments with a ratio of less than 
0.25 are interpreted as lacustrine deposits17. The hopane versus homohopane ratio (C31R/C30) of the SR Forma-
tion samples is more than 0.25, indicating a marine source facies origin.

We observed that a series of C27–C29 steranes were abundant in the samples, with C27 and C29 steranes 
predominating over C28 steranes. Additionally, we noted that diasteranes were present in moderate to high 

Figure 7.   Burial history and thermal modeling of Infracambrian rock: (a) vitrinite reflectance, and (b) maturity 
profile.
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Figure 8.   (a) Whole extract gas chromatogram of the Bijnot-1 sediment (1742 m) showing n-alkane and 
isoprenoid distributions, (b) selected ion chromatogram (191) showing the distribution of tricyclic and 
pentacyclic (Hopanes) terpanes in a representative sample from Bijnot-1. Letters with T and H refer to tricylic 
terpanes and hopanes, respectively, the numbers on the peaks represent the carbon numbers of the respective 
compound, and 24TeT indicates 24 tetracyclic terpane, and (c) selected ion chromatogram (217) showing the 
distribution of steranes and diasteranes. The numbers on the peaks represent the carbon numbers of steranes 
and diasteranes.

Table 4.   Biomarker ratios from the Infracambrian rock sequence of Bijnot-1, (Pr/Ph: pristane/phytane; 
Ts/(Ts + Tm), 18α(H)-22,29,30-trisnorneohopane/(18α(H)-22,29,30-trisnorneohopane + 17α(H)-
22,29,30-trisnorhopane); C32 S/(S + R), C32 hopane, 22S/(22S + 22R), C29/C30 hopane: 17α(H),21β(H)-C29 
hopane/17α(H), 21β(H)-C30 hopane; C31 R/C30 hopane, C31 αβ-homohopane (22R)/C30 αβ-hopane).

Sample Depth (m) Pr/Ph C32 S/(S + R) Ts/(Ts + Tm) C29/C30 hopane C31R/C30 hopane DBT/phe-nanthrene

BJ-01 1622 1.08 0.63 0.45 0.76 0.33 0.13

BJ-02 1634 1.18 0.65 0.11 0.70 1.80 0.30

BJ-04 1642 0.93 0.63 0.39 0.78 1.19 0.22

BJ-05 1662 0.61 0.63 0.45 0.80 0.22 0.13

BJ-06 1682 1.03 0.58 0.32 0.61 0.32 0.14

BJ-08 1700 0.67 0.61 0.38 0.75 0.36 0.10

BJ-09 1742 0.80 0.59 0.44 0.74 0.29 0.14

BJ-10 1762 0.49 0.65 0.42 0.84 0.39 0.13

BJ-12 1794 0.40 0.58 0.43 0.70 0.31 0.18
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proportions and were less abundant than regular steranes, especially the C27 diasteranes. This observation indi-
cates a clay-starved carbonate to marl source facies in the SR Formation throughout the analyzed section. The 
relative proportions of C27 and C29 have been proposed to indicate the origin of organic matter. The C29 and 
C27 steranes are derived from terrestrial and marine sources, respectively. The presence of C27 steranes in high 
amounts compared to C29 in the SR Formation proves the marine depositional environment of the OM. The 
significant amounts of C29 steranes present are derived from marine green algae, the ancestors of terrestrial land 
plants. In fact, life during the late Neoproterozoic-early Cambrian was restricted to the marine realm, thus rul-
ing out the terrestrial OM contribution54. The C30 steranes were present in small but significant amounts. These 
biomarker features indicate a marine OM associated with marly limestone source rock deposited in suboxic and 
normal salinity depositional marine environments. The biomarker features of the SR Formation showed a slight 
variation in the source facies within the section. The upper part has comparatively more carbonate content than 
the lower section. The abundance of a sulfur-bearing heterocyclic aromatic hydrocarbon, dibenzothiophene 
(DBT), is an excellent source facies indicator compared with that of other aromatic hydrocarbons55. The DBT/
phenanthrene ratios from the Bijnot-1 sediments reached up to 0.3, indicating the significant presence of sulfur 
aromatics, a common phenomenon of marly source facies. These results are consistent with a deep-water marine 
depositional environment with restricted conditions suitable for carbonate sediments31,56.

Thermal maturity.  Aliphatic and aromatic hydrocarbon parameters were applied to evaluate the thermal matu-
rity of the SR Formation sediments. Isomerization at the C-22 positions in C31 to C35 17α(H)-hopanes57 occurs 
prior to most biomarker reactions and is used for thermal maturity assessment as isomerization at the C20 posi-
tions in regular steranes. Additionally, important isomerization reactions during thermal maturation occur at 
C-17 and C-21. Similarly, important isomerization reactions occur at C-14 and C-17 for steranes. In response to 
temperature augmentation, the biological 22R configuration transforms to a 22R and 22S mixture. As a result, 
the 22S/(22R + 22S) homohopane ratio could generally be used for determining maturity. However, homoho-
pane isomerization attains equilibrium at the early maturity stage; therefore, the 22S/(22R + 22S) homohopane 
ratio cannot be used to determine higher-maturity stages42. In the analyzed OM, the C22S/(22S + 22R) hopane 
values ranged from 0.58 to 0.65 without a significant difference in the values for the analyzed section, showing 
that the isomerization had attained equilibrium and the SR Formation sediments were at the early mature stage 
to intermediate maturity.

