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A unifying physically meaningful 
relativistic action
Yaakov Friedman

The motion of an object under the influence of force fields and/or media is described by means of 
a world-line with least action in its influenced spacetime. For any spacetime point x and a four-
vector u, measured in the frame of an inertial observer, a unifying and physically meaningful action 
function L(x, u) generating the action is defined. To ensure independence of the observer and of the 
parametrization on the world-line, L(x, u) must be Lorentz invariant and positive homogeneous of 
order 1 in u. The simplest such L(x, u) depends on two four-potentials. In most cases, these potentials 
can be defined directly from the sources of the fields without the need for field equations. The unified 
dynamics equation resulting from this action, properly describes the motion in any electromagnetic 
field, in any static gravitational field, in a combined electromagnetic and gravitational field, as well as 
the propagation of light and charges in isotropic media.

Lagrangian mechanics postulates that the motion of an object can be described by a path with stationary action. 
This action is defined by an action function - the Lagrangian function. For a stationary path, the Euler–Lagrange 
equations lead to Newton’s second law. In this paper, we present a relativistic extension of this theory.

The stationary action principle, or principle of least action, was formulated by de Maupertuis as “Nature is 
thrifty in all its actions.” Fermat postulated a similar principle for light propagation as “Light travels between 
two given points along the path of shortest time.” Hilbert introduced an action for general relativity, called the 
Einstein–Hilbert action. Dirac demonstrated how the least action principle can be used in quantum calculations. 
Schwinger and Feynman independently applied this principle in quantum electrodynamics.

Despite the success of the principle of least action, however, it is not clear how to interpret actions physically. 
In most cases, the physics behind the definition is not clear. Moreover, in different areas of physics, the action is 
defined differently. This causes problems, when the motion is affected by different forces.

This paper addresses all of these issues. A simple action function which unifies the relativistic dynamics of 
electromagnetism, gravity and motion in isotropic media, is presented. Moreover, the physics behind our action 
function is clear. It is based on geometry.

Bernhard Riemann was the first to think that the laws of physics should define the geometry of space1. His 
dream was to develop the mathematics to unify the laws of electricity, magnetism, light and gravitation. His idea 
to replace straight lines with geodesics was used later in General Relativity (GR).

The application of Riemann’s ideas to gravity needed two new ideas. Riemann considered how forces affect 
space, while the geometric model needs spacetime. Only in spacetime does Newton’s First Law become geomet-
ric. Riemann used positive definite metrics. The Minkowski metric of flat spacetime, however, is not positive 
definite. Fifty years after Riemann’s death, Einstein (in 1915) used pseudo-Riemannian geometry of spacetime 
as the cornerstone of GR, and the force of gravity was successfully modeled using geometry.

This, however, was only a partial fulfillment of Riemann’s program. Since the Equivalence Principle holds only 
for gravitation, GR singles out the gravitational force from other forces which are not treated geometrically. For 
example, the acceleration of a charged particle in an electromagnetic field depends on its charge-to-mass ratio. 
Thus, the electromagnetic field does not create a common stage on which all particles move. Indeed, a neutral 
particle does not feel any electromagnetic force at all. The way spacetime curves due to an electric field depends 
on both the field and intrinsic properties of the object. This raises the question: Can Riemann’s principle of “force 
equals geometry” be applied to other forces? Can Riemann’s program be extended to object-dependent forces?

In this paper, several new ideas which enable us to geometrize not only gravity, but also electromagnetism 
and motion in media, are introduced. The model presented here is thus a continuation of Riemann’s program.

By extending the Principle of Inertia to motion under the influence of force fields and media, an object will 
move along a world-line with least action in its influenced spacetime. The influenced spacetime is described by 
an action function L(x, u) for any spacetime point x and a four-vector u, which are measured in the frame of an 
inertial observer. The action function defines the infinitesimal distance between two events, with coordinates x 
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and x + εu , in the object’s spacetime. In order that the laws of motion will satisfy the Principle of Relativity, the 
action function must be Lorentz invariant. To guarantee that the laws will be independent of the choice of the 
evolution parameter, the action function L(x, u) has to be positive homogeneous in u of degree 1. Finally, if the 
strength of the fields tend to zero, the action function must reduce to that for empty space.

Following A. Einstein’s quote, “If you can’t explain it simply, you don’t understand it well enough”, a simple 
action function L(x, u) satisfying these properties is introduced. For any electromagnetic and most gravitational 
fields, this action function can be derived explicitly from the sources of the field, without the need of field equa-
tions. The derivations reveal the effect of the fields on the geometry of spacetime. Applying the Euler–Lagrange 
equations to this action function leads to a unifying relativistic dynamics equation. Since, in relativity, the speed 
of a moving object is bounded by the speed of light, the acceleration, described by the evolution equation, cannot 
be independent of the velocity of the object. The resulting dynamic equation reveals that in relativistic dynamics, 
the dependence on the four-velocity is either linear or quadratic.

This dynamics equation properly describes the relativistic motion of both charged and uncharged, massive 
and massless particles in any electromagnetic and static gravitational field, both in vacuum and in an isotropic 
medium. It is shown that this model properly predicts the velocity of light in moving water (as known from the 
Fizeau experiment) and Snell’s law for light refraction.

