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Optimization and prediction 
of tribological behaviour 
of filled polytetrafluoroethylene 
composites using Taguchi Deng 
and hybrid support vector 
regression models
Musa Alhaji Ibrahim1,2*, Hüseyin Çamur2, Mahmut A. Savaş2 & S. I. Abba3

This study presents optimization and prediction of tribological behaviour of filled 
polytetrafluoroethylene (PTFE) composites using hybrid Taguchi and support vector regression (SVR) 
models. To achieve the optimization, Taguchi Deng was employed considering multiple responses 
and process parameters relevant to the tribological behaviour. Coefficient of friction (µ) and specific 
wear rate (Ks) were measured using pin-on-disc tribometer. In this study, load, grit size, distance and 
speed were the process parameters. An L27 orthogonal array was applied for the Taguchi experimental 
design. A set of optimal parameters were obtained using the Deng approach for multiple responses 
of µ and KS. Analysis of variance was performed to study the effect of individual parameters on the 
multiple responses. To predict µ and Ks, SVR was coupled with novel Harris Hawks’ optimization 
(HHO) and swarm particle optimization (PSO) forming SVR-HHO and SVR-PSO models respectively, 
were employed. Four model evaluation metrics were used to appraise the prediction accuracy of the 
models. Validation results revealed enhancement under optimal test conditions. Hybrid SVR models 
indicated superior prediction accuracy to single SVR model. Furthermore, SVR-HHO outperformed 
SVR-PSO model. It was found that Taguchi Deng, SVR-PSO and SVR-HHO models led to optimization 
and prediction with low cost and superior accuracy.

Filled polymer matrix composites (PMCs) containing fillers continue to receive significant attention from aca-
demics and industries due to their modified mechanical and tribological behaviours than virgin polymers1. 
Polymer based composites showed improved tribological resistance2. Of the different kinds of polymers, polyte-
trafluoroethylene (PTFE) filled with carbon or bronze fibres are widely used due to their high mechanical and 
low tribological behaviour3. It has been indicated that these composites are suitable in sectors where mechanical 
parts including brakes and clutches tribological behaviours are significant4–7. It has been generally agreed that 
tribological resistance of materials can be improved by adding more filler content to a certain limit8,9 to neat 
polymers. Polytetrafluoroethylene (PTFE) has been one of the commonly used thermoplastic matrices for wear 
conditions because of its low coefficient of friction, ease of process-ability, chemical inertness, low density and 
low-cost10,11.

Wear is one of the most commonly encountered problems in industries causing frequent substitution of parts 
especially abrasion. Abrasive wear of various polymers and filled polymers have been studied experimentally. 
Abrasive wear rate of different matrices were studied by12 and it was found that different polymer exhibited dis-
similar wear rate. Inclusion of glass and carbon fabric into vinyl/ester were analyzed. It was reinforced vinyl/
ester combination indicated lower wear rate than glass and/or carbon fabric reinforced vinyl/ester composite13. 
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As reported by14 applied load found as the most significant process parameter; reduced wear rate was observed 
when performance UHMWPE was reinforced with fillers. According to15 it seen that mass loss and µ increased 
with increase in speed and decrease in grit sizes for betelnut filled epoxy composites.

In order to study multiple responses related to tribological behaviours of composites several decision-making 
methods including data development, analytic hierarchy as well as grey relational analysis (GRA) have been 
proposed in the literature16. Of these models, GRA proposed by Deng in 1989 is the widely used methodol-
ogy especially when the nature of the information is not certain and complete17. Dharmalingam, Subramanian 
and Kok combined grey relational analysis (GRA) with Taguchi to optimize abrasive tribological property of 
aluminium hybrid metal composites. Analysis of variance (ANOVA) indicated that grit size was the parameter 
that had the most influence on wear rate and load was found to had the greatest effect on coefficient of friction18. 
Sylajakumar et al.19 used Taguchi-GRA method to study the effect of load, speed and distance on coefficient of 
friction and wear rate of co-long composite. ANOVA showed that speed significantly affect the wear property of 
the co-continuous composite. Savaran and Thanigaivelan20 optimized dimple geometry and laser parameter using 
principal component analysis (PCA) coupled GRA. ANOVA showed that average power contributed most while 
depth contributed less to performance measures. An integrated Taguchi OA and GRA method has been applied 
to optimize injection moulding parameters of HDPE-TiO2 nanocomposites Pervez et al.21. The work established 
that optimum parameters were content of TiO2 at 5%, barrel temperature of 225 °C, residence time of 30 min 
and holding time of 20 s. Adediran et al. optimized mechanical properties of hybrid propylene reinforced bio 
composites using Taguchi model. It was found that collage of 4% PSS and 10% kenaf fibre produced the optimum 
combination for hybrid bio composites22. Besides this, Taguchi method hybridized with grey relational grade 
has as well been employed for multi-response optimization of wire discharge electrical discharge machining23, 
turning process24 and milling parameter25.