On the other hand, the Ts/(Ts + Tm) ratio shows values of approximately 0.35, indicating that the OM has 
not yet reached the oil generation window, given that Ts is more stable regarding thermal maturity than Tm and 
the ratio Ts/(Ts + Tm) increases with increasing maturity. The results for these immature Precambrian rocks 
are consistent with those from previous studies of the basin49. However, if we examine the rest of the thermal 
maturity biomarker parameters of the samples from the SR Formation, especially the deeper ones, we see a 
gradual increase in thermal maturity. Pregnane (C21-sterane) and methyl-pregnane (C22-sterane) are also used 
as thermal maturity biomarkers since they are characteristic of light oils58,59. In the laboratory, these steranes are 
produced by thermal cracking at 300 °C for a long period58. In the OM of the SR Formation, C21 and C22 steranes 
were detected in high concentrations (Fig. 8c). These pregnanes are a good indicator of relative thermal maturity 
(end of s.s. diagenesis-beginning of catagenesis) and the alteration of OM in SE Pakistan. Aromatic hydrocarbon 
maturity parameters from alkylphenanthrene and alkyldibezothiophenes also support the maturity evaluation 
of the early stage oil generation window. Additionally, the results of Rock–Eval pyrolysis (Tmax > 430 °C) support 
the early-mature stage of the oil generation window in the Infracambrian SR Formation. In addition, the results 
of geochemical surface exploration highlight the presence of thermogenic C2–C4 hydrocarbons, supporting the 
mature stage of the source rock in the subsurface.

Overall, the biomarker features of SR Formation show a slight variation throughout the analyzed section. 
These variations in parameters most likely reflect the subtle differences in the sedimentary facies, lithology, 
depositional environment, and conditions. The upper part has more carbonate content deposited in the marine 
environment under suboxic conditions (C31R/C30 values of 1.8 and 1.19 at depths 1634 m and 1642 m, respec-
tively; Pr/Ph values near 1 and Ts/(Ts + Tm) = 0.11 at 1634 m) compared to the lower section, which is more 
mature and deposited under anoxic conditions, as proven from the higher Ts/(Ts + Tm) ratio and lower Pr/Ph 
ratio, respectively.

Application of ML algorithms for seismic data inversion.  AI inversion.  AI inversion transforms 
seismic data into pseudoacoustic impedance logs at every trace. Figure 9a,b shows the interpreted seismic line 
of FABS-11 and inverted AI using the MLC and PSO inversion strategy. It has been demonstrated that the 
AI in the zone of interest, i.e., Cambrian and Infracambrian sequences (900 to 1460 ms), varies from 9000 to 
13,500 (m/s) × (g/cc). These variations in AI are associated with significant lithological changes to sandstone, 
shale, limestone, dolomite, and sandstone with subordinate shale lithofacies. It should be noted that the low AI 
(9000–11,500 (m/s) × (g/cc)) between the time intervals of 1250 to 1450 ms perhaps indicates a potential hydro-
carbon-bearing zone at this particular interval (arrow). However, the overlying red–yellow horizons just above 
the blue horizons (arrow) reveal higher values of AI (12,500–13,500 (m/s) × (g/cc)) and are, hence, most likely 
an impermeable seal rock for a potential reservoir. Harder rocks, i.e., compact limestone, have higher AI values 
than sandstone and clay44. Note that irregular patterns of low and high AI reflecting interbedded limestone and 
dolomite layers are well captured by the MLC and PSO inversion strategies (indicated with arrows) (Fig. 9b). 
Since a nonlinear relationship exists between the interbedded thin layers and seismic waveforms, PSO can pro-
vide a nonlinear projection correlation to determine the interbedded layers from the seismic waveform60. Good 
reservoir quality areas and thin layer beds clearly appear in the Cambrian and Infracambrian intervals (arrow).
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MI prediction.  MI is an essential parameter for determining the thermal maturity levels of hydrocarbon source 
rock and correlating them with the thermal maturity evaluated from geochemical methods. Figure 10 shows a 
graphical comparison between the calculated MI using Eq. (1) and the measured Tmax of the Infracambrian SR 
Formation in Bijnot-1. The measured Tmax (red dots) falls within the early stage of the oil generation window in 
the range of 420–435 °C with an MI (maroon line) of 2–3%.

Figure 11 shows a cross-plot of MI and AI. The plot shows a positive linear correlation between MI and AI. 
MI increases with increasing AI.

In Fig. 12, the inverted AI surface is converted into an inversion solution for an MI map using the MLC and 
PSO inversion strategy43,61. It is shown that the deeper horizons reveal fair to good MI values, i.e., 3 to 5% with 
low AI, and correspond to good reservoir quality areas (arrow). It should be noted that blue and sky blue layers 
in the middle and upper parts of the profile with MI < 2 correspond to the immature oil generation stage, whereas 
yellow and green layers in the lower part of the profile with MI > 4 correspond to the early oil generation stage. 
The results of MI are in agreement with the earlier research of Abdizadeh et al.61 and correlate well with the 
thermal maturity measured from Rock–Eval pyrolysis and biomarkers in the studied interval. Generally, thermal 
maturity and MI increase as a function of depth; however, structural features such as structural highs and lows, 
salt-induced anticlines, and paleohighs could produce local thermal anomalies.

Figure 9.   (a) Interpreted seismic line of FABS-11, and (b) the relative inverted acoustic impedance using the 
MLC and PSO inversion strategy.