Results
Extended principle of inertia.  A geometric description of any motion may be represented by a worldline 
in spacetime, which depicts the position of the object at any point in time, and can be considered as the graph 
of the position as a function of time. To simplify the mathematical model, the motion will be represent by the 
use of coordinates in the frame attached to an inertial observer. These coordinates form a four-dimensional 
space M, endowed with the Minkowski metric ηµν = diag(1,−1,−1,−1) . We use Greek indices to label these 
coordinates. From Special Relativity, it is known that the real spacetime transformations between two inertial 
observers are the Lorentz transformations. In order that this model be consistent with the relativity principle, it 
should be invariant under these transformations. Thus, this theory is Lorentz covariant, as is electromagnetism, 
but not generally covariant, like GR.

The Principle of Inertia implies that the worldline of free motion is a straight line in M, with minimal action 
with respect to the Minkowski metric. Why does an object move with constant velocity or by a stationary world-
line when it is not affected by forces? The answer is that an inanimate object is unable to change its velocity.

It appears that also when there are force fields and/or media which affect the object’s motion, the object is 
still unable to change its velocity of its own accord. If so, then why doesn’t the object appear to move along a 
straight line? The answer is that indeed it does not move along a straight line in the observer’s flat spacetime 
M, but it does move by a “straight line” or geodesic in its influenced spacetime shaped by the forces affecting it. 
This is analogous to Einstein’s General Relativity assumptions that (i) a gravitational field changes the spacetime 
geometry, and (ii) objects move in this spacetime by a stationary route. The uniqueness of the gravitational field 
is that it influences all objects in the same way, so one may consider spacetime as curved. But the motion of a 
charged particle is affected by both electromagnetic and gravitational fields, implying that its spacetime is affected 
by both fields. It is natural to assume that the charged particle will also move along a stationary worldline in its 
influenced spacetime.

This leads to formalize an extension of the Principle of Inertia in an object’s influenced spacetime.

The Extended Principle of Inertia.   Since an inanimate object (not disturbed by other objects) is unable to 
change its velocity, it will follow the worldline with least action in its spacetime influenced by the force fields and 
media affecting it.

The action function of the influenced spacetime and its properties.  The influenced spacetime of 
an object is determined by the forces and the media affecting its motion and at most one parameter intrinsic to 
the object. The equivalence of gravitational and inertial mass implies that the acceleration due to a gravitational 
field is the same for all objects, both massive and massless. The acceleration of a charged particle moving in an 
electromagnetic field depends on its charge-to-mass ratio q/m. The motion of a photon in an isotropic medium 
depends on its frequency.

In order to define the shortest worldline, one has to define the “length” of a line in the influenced spacetime. 
For this, it is sufficient to define the distance between two infinitesimally close events P and Q in spacetime. 
This is the analog of the line element of the spacetime metric in General Relativity2,3. The following definition 
is proposed:

Definition 1  Denote the distance in the influenced spacetime between two events with coordinates x and y 
by D(x, y). The action function L(x, u) for any x, u ∈ M is defined as L(x, u) = limε→0

D(x,x+uε)
ε

 . This means 
that the distance between two events with coordinates x and x + uε in influenced spacetime is L(x, u)ε when 
ε is small. The length or action of a worldline x(σ ) parameterized by an arbitrary parameter σ on an interval 
I = {σ : σ1 ≤ σ ≤ σ2} in influenced spacetime is given by

The worldline x(σ ) is called stationary if

(1)S[x(σ )] =

∫

I
L

(

x(σ ),
dx

dσ

)

dσ .
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for any smooth h : I → h(σ ) satisfying h(σ1) = h(σ2) = 0 . For motion along a worldline x(σ ) , we introduce 
the four-momentum

A worldline is stationary if for any index µ, the Euler–Lagrange equations

are satisfied.
From its definition and physical meaning, the action function L(x, u) must satisfy the following properties: 

1.	 L(x, u) is scalar valued, and, to satisfy the Principle of Relativity, must be Lorentz invariant.
2.	 Since the action S[x(σ )] , defined by (1), must be independent of the parametrization σ , L(x, u) has to be 

positive homogeneous of degree 1 in u, meaning that L(x, au) = aL(x, u) for any scalar a > 0.
3.	 When the field strength approaches zero, the function becomes L(x, u) =

√

ηµνuµuν  , the action in 
Minkowski (flat) spacetime.

4.	 Besides the dependence of L(x, u) on the fields and media, it also depends on k = q/m for a charge in an 
electromagnetic field, and on the frequency of a photon propagating in a medium.

Simple action function and unifying relativistic equation of motion.  What is the simplest action 
function L(x, u) with the required properties? Occam’s razor: “explanations that posit fewer entities, or fewer 
kinds of entities, are to be preferred to explanations that posit more” is adopted. A. Einstein himself wrote that a 
“physical theory should be as simple as possible, but not simpler.”

A simple way to construct a Lorentz-invariant scalar function (property 1) of variables (x, u) is to contract 
m copies of a rank one tensor u = uµ with a tensor with m lower indices. For m = 1, 2, 3 , such functions are 
of the form aµ(x)uµ , gµν(x)uµuν and bµνη(x)uµuνuη , respectively. Also, any scalar function of these basic 
Lorentz-invariant scalar functions satisfy property 1. Note that, for example, gµν(x)auµauν = a2gµν(x)u

µuν 
is not homogenous of degree 1. However, 

√

gµν(x)uµuν  is positive homogenous of degree 1, and any linear 
combination of aµ(x)uµ , 

√

gµν(x)uµuν  , 3
√

bµνη(x)uµuνuη  satisfies both properties 1 and 2.
From property 3, it follows that L(x, u) must contain a term of order m = 2 , which can be written as 

√

(ηµν + hµν(x))uµuν , where hµν(x) is a symmetric tensor tending to zero when the strength of the field 
approaches zero.