Figure 10.   Graphical comparison between the calculated maturity index (MI) and Tmax in Bijnot-1 (red dots 
represent Tmax and maroon line for MI).
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Discussion
Surface geochemical and geomicrobial surveys.  The abundance of hydrocarbon-oxidizing bacteria 
ranged from 0 to 525 × 103 (cfu/g of soil sample) (Fig. 13a). The hydrocarbon gases measured by gas chromatog-
raphy show concentrations of C2 through C4 ranging from 0 to 900 ppb (Fig. 13b).

The geomicrobial and soil gas concentration distribution maps demonstrate that the anomalies coincide 
and are significantly inversely correlated. In fact, hydrocarbon microseepage provides optimal conditions for 
developing highly specialized microbial populations that depend solely on light hydrocarbon gas21. As a result, 
these microbes grow at abnormally high concentrations in near-surface soils and geological structures that 
contain hydrocarbons. It is worth noting that the obtained results represent the normal distributions of gas and 
microbial concentrations. This inverse correlation is caused by bacteria that oxidize hydrocarbons consuming 
soil gas. Light hydrocarbon microseepage is consumed, particularly in the highest seepage area, allowing for a 
high bacterial activity rate and hydrocarbon gas concentration depletion. The bacteria located directly above 
the flow chimney would transform the petroleum gases, while the edges would have large gas concentrations as 
they are unutilized by bacteria and where all microbial activity is prolonged.

The soil probe gas analyses show variable concentrations where C1 is absent, and the samples contain C2–C4 
hydrocarbons. However, the amounts of migrated gases usually decrease in the order of methane > ethane > pro-
pane > butane. We can attribute the deficiency of methane to its total consumption by the methanotrophic 
bacteria in the soil. Because it is the simplest hydrocarbon molecule, methane is the first and easiest component 
to decompose by bacteria, causing its complete depletion in the soil gas samples in proportion to the other 

Figure 11.   Maturity index (MI) versus acoustic impedance (AI) cross-plot.

Figure 12.   Seismic inverted MI profile using the MLC and PSO inversion strategy in Cambrian and 
Infracambrian rock sequences at 1100–1500 ms.
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components. A previous study conducted in the adjacent Bikaner–Nagaur Basin highlighted the presence of 
anomalous populations of n-pentane- and n-hexane-oxidizing bacteria in surface soils62.

The presence of heavier components of hydrocarbon gases, mainly propane and butane, favors a thermogenic 
origin of the detected gases. Nevertheless, another source of hydrocarbon gases could be detected on the surface, 
such as that of biogenic origin.

To further investigate the origin of these surface gases, we included other studies, such as geophysical char-
acterization, including gravity modeling and seismic data interpretation, to explore if possible deep pathways 
exist, in addition to maturity estimation and biomarker analysis. The soil probe gas concentrations are plotted 
and overlapped on the gravity anomaly map (also ties with seismic data interpretation and the geological cross-
section). The composite map of the C2–C4 hydrocarbons and gravity anomalies shows a good correlation between 
high concentrations of C2–C4 hydrocarbons and the zone of gravity high, as well as major faults (Fig. 14). The 
C2–C4 hydrocarbons show high concentrations along the faults separating gravity highs and gravity lows.

The seismic lines along the surface geochemical study were also interpreted to show the structural features 
and possible migration pathways. The stratigraphic horizons were marked and tied using check shot velocities. 
The cross-sections along the seismic lines GG′ (north to south) and II′ (east to west) were prepared and converted 
to depth. We note that salt-induced structural leads identified at the Infracambrian level show a continuous rise 
from the basement overlying stratigraphic horizons from west to east.

A geoseismic depth section along line II’ reveals a basement high located at a distance of 40 km (Fig. 15a). 
The overlying Mesozoic–Palaeogene sequence follows the rise in the basement. A four-way structural closure 
of 80 ms (~ 160 m) (vertical closure) is mapped in the eastern part of the study area. A normal fault can also be 
observed in the seismic section. The Infracambrian top in this seismic section is identified at a depth of 1600 to 
2200 m from east to west.

A geo-seismic cross-section with GG` is oriented in the NS direction (strike line). The cross-section shows 
that the basement starts rising from a distance of 15 km to the highest crustal part located at 25 km (Fig. 15b). The 
Infracambrian to Paleogene overlying the bulge in the basement shows prominent anticlinal four-way structural 
closure (as shown by the dip line from east to west). The thickness of the stratigraphic horizons remains constant. 
The Infracambrian top of this seismic section is identified at a depth of 1400 to 1600 m from north to south.

We concluded that deep-seated faults overlying the basement high as well as near-surface diffusion provided 
pathways for C2–C4 hydrocarbon migration to the surface, supporting the deep thermogenic origin of these 
gases. Moreover, this indicates the presence of an active petroleum system beneath the Earth’s surface. In fact, the 
kerogen is subjected to increasing pressure and temperature during burial. Under these conditions, it undergoes 
thermal cracking, during which the kerogen’s macromolecular network breaks up, releasing liquid or gaseous 
compounds. The quantity of bitumen increases as the proportion of kerogen decreases. There are three stages 
to this process. Most of the oxygenated activities are lost during the first stage, and carbon dioxide and water 
are produced. This first stage is known as diagenesis. It is represented on Van Krevelen’s diagram by a decrease 
in the O/C ratio without a significant change in the H/C ratio. The second stage is catagenesis, or hydrocarbon 
formation, in which thermal cracking breaks the C–C bonds of hydrocarbon chains. As a result, the H/C ratio 
gradually decreases. At this stage, the temperature reaches 140 °C at depths ranging from 2000 to 3000 m. Most 
of the kerogen (50 to 90% by mass) is converted into fluid products (mainly hydrocarbons). Finally, in the third 
stage, there is a significant production of methane from the residual kerogen as well as the oil generated in the 
previous stage. These are some of the characteristics of thermogenic hydrocarbon gases.

Regional correlation of Neoproterozoic rocks.  A literature study involving works from various authors 
revealed that the heavy oil shows from the Bijnot-1, Fort Abbas-1, Karampur-1, and Marot-1 exploratory wells 
are remarkably similar to those of the Baghewala-1 oil BK-N basin in India and southern Oman2,9,12,63–65. The 

Figure 13.   (a) Distribution plot of microbial value anomalies, and (b) distribution plot of soil probe C2–C4 
hydrocarbons. Microbial and soil probe hydrocarbon values overlap with toposheets of the study area.
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Figure 14.   Overlapping C2–C4 hydrocarbon anomalies on the interpreted gravity anomaly map. Surfer (www.​
golde​nsoft​ware.​com) and CorelDRAW X5 (www.​corel​draw.​com) were used to create the illustration.

Figure 15.   Seismic converted depth section indicating seepage through the main faults (shown with blue 
arrow): (a) along cross-section II′, and (b) along cross-section GG′.

http://www.goldensoftware.com
http://www.goldensoftware.com
http://www.coreldraw.com
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heavy oil from the Bilara and Jodhpur formations in the Baghewala-1 well and the SR Formation in the Karam-
pur-1 well geochemically correlate with oil on the eastern flank of the Infracambrian Huqf Group (Oman)2,14,66. 
This relationship is consistent with the plate tectonic reconstruction model. During the late Precambrian-early 
Cambrian period, marine evaporite deposits in northwest India, SE Pakistan, and southern Oman were close to 
each other on a large carbonate margin shelf of Gondwanaland1,3,4,63,67,68. Geochemical analysis (high proportion 
of C29 steranes, monoaromatic and diasterane steroids, low pristane/phytane ratio, low concentration of dias-
teranes, low API gravity, and high concentration of sulfur) of Karampur-1, Baghewala-1, and southern Oman 
suggest similar environmental conditions with the same age, as shown in Fig. 16.

Geological and geochemical correlations between Baghewala-1 and Karampur-1 favor the possibility of heavy 
and light oil reserves in deeper buried Infracambrian source rocks in the SE flank of Pakistan extending to the 
BK-N Basin of India (Fig. 17).

We investigated the potential and maturity of the Infracambrian source rocks in SE Pakistan based on inte-
grated geochemical, geological, and geophysical data from soil and core samples. Rock–Eval pyrolysis and 
biomarkers identified marine restricted clay-starved carbonate as source rocks that have just reached the oil 
generation window and a mixture of type II and III kerogen. These kerogens have been expelled using several 
fault-controlled horsts and grabens and salt plug anticlinal structures in the overlying Infracambrian to Permian 
strata. The distribution of various source and reservoir rock parameters and specific biomarker parameters of 
the Infracambrian rocks from Pakistan are correlated with Neoproterozoic-early Cambrian successions from 
India and Oman Huqf oils (typified by the A1C oil) (Fig. 18). The distributions of TOC, vitrinite reflectance, 

Figure 16.   Analysis of the geochemistry of hydrocarbons (oil) in southern Oman ’Huqf ’ and ’Q’ oil, 
Karampur-1 (Pakistan), and Baghewala-1 (India).

Figure 17.   Subsurface correlation of Neoproterozoic sequences (the Nagaur, Hanseran, Bilara, and Jodhpur 
Formations) in SE Pakistan and the BK–N Basin in India.
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and porosity are closely comparable. The Pr/Ph and Ts/(Ts + Tm) distributions in Baghewala-1 and Oman Huqf 
oils are similar, but Infracambrian rocks in SE Pakistan have a somewhat higher abundance of Pr/Ph and lower 
Ts/(Ts + Tm) with a slight variation throughout the analyzed section. These variations in parameters most likely 
reflect the differences in sedimentary facies, lithology, deposition conditions, and maturity. Due to localized 
uplift and a global eustatic fall in sea level, we can attribute these variations to the widespread Early-Middle 
Cambrian and the Middle/Upper Permian unconformity in the study area. The upper part of the SR Formation 
is sometimes absent due to erosion during the Cambrian and Permian unconformities, which could explain 
why the upper part is more oxygenated10,11. It is uplifted and, as a result, more exposed. This exposure makes the 
OM in the upper part subject to alteration and explains the immature biomarker features we detected in some 
samples and the possible minor terrestrial provision recorded. 

Conclusions
We documented the evaluation of source parameters from Neoproterozoic rocks (Infracambrian rock sequence) 
in SE Pakistan and adjacent BK-N Basin India using geophysical data, cores, Rock–Eval pyrolysis, biomarkers, 
and surface geochemical samples. Based on available data and techniques, we can draw the following conclusions:

1.	 The seismic and well log data interpretation identified the Infracambrian rock sequence at 1600 to 2200 m 
(east to west) with promising structural features. The structural interpretation of the geoseismic cross-
sections and gravity anomaly maps show several fault-controlled horsts and grabens and salt plug anticlinal 
structures in the overlying Infracambrian to Permian strata.