At this point, a further simplification is proposed and the symmetric tensor hµν(x) is replaced with a bilinear 
form generated by a four-covector-valued (a rank (0, 1) tensor) function

Such a metric was considered by Whitehead4, Petrov5, Kerr and Schild6 and others. Hence, the term of order 
m = 2 becomes 

√

ηµνuµuν − (lµ(x)uµ)2 . The minus sign is needed to avoid superluminal motion. Since the 
influenced direction of a gravitational field at each point in spacetime is represented by a single null covector, 
we assume that lµ(x) is a null covector in the direction of the propagation of the field. This reduces the 10 free 
parameters of gµν(x) to 3 free parameters of lµ(x) . This simplification of the description of a gravitational field 
is based on the following conjecture.

Conjecture 1  The action function of any gravitational field is of the form

for some null covector function lµ(x).

As shown later, the action function of the gravitational field of a spherically symmetric non-rotating body, 
as well as that of any static field, and of a rotating black hole, satisfy this conjecture. From property 3, it follows 
the coefficient of the term of order m = 2 is 1.

For simplicity, assume that the action function consists of terms of order 1 and 2 only. This leads to the fol-
lowing simple unifying action function for a moving object:

defined by two Lorentz-covariant, covector-valued functions Aµ(x) and lµ(x) and a constant k.
The four-momentum (formula (3)) for this action function is

(2)
d

dε

∣

∣

∣

ε=0
S[x(σ )+ εh(σ )] = 0

(3)pµ(σ) =
∂L(x, u)

∂uµ

∣

∣

∣

x=x(σ ), u=dx(σ )/dσ
.

(4)
d

dσ
pµ(σ ) =

∂L(x, u)

∂xµ

∣

∣

∣

x=x(σ ), u=dx(σ )/dσ

(5)hµν(x) = −lµ(x)lν(x), gµν(x) = ηµν + hµν(x) = ηµν − lµ(x)lν(x).

L(x, u) =
√

ηµνuµuν − (lµ(x)uµ)2

(6)L(x, u) =
√

ηµνuµuν − (lµ(x)uµ)2 + kAµ(x)u
µ
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Since the action is independent of the choice of the evolution parameter, in order to simplify the formula for 
p� , a new parameter τ on the worldline is introduced by

which makes the expression in the denominator of (7) equal to 1. Note that this parameter depends on lµ , which, 
as shown later, describes the influence of gravitation. The parameter τ does not depend on Aµ , describing the 
electromagnetic field. Since gravity affects everything, it is natural to assume that clocks will be affected by gravity. 
This was predicted by GR and verified experimentally by Pound and Rebka and others. On the other hand, if the 
clock is uncharged, it is not affected by the electromagnetic field, and if it is charged, the effect on it depends on 
its charge-to-mass ratio. Thus, there is no way to define the effect of electromagnetic field on time.

Denote differentiation by τ with a dot: ẋ = dx
dτ  . Choosing σ = τ , the four-momentum with respect to τ is

The Euler–Lagrange Eq. (4) for a stationary worldline yield the unifying relativistic dynamics equation

The covector-valued function Aµ(x) will be called the linear four-potential, since this term in the accelera-
tion is linear in the four-velocity. Similarly, lµ(x) will be called the quadratic four-potential since the acceleration 
defined by it is quadratic in the four-velocity.

For a covector-valued function f(x),  define the rank 2 covector first order derivative F by

Similarly, for such a function f(x),  also introduce a rank 3 covector first order derivative G:

Note that the three terms of the right hand side can be obtained from the first term (as in (11)) by cycling 
the indices and alternating the signs. Using this notation, the unifying relativistic equation of motion (10) can 
be rewritten as

This is the relativistic analog of Newton’s Second Law, which reveals that the acceleration in relativistic dynam-
ics depends linearly or quadratically on the four-velocity of the object.

Since both four-potentials Aµ(x) and lµ(x) are Lorentz-covariant covector-valued functions, for a field gen-
erated by a single source one can identify the form of these functions, as follows. Assume that the source is 
moving by a worldline x̌(τ ) and our object is positioned at a spacetime point P with coordinates x. Denote by Q 
the unique intersection of the worldline of the source and the backward light cone with vertex at P. The relative 
position null four-vector QP is denoted r(x) = x − x̌(τ (x)) . The time τ(x) is called the retarded time. Only the 
position of the source at the retarded time has influence at the spacetime position x, and r(x) is the direction of 
propagation at x. Denote by w(τ (x)) the four-velocity at the retarded time. See Fig. 1.

One may consider the acceleration and higher derivatives of the source at the retarded time, but, as shown 
later, it is enough to use only the four-velocity in order to define the four-potentials. Since w(x) and r(x) are four-
vectors, one may assume that a Lorentz-covariant, four-vector valued function f(x) is a multiple of these vectors 
by some Lorentz-invariant scalar. This multiple can be a scalar function of the Lorentz-invariant scalar product 
r ◦ w of these two vectors. Thus, Lorentz-covariant four-vectors describing the influence of a single source field 
at the spacetime point x are of the form

or

for some scalar functions h1 and h2 . For any field, the function hj will be defined from the Newtonian limit.

Motion of objects in an electromagnetic field.  To identify the physical meaning of the covector func-
tion Aµ(x) , consider first the motion in influenced spacetime when l(x) = 0 . The equations of motion (13) 
coincide with the equation of motion of a charged particle under the Lorentz force of an electromagnetic field 
defined by an anti-symmetric 4× 4 tensor

and k = q/c2m.

(7)
p� =

∂L(x, u)

∂u�

∣

∣

∣

x=x(σ ), u=dx(σ )/dσ
=

η�µ
dxµ

dσ − lµ
dxµ

dσ l�
√

ηµν
dxµ

dσ
dxν

dσ −
(

lµ
dxµ

dσ

)2
+ kA�.

(8)dτ 2 = ηµνdx
µdxν − (lµdx

µ)2,

(9)p� = η�µẋ
µ − lµẋ

µl� + kA�.

(10)ẍ� = (lµ,ν l� + l�,µlν − lν,�lµ)ẋ
ν ẋµ + k(Aν,� − A�,ν)ẋ

ν .

(11)F�ν(f (x)) = fν,� − f�,ν .

(12)G�µν(f (x)) = f�,µfν − fν,�fµ + fµ,ν f�.

(13)ẍ� = G�µν(l(x))ẋ
µẋν + kF�ν(A(x))ẋ

ν .

(14)f (x) = h1(r(x) ◦ w(τ (x)))w(x)

(15)f (x) = h2(r(x) ◦ w(τ (x)))r(x)

(16)Fµν = Aν,µ − Aµ,ν
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The covector field Aµ is the linear four-potential of the field describing the geometry of the spacetime influ-
enced by the electromagnetic field. This four-potential can be obtained by integrating the four-potentials of single 
sources generating the field. To define the single source field potential, we use a Lorentz-covariant four-vector of 
form (14). Comparing the classical acceleration of a charge with charge-to-mass ratio q/m in a field of a charge 
Q positioned at the origin with the one given by (10) and use of (14), one obtains that h1(y) = y−1 and the linear 
four-potential, denoted by As

µ(x) (label s for single source), of a field generated by a single charge Q is

where r(x) = rµ(x) is the relative position from the source at the retarded time, and w(x) is the four-velocity at 
the retarded time. This is the known Liénard–Wiechert potential of a single source field7.

The derivatives of the vectors r(x) and w(x) are

where a is the four-acceleration at the retarded time. Using these formulas and As
µ(x) , one obtains the field tensor 

(16) of a moving charge (see8). This field decomposes into the Coulomb field, which falls off at large distances 
like the square of the distance, and the radiation field, which depends on the acceleration and falls off at large 
distances like the distance.

One might try to use (15) to obtain the four-potential a field of a charge Q positioned at the origin. For this 
case, one obtains that h2(y) = y−2 for the electromagnetic field. Thus, the linear four-potential, denoted by 
Ãs
µ(x) is

When calculating the field tensor (16) of a moving charge based on Ãs
µ(x) and (18), one obtains the same 

Coulomb field as predicted using As
µ(x) (Eq. (17)). However, there is no radiation field predicted. Since the 

radiation fields do exist, the four-potential Ãs
µ(x) cannot be used to describe the geometry of the electromagnetic 

field of a single source.
To understand the influence of the electromagnetic field on the geometry of the spacetime, consider the 

influence of the field generated by a charge Q, at rest at the origin, on a charge with charge-to-mass ratio q/m. 
Using (6) and (17), the action L(x, u) at a point (x, x) is

From the geometric meaning of the action function L(x, u) as the infinitesimal distance in influenced space-
time between x and x + εu , it is apparent that for a given u0 , the scaling of the distance for all spatial displace-
ments with respect to empty space is the same. This implies that the geometry of this spacetime is conformal. It 
is known that the geometry associated to an electromagnetic field is conformal.

The sources of any electromagnetic field are currents. By the linearity of the electromagnetic field, the four-
potential Aµ(x) of a field generated by currents is obtained by integrating the four-potentials As

µ(x) over the 

(17)As
µ(x) =

Qwµ(x)

r(x) · w(x)
,

(18)rν,µ = ηνµ −
wνrµ

r · w
, wν,µ =

aνrµ

r · w
,

(19)Ãs
µ(x) =

Qrµ(x)

(r(x) · w(x))2
.

L(x, u) =
√

(u0)2 − (u1)2 − (u2)2 − (u3)2 −
qQ

mc2x
u0.

Figure 1.   Two Lorentz covariant vector valued functions associated with a field of a single source moving along 
the world-line x̌(τ ) . The point Q = x̌(τ (x)) is the intersection of the world-line with the backward light cone 
with vertex at P = x . The relative position null four-vector QP is r(x) = x − x̌(τ (x)) , and w(τ (x)) is the four-
velocity at the retarded time.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10843  | https://doi.org/10.1038/s41598-022-14740-7

www.nature.com/scientificreports/

backward light cone with vertex at x. This is a way to obtain the electromagnetic field description without using 
Maxwell’s field equations.