2.	 From the investigated surface geochemical samples, anomalous concentrations of thermogenic C2–C4 hydro-
carbons in surface soils above anticlinal structures confirmed the presence of a mature source rock capable 
of generating and expelling hydrocarbons. An effective migration is conveying those hydrocarbons along 
deep-seated faults to the surface.

3.	 The investigated core samples from the Infracambrian rock sequence using Rock–Eval pyrolysis (TOC = 0.61–
2.41 wt% and HI = 104–451 mg HC/g TOC) and biomarkers (Pr/Ph = 0.40–1 and TS/(TS + Tm) = 0.32–0.45) 
show that deeper buried source rocks in the SE flank of Pakistan have marine restricted clay devoid of car-
bonate to marl source facies with thermal maturity (Ro = 0.60–0.65) in the early stage of the oil generation 
window and a mixture of type II and III kerogen.

4.	 An excellent correlation of thermal maturity deduced from the inverted MI profile with the results of the sur-
face geochemical survey, source biomarkers, and Rock–Eval pyrolysis proved the reliability of the proposed 
MLC and PSO algorithms. The spatial variations in the inverted MI profile showed a reasonable estimation 
of thermal maturity for identifying the prospective areas and migration routes in the SR Formation.

5.	 The integration of surface geochemical surveys, source biomarkers, Rock–Eval pyrolysis, and geophysical 
characterization suggests that significant heavy and light oil reserves could be explored along the SE flank 
of Pakistan, where the Infracambrian rock sequence is thicker and thermally mature compared to that in 
the BK–N Basin, India, as well as the existence of deep-seated structural closure. However, estimating those 

Figure 18.   Distribution of various source and reservoir rock properties along with certain biomarker 
parameters in the Infracambrian rock sequence from SE Pakistan, India, and southern Oman. CorelDRAW X5 
was used to create the illustration (www.​corel​draw.​com).

http://www.coreldraw.com
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potential reserves still requires more profound geophysical studies to validate the structural traps and related 
petroleum systems.

Insufficient support of geological and geophysical data from the SE flank of Pakistan hinders us from drawing 
a general conclusion for the distribution and potential of the Infracambrian reservoir in the basin. Therefore, 
more studies are still necessary to validate the structural traps and relative petroleum systems by interpreting 
high-resolution seismic and geochemical data for further screening of the conflicting maturity signatures.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to seismic and 
well logs data confidentiality but are available from the corresponding author on reasonable request.

Received: 21 November 2021; Accepted: 13 June 2022

References
	 1.	 Matte, B. W. & Conway, M. S. Carbonate/Evaporite Deposition in the Late Precambrian-Early Cambrian Ara Formation of southern 

Oman 617–636 (Special Publication, 1990).
	 2.	 Peters, K. E., Clark, M. E., Gupta, U. D., McCaffrey, M. A. & Lee, C. Y. Recognition of an Infracambrian source rock based on 

biomarkers in the Baghewala-1 oil., India. AAPG Bull. 79, 1481–1494 (1995).
	 3.	 Schröder, S., Schreiber, C., Amthor, J. E. & Matter, A. A depositional model for the terminal Neoproterozoic-Early Cambrian Ara 

Group evaporites in south Oman. Sedimentology 50, 879–898 (2003).
	 4.	 Schröder, S., Grotzinger, J. P., Amthor, J. E. & Matter, A. Carbonate deposition and hydrocarbon reservoir development at the 

Precambrian-Cambrian boundary: The Ara Group in South Oman. Sed. Geol. 180, 1–28 (2005).
	 5.	 Singh, A. K. & Tewari, P. K. Infracambrian Hydrocarbon Systems and Emerging Hydrocarbon Potential in Bikaner-Nagaur and 

Jaisalmer Basins (Miajlar Subbasin), Rajasthan, India. in 2nd South Asian Geoscience Conference, Greater Noida, New Delhi, India 
(2011).

	 6.	 Bhat, G. M. et al. Geology and Hydrocarbon Potential of Neoproterozoic-Cambrian Basins in Asia: An Introduction Vol. 366, 1–17 
(Geological Society, 2012).

	 7.	 Ram, J. Neoproterozoic Successions in Peninsular India and their Hydrocarbon Prospectivity Vol. 366, 59–73 (Geological Society, 
2012).

	 8.	 Mckerrow, W. S., Scotese, C. R. & Brasier, M. D. Early Cambrian continental reconstructions. J. Geol. Soc. 149, 599–606. https://​
doi.​org/​10.​1144/​gsjgs.​149.4.​0599 (1992).

	 9.	 Jamil, A. & Sheikh, R. A. An overview of Neoproterozoic reservoirs in Pakistan. Geol. Soc. 366, 111–121. https://​doi.​org/​10.​1144/​
SP366.2 (2012).

	10.	 Khan, I. et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales 
of Salt Range Formation, upper Indus Basin, Pakistan. Int. J. Coal Geol. 217, 103319. https://​doi.​org/​10.​1016/j.​coal.​2019.​103319 
(2020).

	11.	 Mandal, A., Saha, D. & Kumar, A. Structural analysis and seismic stratigraphy for delineation of Neoproterozoic-Cambrian 
petroleum system in central and eastern part of Bikaner-Nagaur basin, India. J. Pet. Explor. Prod. Technol. https://​doi.​org/​10.​1007/​
s13202-​021-​01432-7 (2021).

	12.	 Riaz A. S., McCann, J. & Saqi, M. I. Distribution of Infracambrian reservoir in Punjab Platform. Annual Technical Conference 
(ATC), Islamabad, Pakistan (2003).