The classical formula for the gravitational acceleration between two masses is similar to the acceleration 
between two charges of opposite sign. So why can’t one use the linear four-potential to describe the gravitational 
field?

To understand this, consider the motion of a charge with charge-to-mass ratio q/m in a field generated by 
a single charge Q positioned at the origin of the spatial axes. Let the position of the moving charged particle at 
some time t be x ∈ R3 . Then the relative position four-vector is r = (x, x). Since w = (1, 0, 0, 0) , at any space 
point x ∈ R3 , the non-zero components of the tensor Fc defined by (16) and (17) are

for j = 1, 2, 3 . Using (10), this implies that ẍj = −k
Qxj
x3

 , and the 3D acceleration is in the radial direction. Thus, 
if � denotes the plane in R3 generated by the position vector x(0) of the moving particle and its velocity v(0) at 
the initial time, the acceleration will also be in � . This implies that the motion of the particle will remain in � 
for all times. By rotating the axes, we assume that � is the x1, x2 plane, or x3 = 0.

Use polar coordinates ρ,ϕ in the plane x1, x2 and ̺ ,φ in the plane u1, u2 , and τ defined by (8). In these coor-
dinates, kAs

0 =
qQ

mc2ρ
= α

ρ
 and kAs

ϕ = 0 . Since the action function L(x, u), defined by (6), depends only on ρ and 
is independent of t and ϕ , the four-momentum components p0 and p2 , defined by (9), are conserved:

for some constants β , l . From (8), the square of length of the four-velocity in our coordinates is

Substituting in this equation the expressions for ṫ  and ϕ̇ from (20), yields

To describe the trajectory, introduce a function f (ϕ) = 1
ρ(ϕ)

 , which is proportional to the classical potential 
energy on the trajectory. Equation (22) becomes

Differentiating this equation and dividing by 2l2f ′ yields

The solution of this equation is

The trajectory ρ(ϕ) of the particle is thus a precessing ellipse with precession πα2/l2 per revolution.
If gravity could be described by the linear four-potential, the same analysis could be applied for the motion of 

Mercury around the Sun. In this case α = rs , the Schwarzschild radius of the Sun. It is known that Mercury’s orbit 
is a precessing ellipse, but the observed precession differs from that predicted by (24). Thus, gravitation cannot be 
described by a linear four-potential, but, as shown next, it is described properly by the quadratic four-potential.

Motion of objects in a gravitational field.  Let us assume that the relativistic description of the gravita-
tional field satisfies the Newtonian limit. This means that for any point P in spacetime, the acceleration, predicted 
by (10), of an uncharged object ( k = 0 ) positioned at P with zero initial velocity coincides with the Newtonian 
acceleration. From (8), the four-velocity of an object at rest is ẋr = α(1, 0, 0, 0) , with α = 1/

√

1− l20  . Since 
lµẋ

µ
r = αl0 , lµ,�ẋ

µ
r = αl0,� and l�,µẋ

µ
r = αl�,0 , the acceleration, defined by (10) of an object at rest is

For any static gravitational field, l�,0 = 0 . Hence, the 3D acceleration of an object at rest in such a field is 
d2x
dt2

= − c2

2
∇l20 . Comparing this with the Newtonian acceleration ∇� (lowering the index of acceleration elimi-

nated the usual minus sign), where � denotes the Newtonian potential of the field, yields − c2

2
∇l20 = ∇� . Using 

the fact that both l20 and � must vanish at infinity, one obtains

where φ(x) denotes the unit free, positive Newtonian gravitational potential.

F0j =
Qxj

x3
, Fj0 = −

Qxj

x3
,

(20)p0 = cṫ −
α

ρ
= β , pϕ = ρ2ϕ̇ = l

(21)c2 ṫ2 − ρ̇2 − ρ2ϕ̇2 = 1.

(22)ρ̇2 +
l2 − α2

ρ2
−

2αβ

ρ
= β2 − 1.

l2(f ′)2 + (l2 − α2)f 2 − 2αβf = β2 − 1.

(23)f ′′ +

(

1−
α2

l2

)

f =
αβ

l2
.

(24)f (ϕ) =
αβ

l2 − α2
+ A cos

√

1−
α2

l2
(ϕ − ϕ0).

(25)ẍ� =
1

1− l20
(l�,0l0 − l0,�l0 + l0,0l�).

(26)l20(x) = −
2

c2
�(x) := φ(x),
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The null covector l can be written as l = l0(1,n) , where n is a norm one vector in R3 in the direction of the 
propagation of the field. Since the propagation of a static gravitational field with potential �(x) is in the direction 
of ∇�(x) , by the definition of l, n = ∇φ(x)/|∇φ(x)| . Thus, the action function for a static gravitational field 
with Newtonian potential �(x) is

with φ(x) defined by (26). It is well known3 that the gravitational potential �(x) is determined by the Poisson 
equation and depends linearly on the sources of the field.

Consider the gravitational field outside of a static, spherically symmetric, non-rotating body of mass M. Place 
the origin of the spatial axes at the center of the body. For an object positioned at rest at a space point x , the rela-
tive position is r = (x, x) and r · w = x . The classical potential �(x) = −GM

x , implying that φ(x) = 2GM
c2x

= rs
x  , 

where rs = 2GM
c2

 is the Schwarzschild radius. Thus, (27) can be written as

This corresponds to (15) for the quadratic four-potential of a single source. As shown later, this four-potential 
predicts exactly the anomalous precession of Mercury’s orbit, while a four-potential of the form (14) leads to 
an incorrect precession.

If a gravitational field is generated by several spherically symmetric, non-rotating bodies, then the Newtonian 
limit implies that the acceleration of the field is the sum of accelerations due to each source. This is equivalent 
to the assumption that the rank 3 tensor G in the equation of motion (13) is the sum of the rank 3 tensors of 
each source.

To understand the change in the geometry due to gravitation, compare the 2D section of the light cone for 
u0 = 1 in flat spacetime with spacetime influenced by the gravitational field of a Black Hole, see Fig. 2. Observe 
that the Black Hole pulls the light cone toward itself, but leaves it inside the cone of flat spacetime. Thus, even 
in presence of a strong gravitation field, the speed of a moving object, as observed by an inertial observer, will 
be bounded by the speed of light.

We show now that the motion in a gravitational field of a spherically symmetric body defined by the action 
function (28) passes the tests of GR. Consider the motion of an object in gravitational field of a spherically sym-
metric mass M centered at the origin of our inertial frame. As shown above, the 3D acceleration of the object is in 
the radial direction. Thus, if � is the plane in R3 generated by the position vector x(0) of the moving particle and 
its velocity v(0) at the initial time, the acceleration will also be in � . This implies that the motion of the particle 
will remain in � for all times. By rotating the axes, assume that � is the x1, x2 plane, or x3 = 0.

Use polar coordinates ρ,ϕ in the plane x1, x2 and ̺ ,φ in the plane u1, u2 , and τ defined by (8). In these coor-
dinates, the action function is

Since this action function depends only on ρ and is independent of x0 and ϕ , the four-momentum components 
p0 and p2 , defined by (9), are conserved:

for some constants β , l . From (8), the square of length of the four-velocity in these coordinates is

Substituting in this equation the expressions for ẋ0 and ρϕ̇ from (29) and multiplying by 1− rs
ρ

 , one obtains

(27)L(x, u) =
√

(u)2 − (lµ(x)uµ)2, l(x) =
√

φ(x)(1,∇φ(x)/|∇φ(x)|),

(28)L(x, u) =
√

(u)2 − (lµ(x)uµ)2, l(x) =

√

rs

x3
(x,−x).

L(x, u) =

√

(u0)2 −�̺2 − (̺�φ)2 −
rs

ρ
(u0 +�̺)2.

(29)p0 =

(

1−
rs

ρ

)

ẋ0 −
rs

ρ
ρ̇ = β , pϕ = ρ2ϕ̇ = l

(30)
(

1−
rs

ρ

)

(ẋ0)2 − 2
rs

ρ
ẋ0ρ̇ −

(

1+
rs

ρ

)

ρ̇2 − ρ2ϕ̇2 = 1.

Figure 2.   The geometry of the influenced spacetime in the vicinity of a Black Hole. At each distance, we see the 
2D section of the light cone at u0 = 1 in flat spacetime (black) and influenced spacetime (blue).
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Opening the parentheses and simplifying leads to

To describe the trajectory, introduce a function f (ϕ) = rs
ρ(ϕ)

 , which is the unit-free, classical potential energy 
on the trajectory. Using (29), this implies that ρ̇ = l

rs
f ′ . For this function, the above equation becomes

Differentiating this equation and dividing by 2l
2

r2s
f ′ yields

The solution3,9 of this equation defines the trajectory ρ(ϕ) of the particle as a precessing ellipse, with preces-
sion 3πµ per revolution. This is the observed anomalous precession of Mercury’s orbit and the precession for 
any other observed relativistic orbits.

For light propagation in such a gravitational field, one needs to replace the 1 on the right-hand side of Eq. (30) 
by 0. This leads to removing the −1 from the right-hand side of Eq. (32). The resulting equation is the basis for 
the derivation of light deflection and the Shapiro time delay10 and11. Thus, the motion of uncharged bodies with 
respect to our action function passes all relativistic solar tests predicted by GR.

Formula (28) can be extended to the gravitational field of a spherically symmetric, non-rotating body moving 
with respect to the frame of the observer. Using (15), the quadratic four-potential for such a field is

This is the gravitational field analog of the Liénard–Wiechert four-potential of a moving source. Using (18) 
and (10), one can calculate the acceleration generated by this four-potential. As in electromagnetism, one obtains 
here two fields: a near field, which falls off at large distances like the square of the distance, and a radiation field, 
depending on the acceleration of the source and falling off at large distances like the distance.

Since most gravitational fields are generated by a collection of moving spherically symmetric bodies, to make 
our theory of gravity complete, we need to prove the following conjecture:

Conjecture 2  The rank 3 tensor G in the equation of motion (13) for the evolution in a gravitational field gen-
erated by a collection of moving, spherically symmetric bodies is the sum of the G tensors of each source. (34)

For the gravitational field generated by a binary star, this conjecture predicts gravitational waves similar to 
those predicted by GR.