	13.	 Rajagopalan, S., Santaram, T. V., Guha, J. & Pavithran, D. Early Work Indicates Prospectivity in Bikaner–Nagaur basin (Oil and Gas, 
2002).

	14.	 Raju, S. V., Mathur, N. & Sarmah, M. K. Geochemical characterization of Neoproterozoic heavy oil from Rajasthan, India: Implica-
tions for future exploration of hydrocarbons. Curr. Sci. 107, 1298–1305 (2014).

	15.	 Bhattacharya, S. & Dutta, S. Neoproterozoic-Early Cambrian biota and ancient niche: A synthesis from molecular markers and 
palynomorphs from Bikaner-Nagaur Basin, western India. Precambr. Res. 266, 361–374. https://​doi.​org/​10.​1016/j.​preca​mres.​2015.​
05.​029 (2015).

	16.	 Bhattacharya, S., Dutta, S. & Summons, R. E. A distinctive biomarker assemblage in an Infracambrian oil and source rock from 
western India: Molecular signatures of eukaryotic sterols and prokaryotic carotenoids. Precambr. Res. 290, 101–112. https://​doi.​
org/​10.​1016/j.​preca​mres.​2016.​12.​013 (2017).

	17.	 Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide 2nd edn. (Cambridge University Press, 2005).
	18.	 Jones, V. T., Matthews, M. D. & Richers, D. M. Light hydrocarbons for petroleum and gas prospecting. Handb. Explor. Geochem. 

7, 133–212 (2000).
	19.	 Zhang, L., Bai, G., Zhao, K. & Sun, C. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng 

Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons. Mar. Pet. Geol. 23, 529–542 (2006).
	20.	 Sechman, H., Dzieniewicz, M. & Liszka, B. Soil gas composition above gas deposits and perspective structures of the Carpathian 

foredeep. Appl. Geochem. 27, 197–210 (2012).
	21.	 Baklouti, S. et al. Surface geochemical prospection for hydrocarbons in the oriental platform; the case of Guebiba oilfield, Sfax 

region, Tunisia. J. Petrol. Sci. Eng. 159, 830–840 (2017).
	22.	 Schumacher, D. & Abrams, M. A. Hydrocarbon migration and its near surface expression. Am. Assoc. Pet. Geol. Mem. 66, 446 

(1996).
	23.	 Mani, D. et al. Soil iodine determination in deccan syneclise, India: Implications for near surface geochemical hydrocarbon pros-

pecting. Nat. Resour. Res. 20, 75–88 (2011).
	24.	 Tedesco, S. A. Surface Geochemistry in Petroleum Exploration 206 (Chapman & Hall Inc, 1995).
	25.	 Hasany, S. T., Aftab, M. & Siddiqui, R. A. Refound Exploration Opportunities in Infracambrian and Cambrian Sediments of Punjab 

Platform, Pakistan. SPE/PAPG Annual Technical Conference Islamabad, Pakistan (2007).
	26.	 Siddiqui, N. K. A prospective Neoproterozoic-Cambrian hydrocarbon/exploration play in the Kirthar Fold Belt, Pakistan. Geol. 

Soc. Lond. Spec. Publ. https://​doi.​org/​10.​1144/​SP366.​13 (2012).
	27.	 Adil, N. & Sohail, G. 3D geological modeling of Punjab platform, Middle Indus Basin Pakistan through integration of Wireline 

logs and seismic data. J. Geol. Soc. India 83, 211–217 (2014).
	28.	 Kazmi, A. H. & Jan, M. Geology and Tectonic of Pakistan (Graphic Publishers Karachi, 1997).
	29.	 Kazmi, A. H. & Abbasi, I. A. Stratigraphy and Historical Geology of Pakistan (Department and National center of Excellence in 

Geology, 2008).

https://doi.org/10.1144/gsjgs.149.4.0599
https://doi.org/10.1144/gsjgs.149.4.0599
https://doi.org/10.1144/SP366.2
https://doi.org/10.1144/SP366.2
https://doi.org/10.1016/j.coal.2019.103319
https://doi.org/10.1007/s13202-021-01432-7
https://doi.org/10.1007/s13202-021-01432-7
https://doi.org/10.1016/j.precamres.2015.05.029
https://doi.org/10.1016/j.precamres.2015.05.029
https://doi.org/10.1016/j.precamres.2016.12.013
https://doi.org/10.1016/j.precamres.2016.12.013
https://doi.org/10.1144/SP366.13


19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11102  | https://doi.org/10.1038/s41598-022-14831-5

www.nature.com/scientificreports/

	30.	 Cozzi, A., Rea, G. & Craig, J. From Global Geology to Hydrocarbon Exploration: Ediacaran-Early Cambrian Petroleum Plays of India, 
Pakistan and Oman 131–162 (Geological Society, 2012).

	31.	 Craig, J., Hakhoo, N., Bhat, G. M. & Hafiz, M. Petroleum systems and hydrocarbon potential of the North-West Himalaya of India 
and Pakistan. Earth Sci. Rev. 187, 109–185 (2018).

	32.	 Pareek, H. S. Pre-Quarternary geology and mineral resources of northern Rajasthan. Mem. Geol. Surv. India 115, 1–41 (1984).
	33.	 Khalid, P. & Yasin, Q. Integrating Core and Wireline Log Data to Evaluate Porosity of Jurassic Formations of Injra-1 and Nuryal-

2Wells, Western Potwar, Pakistan. J. Geol. Soc. India 86, 553–562 (2015).
	34.	 Craig, J., Thurow, J., Thusu, B., Whitham, A. & Abutarruma, Y. Global Neoproterozoic petroleum systems: The emerging potential 

in North Africa. Emerg. Potent. N. Afr. 326, 1–25 (2009).
	35.	 Gupta, D. U. & Bulgauda, S. S. An overview of the geology and hydrocarbon occurrences in the western part of Bikaner–Nagaur 

Basin. J. Pet. Geol 3, 1–17 (1994).
	36.	 Khalid, P., Furrukh, Q. & Yasin, Q. Data driven sequence stratigraphy of the cretaceous depositional system, Punjab Platform, 

Pakistan. Surv. Geophys. 35, 1065–1088 (2014).
	37.	 Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence 2nd edn, 699 (Springer, 1984).
	38.	 Waples, D. W. Geochemistry in Petroleum Exploration 232 (Human Resources and Develop. Co., 1985).
	39.	 Peters, K. E. & Cassa, M. R. Applied source rock geochemistry. American Association of Petroleum Geologists Memoir, 93–120 

(1994).
	40.	 Asif, M., Fazeelat, T. & Grice, K. Petroleum geochemistry of the Potwar Basin, Pakistan: Oil–oil correlation using biomarkers, δ 

13 C and δD. Org. Geochem. 42, 1226–1240 (2011).
	41.	 Asif, M. & Fazeelat, T. Petroleum geochemistry of the Potwar Basin, Pakistan: II-Oil classification based on heterocyclic and 

polycyclic aromatic hydrocarbons. Appl. Geochem. 27, 1655–1665 (2012).
	42.	 Hoş-Çebi, F. K. S. Organic geochemistry of Ağaçbası Yayla peat deposits Köprübaşı/Trabzon NE Turkey. Int. J. Coal Geol. 146, 

155–165. https://​doi.​org/​10.​1016/j.​coal.​2015.​05.​007 (2015).
	43.	 Zhao, H., Natalie, B. G. & Brad, C. Thermal maturity of the Barnett Shale determined from well-log analysis. AAPG Bull. 91, 

535–549 (2007).
	44.	 Yasin, Q., Yan, D., Ismail, A. & Du, Q. Estimation of petrophysical parameters from seismic inversion by combining particle swarm 

optimization and multilayer linear calculator. Nat. Resour. Res. https://​doi.​org/​10.​1007/​s11053-​020-​09641-3 (2020).
	45.	 Ding, Y., Cui, M., Zhao, F. & Yasin, Q. A novel neural network for seismic anisotropy and fracture porosity measurements in 

carbonate reservoirs. Arab. J Sci. Eng. https://​doi.​org/​10.​1007/​s13369-​021-​05970-4 (2021).
	46.	 Mathews, R. P. et al. Early Palaeogene climate variability based on n-alkane and stable carbon isotopic composition evidenced 

from the Barsingsar lignite-bearing sequence of Rajasthan. Arab. J Sci. Eng. 95, 255–262 (2020).
	47.	 Hoş-Çebi, F. Organic geochemical characteristics and paleoclimate conditions of the Miocene coals at the Çan-Durali (Çanakkale). 

J. Afr. Earth Sci. https://​doi.​org/​10.​1016/j.​jafre​arsci.​2016.​12.​003 (2017).
	48.	 Hoş-Çebi, F. & Korkmaz, S. Organic geochemistry and depositional environments of Eocene coals in northern Anatolia, Turkey. 

Fuel 113, 481–496. https://​doi.​org/​10.​1016/j.​fuel.​2013.​05.​086 (2013).
	49.	 Asif, M. & Iqbal, M. A. Geochemical significance of Cambrian organic matter from Salt Range of Potwar Basin, Pakistan. Pet. Sci. 

Technol. 32, 2625–2634 (2014).
	50.	 Peters, K. E. & Moldowan, J. M. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments (Prentice-

Hall, 1993).
	51.	 Mello, M. R. et al. Organic geochemical characterization of depositional palaeoenvironments of source rocks and oils in Brazilian 

marginal basins. Adv. Org. Geochem. 1, 31–45 (1988).
	52.	 Connan, J. Biodegradation of crude oils in reservoirs. In Advances in Petroleum Geochemistry Vol. 1 (eds Brooks, J. & Welte, D. 

H.) 299–335 (Academic Press, 1984).
	53.	 Tao, S., Wang, C., Du, J., Liu, L. & Chen, Z. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils 

of NW China. Mar. Pet. Geol. 67, 460–467. https://​doi.​org/​10.​1016/j.​marpe​tgeo.​2015.​05.​030 (2015).
	54.	 Dutta, S., Bhattacharya, S. & Raju, S. V. Biomarker signatures from Neoproterozoic-Early Cambrian oil, western India. Org. Geo-

chem. 56, 68–80. https://​doi.​org/​10.​1016/j.​orgge​ochem.​2012.​12.​007 (2013).
	55.	 Asif, M., Grice, K. & Fazeelat, T. Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated 

hydrocarbons and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Org. Geochem. 40, 
301–311 (2009).

	56.	 Ahmad, W. & Alam, S. Organic geochemistry and source rock characteristics of salt range formation, Potwar Basin, Pakistan. Pak. 
J. Hydrocarb. Res. 17, 37–59 (2007).