As shown in12, the approximations used in GR13,14 to describe the gravitational field of a binary star reduce 
to that of a single spherically symmetric body, which can be described by the action function (28). This implies 
that motion with such an action function will pass all the relativity tests based on binaries. As shown in15,16, the 
Kerr metric describing the gravitational field of a rotating black hole is also described by an action function 
L(x, u) =

√

(ηµν − lµlν)uµuν  as in (6).
For a single point, static source, our description is similar to Whitehead’s theory of gravitation4, which is 

equivalent to the Schwarzschild metric, used in GR, see17,18. A gravitational field generated by several objects in 
Whitehead’s theory is described by a metric gµν(x) as in (5), with hµν(x) the sum of such terms for all objects in 
the source. The predictions of Whitehead’s theory deviate from those of GR. For example, Whitehead predicts 
a different formula for the gravitational field of an extended spherically symmetric body, a different formula for 
the precession of elliptic orbits, and a different acceleration of the center of mass of binaries. In19, Whitehead’s 
theory was criticized based on these predictions which contradict experimental results. Our description does 
coincide with Whitehead’s theory of gravitation, but only for a single point static source. The metric of a field of 
a static source (27) differs from the one obtained in Whitehead’s theory. This can be seen already for a field with 
two sources. Our description of a gravitational field of an extended spherically symmetric body is equivalent to 
that of GR, and the precession of orbits is exactly as in GR. Thus, Gibbons and Will’s criticism of Whitehead’s 
theory does not apply to our approach.

For a charged particle q of mass m moving in an electromagnetic field defined by Aµ(x) and a gravitational 
field defined by lµ(x), the action function is defined by (6). In the case of a static gravitational field, lµ is defined 
by (27). The evolution parameter τ is defined by (8) and is independent of the electromagnetic field. Further-
more, from formula (9), we see that the contributions of the electromagnetic and gravitational fields to the 
four-momentum are additive. Since the dynamics in an electromagnetic field is linear in the four-velocity of 
the moving object and the dynamics in a gravitational field is quadratic in this four-velocity, it does not look 
right to describe a field of a charged massive body by one metric containing both gravity and electromagnetism.

(31)
(

β +
rs

ρ
ρ̇

)2

− 2
rs

ρ

(

β +
rs

ρ
ρ̇

)

ρ̇ −

(

1−
r2s
ρ2

)

ρ̇2 −
l2

ρ2

(

1−
rs

ρ

)

=

(

1−
rs

ρ

)

.

(32)ρ̇2 +
l2

ρ2

(

1−
rs

ρ

)

−
rs

ρ
= β2 − 1.

l2

r2s
(f ′)2 +

l2

r2s
(f 2 − f 3)− f = β2 − 1.

(33)f ′′ + f = µ+ 1.5f 2, µ =
r2s
2l2

.

(34)lµ =

√

rs

(r(x) ◦ w(τ (x)))3
rµ(x).
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Propagation of light and charges in a medium.  Propagation of light in an isotropic medium at rest 
can be considered as the motion of photons in the spacetime influenced by this medium. Since the charge q of 
the photon is zero, the parameter k = 0 in (6). The assumption that the medium is isotropic at rest in an inertial 
frame K implies that l = (l0, 0, 0, 0) , where the parameter l0 depends only on the medium and possibly on the fre-
quency of the photon. The dependence of l0 on the frequency can be observed in the refraction of light through 
a glass prism, where photons with different frequencies (color) are refracted by different angles.

One knows from Special Relativity that the worldline of a massless particle, like a photon, is null. We assume 
that the same property holds for the motion of the photon in the influenced spacetime. This implies that 
l20 = 1−

(

v0
c

)2 , where v0 is the speed of light or the speed of the photon in this medium. Using (6), the action 
function for the motion of a photon in an isotropic medium is

where the refractive index n = c
v0
. Thus, the metric of the photon’s influenced spacetime in the medium is 

equivalent to the empty spacetime metric, with the speed of light in vacuum replaced by the speed of the photon 
in the medium.

To verify the validity of our action function for a medium, we check its prediction of the speed of light in a 
moving medium. By the Principle of Relativity, propagation of light in a moving medium is similar to its motion 
in a medium at rest, as observed by an inertial observer moving with velocity opposite to the velocity of the 
medium. For such an observer, the emitter of light is also moving. However, as it is known, this does not affect 
the speed of light. Assume that the medium moves with velocity vm in the x-direction, which is equivalent to 
observing it from a frame K ′ moving with velocity −vm in the x-direction.

To describe the action function in K ′ , one needs to perform a Lorentz transformation � of the co-vector 
l from K to K ′ . So, in K ′ , the action function is defined by l′ = �l = l0γ (v)(1,−β , 0, 0) , with β = vm/c . This 
action function defines two speeds of light in the x-direction

Since β2 ≪ 1 , ignore terms with β2 and obtain that the velocity of light in the direction of the motion of the 
medium is v+ = v0 + vm

(

1− 1

n2

)

 , while its velocity in the opposite direction is v− = −v0 + vm

(

1− 1

n2

)

 . These 
results agree with the observed velocities of light in moving water in the Fizeau experiment.

Consider now the refraction of a light ray propagating between two media, separated by a plane z = 0 , see 
Fig. 3. Let n(z) = n1 for z ≥ 0 and n(z) = n2 for z ≤ 0 . Choose the x-axis in a way that the incoming ray will be 
in the plane y = 0.