	57.	 Ensminger, A., Albrecht, P., Ourisson, G. & Tissot, B. Evolution of polycyclic alkanes under the effect of burial (Early Toarcian 
Shales, Paris Basin). Adv. Org. Geochem. 1, 45–52 (1977).

	58.	 Wingert, W. S. & Pomerantz, M. Structure and significance of some twentyone and twenty-two carbon petroleum steranes. Geochim. 
Cosmochim. Acta 50, 2763–2769 (1986).

	59.	 Suzuki, N., Sakata, S. & Kaneko, N. Biomarker Maturation: Levels and primary migration stage of Neogene Tertiarycrude oils and 
condensates in the Niigata sedimentary basin. J. Jpn. Assoc. Pet. Technol. 52, 499–510 (1987).

	60.	 Sohail, G. M., Hawkes, C. D. & Yasin, Q. An integrated petrophysical and geomechanical characterization of sembar shale in the 
Lower Indus Basin, Pakistan, using well logs and seismic data. J. Nat. Gas Sci. Eng. https://​doi.​org/​10.​1016/j.​jngse.​2020.​103327 
(2020).

	61.	 Abdizadeh, H. A., Ahmadi, K. A., Heidarifard, M. & Shayest, M. Estimation of thermal maturity from well logs and seismic data 
in the Mansuri oilfield, SW Iran. J. Pet. Sci. Eng. 159, 461–473 (2017).

	62.	 Rasheed, M. A., Lakshmi, M., Srinu, D. & Dayal, A. M. Bacteria as indicators for finding oil and gas reservoirs: A case study of the 
Bikaner–Nagaur Basin, Rajasthan, India. Pet. Sci. 8, 264–268. https://​doi.​org/​10.​1007/​s12182-​011-​0143-z (2011).

	63.	 Teichert, C. Continental facies of Cambrian and Gondwana Age, Salt Range, Pakistan. in International Geology Congress Abstract 
(1976).

	64.	 Al Marjeby, A. A. & Nash, D. F. A summary of the Geology and Oil Habitat of the Eastern Flank Hydrocarbon Province of South 
Oman. Marine and Petroleum Geology (1984).

	65.	 Gorin, G. E., Ratez, L. G. & Walter, M. R. Late-Precambrian-Cambrian sediments of the Huqf Group Sultanate of Oman. AAPG 
Bulletin (1982).

	66.	 Gee, E. R. Overview of the geology and structure of the Salt Range, with observations on related areas of northern Pakistan. Geol. 
Soc. Am. Spec. Pap. 232, 95–112 (1989).

	67.	 Husseini, M. I. & Husseini, S. I. Origin of the Infracambrian Salt Basins of the Middle East. Geol. Soc. Spec. Publ. 50, 1–12 (1990).
	68.	 Amthor, J. E., Ramseyer, K., Faulkner, T. & Lucas, P. Stratigraphy and sedimentology of a chert reservoir at the Precambrian-

Cambrian boundary: The Al Shomou silicilyte, south Oman salt basin. Geol. Arabia 10, 89–121 (2005).

https://doi.org/10.1016/j.coal.2015.05.007
https://doi.org/10.1007/s11053-020-09641-3
https://doi.org/10.1007/s13369-021-05970-4
https://doi.org/10.1016/j.jafrearsci.2016.12.003
https://doi.org/10.1016/j.fuel.2013.05.086
https://doi.org/10.1016/j.marpetgeo.2015.05.030
https://doi.org/10.1016/j.orggeochem.2012.12.007
https://doi.org/10.1016/j.jngse.2020.103327
https://doi.org/10.1007/s12182-011-0143-z


20

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11102  | https://doi.org/10.1038/s41598-022-14831-5

www.nature.com/scientificreports/

Acknowledgements
The Shandong Provincial Natural Science Foundation (No. ZR2019BD063) and NSFC (No. 42150410396) pro-
vided financial support for this research. We are grateful to the DGPC, OGTI, and HDIP Pakistan for providing 
data to this project.

Author contributions
Conceptualization, Q.Y. and G.X.; Methodology, Q.Y.; Formal analysis, S.B. and B.L.; Investigation, Q.Y. and G.X.; 
Resources, Q.Y. and G.X.; Data curation, G.M.D.S.; Writing—original draft preparation, Q.Y.; Writing—review 
and editing, M.A. and G.M.D.S.; Visualization, M.A.; Supervision, G.X. All authors have read and agreed to the 
published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Evaluation of Neoproterozoic source rock potential in SE Pakistan and adjacent Bikaner–Nagaur Basin India
	Regional geological setting and stratigraphy
	Geological setting. 
	Lithostratigraphy. 

	Structural style
	Materials and methods
	Data description. 
	Methodology. 
	Rock–Eval pyrolysis. 
	Biomarker analysis. 
	Maturity index (MI) calculation. 
	Calibration of the seismic data. 
	Seismic data inversion. 
	Surface geochemical survey. 


	Result and interpretation
	Rock–Eval pyrolysis. 
	Burial history: maturation and hydrocarbon generation. 
	Burial and thermal history modeling. 
	Thermal maturity. 

	Biomarkers. 
	Source rock depositional environment. 
	Possible source facies. 
	Thermal maturity. 

	Application of ML algorithms for seismic data inversion. 
	AI inversion. 
	MI prediction. 


	Discussion
	Surface geochemical and geomicrobial surveys. 
	Regional correlation of Neoproterozoic rocks. 

	Conclusions
	References
	Acknowledgements