Since the action function (35) is independent of x0, x1, x2 , the four-momenta p0, p1 = px , p2 = py on the 
worldline parameterized by t are preserved. But p0 = u0

n2L
= c

n2L
 and px = − u1

L = vx
L  , implying that pxp0 = vxn

2

c  
is preserved on a stationary worldline.

For z ≥ 0 , the x-component of the velocity is vx = c
n1

sin α1 , where α1 is the angle of incidence for the incom-
ing ray, and pxp0 = n1 sin α1. Similarly, pxp0 = n2 sin α2 for z ≤ 0 . Since p1p0 is preserved on stationary worldlines, 
we obtain

This is Snell’s law for light refraction. The derivation reveals that this law is an expression of momentum 
conservation of the moving photon.

(35)L(x, u) =

√

1

n2
(u0)2 − (u1)2 − (u2)2 − (u3)2,

v1,2 =
vm

(

1− 1

n2

)

± (1− β2)v0

1−
β2v20
c2

.

n1 sin α1 = n2 sin α2.

Figure 3.   Refraction of light between two media.
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The motion of a charge in an electromagnetic field with four-potential Aµ in an isotropic medium expressed 
by lµ , as in (35), is described by the equation of motion (13). Since, for an isotropic medium l(x) is constant, the 
tensor G = 0, implying that the description of the motion of the charge is similar to that of its motion in vacuum, 
with the modification of the evolution parameter τ defined by (8).

Summary and discussion
A unifying relativistic approach for motion of objects, both massive and massless, charged and uncharged, under 
the influence of fields and isotropic media, was presented. Riemann’s principle “force equals geometry”, means 
that a force causes space to curve and the motion of an object is along a geodesic in this curved space. This 
principle is the basis of GR (general theory of gravitation). In this paper, several new ideas which enabled the 
geometrization not only of gravity, but also of electromagnetism and motion in media were presented.

“Results” section introduced the notion of influenced spacetime, explained why motion should be along a 
geodesic, and presented a new extended principle of inertia: “ Since an inanimate object (not disturbed by other 
objects) is unable to change its velocity, it will follow the worldline with least action in the influenced spacetime, 
the spacetime influenced by force fields or media affecting it”.

To implement this principle, “Summary and discussion” section, Definition 1, introduced an action function 
L(x, u) for x, u measured in the frame of an inertial observer. This action function describes the infinitesimal 
distance between x and x + εu in the influenced spacetime. In order that the action should be independent of 
the choice of an inertial observer, L(x, u) should be Lorentz invariant. Moreover, in order that the action will 
be independent of the choice of the evolution parameter, L(x, u) has to be positive homogeneous of degree 1 in 
u. Finally, if the fields tend to zero, the action function should reduces to the action function of empty space.

Based on these properties, the form of a simple action function (6) was derived in "Simple action function and 
unifying relativistic equation of motion". This function depends on two covector fields Aµ, lµ and one parameter 
of the moving object. Using the Euler–Lagrange equations, a unifying relativistic Eq. (13) defining the accelera-
tion of of the moving object was derived. One component of the acceleration defined by A(x) is linear in the 
four-velocity, and A(x) was called the linear four-potential. Similarly, the second component of the acceleration 
defined by l(x) is quadratic in the four-velocity and l(x) was called the quadratic four-potential. For a field gener-
ated by a single source two forms of Lorentz-covariant four-potentials were identified.

In "Motion of objects in an electromagnetic field" it was shown that the linear four-potential A(x) is a four-
potential of an electromagnetic field. For a field generated by a single charge it is the known Liénard–Wiechert 
potential. For this field, the geometry of the influenced spacetime was found to be conformal. For a general 
electromagnetic field, the four-potential and the field could be obtained directly from the sources of the field, 
without the need for Maxwell field equations. The precession of elliptic orbits in a field of a single charge was 
also defined. The calculation revealed that unlike the electromagnetic field, the gravitational field can not be 
described by a linear four-potential.

In "Motion of objects in a gravitational field", assuming that a gravitational field satisfies the Newtonian 
limit, a description (27) of any static gravitational field by means of a quadratic four-potential l(x) was obtained. 
We also found The quadratic four-potential l(x) of a gravitational field generated by a moving spherically sym-
metric body (34) was obtained. It was shown that the model predicts gravitation radiation. Figure 2 presents the 
geometry of the influenced spacetime in the neighbourhood of a Black Hole. The precession of elliptical orbits, 
predicted by this model, was shown to coincide with the one predicted by GR and verified experimentally. The 
prediction of other GR tests by this model was also indicated. The connection of this model to the Whitehead’s 
theory of gravitation was explained. A conjecture needed to to make this theory a self-contained theory of grav-
ity was formulated. The way to describe the relativistic motion of charges in a combined electromagnetic and 
gravitation field was also described.

In "Propagation of light and charges in a medium", the propagation of light in an isotropic medium was 
discussed. The influence of the medium is described by a constant quadratic four-potential lµ . It was shown that 
this description properly predicts the speed of light in moving water as in the Fizeau experiment. The Snell’s law 
for light refraction in this model results from the conservation of the four-momentum of the moving photon.

The dynamics presented in this paper uses the action function only to second order, and four-potentials 
depending only on the position and velocity of the sources. The method can also be used to study higher 
order derivative field theories. An example of such higher order theory for electrodynamics is Podolsky 
electrodynamics20, and for gravity, see21.
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