Due to nonlinearity and complex nature of tribological behaviour of materials soft computing methods are 
increasingly widely accepted including support vector machine (SVM), adaptive neuro-fuzzy inference system 
(ANFIS) and artificial neural network (ANN). The reason being the fact that these models are capable of cap-
turing the nonlinear and complex nature of the relation between the tribological parameters and responses as 
compared to conventional mathematical techniques at much cheaper running costs. Various forms of wear are 
encountered such as abrasion, adhesive, fretting and fatigue wear. Abrasive tribology for composites, instruments, 
coatings, hip implant, airplane manufacturing as well as automotive components are of essential importance as 
it determines parts’ performance or longevity. This in general is checked experimentally, as process parameters 
such as materials characteristics, surface texture, sliding speed and sliding speed. In the analysis of tribology, 
many mathematical modeling methods have been built. Among them are atomic and molecular kinetics, finite 
element method, symptom modelling, continuum mechanics, dimension reduction, analysis, boundary element 
system, stochastic models26. Nevertheless, since tribological behaviours are complex and nonlinear, mathemati-
cal models are limited.

Lately, the use artificial intelligent (AI) models has become widely accepted in tribology. Jones et al. pioneered 
the use of ANN to predict life data and tribological behaviours. Accurate prediction of tribological property by 
ANN gives an option to the present time, cost and energy consuming testing approaches. Since then, the method 
has been successfully applied in the tribology discipline that includes wear of reinforced polymer composites27,28, 
coefficient of friction and mechanical properties, respectively29,30, compensation of magnetic levitation using 
ANN based on fuzzy inference31. ANFIS and ANN were compared in the prediction of Ks PTFE and its com-
posites. It was found that ANN performed better than ANFIS32. Prediction of abrasive wear of industrial waste 
and glass filled polyester composites was done using ANN and linear regression model. The results found that 
ANN outperformed the linear model33. SVM has been employed in the prediction of tool wear appraisal34,35. 
Also SVM, RBFF and ANN have been contrasted to predict diameter of PCL/gelatin materials. It was reported 
that ANN did better than SVR and RBFF put together36. Response surface methodology, ANN-HHO as well as 
model was used in the prediction of abrasive wear of ultrahigh strength martensitic steel. It was reported that 
hybridized ANN-HHO showed better performance than the single ANN model37.

A survey of the reported literature on the database Scopus yielded the findings that there were 450 peer-
reviewed papers starting from 1989 up to date adopted over the literature using the feasibility of wide interest 
for the abrasive tribological behaviour of PTFE based composites. Figure 1b shows 388 keywords occurrence 
between those studies, indicating the deep interest and implementation of this field. In addition, the popularity 
of this study topic was investigated in different regions throughout the world, with the bulk of the countries pro-
ducing the output being China, the United States, and India. (Fig. 1a). The motivation of this study demonstrated 
excellent AI techniques for predictions abrasive tribological behaviour of filled PTFE composites. Generally each 
study has progressed to a little higher degree of accuracy for observations and efficiency at a deeper level than 
the previous one. To the best knowledge of the authors, no study published in a technical literature has predicted 
the abrasive tribological behaviour of filled PTFE composites employing this approach using small amount of 
data. As a result, the goal of this work is to optimize and predict multi-response variable of coefficient of friction 
(µ) and specific wear rate (Ks) of abrasive wear of reinforced PTFE composites using Taguchi Deng and novel 
hybrid support vector regression (SVR) model.

Results and discussion
Experimental results.  The results of the tribological experiments for the various test conditions are shown 
in Table 1. It was seen that the tribological behaviours of the samples indicated rise and fall trend with varying 
the parameters. Each trial was performed twice and the average was used for the calculations. Highest SNRs of 
µ and Ks occurred at 20 and 12 trials, respectively. These give the minimum tribological rate of the filled PTFE 
composites. In spite of the fact the temperature was not computed, the temperature increased as the sliding 
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distance increased. Data in Table 1 was used for the calibration and validation of the SVR, SVR-PSO and SVR-
HHO models.

Effect of load on Ks and µ.  The results of the µ and Ks are shown in Fig. 2a,b, respectively. It was observed that 
as the load increase the µ and Ks decrease. The low µ at maximum load is because of the formation tribolayer by 
the fibres at interacting state as well as temperature and visco-elastic related behaviour. This layer prevented the 
pin samples to be in direct contact with the abrasive surface. Similar observation found in38 when wear rate and 
coefficient of friction of plastic reinforced glass fibre was studied against different rough and mild steel surfaces. 
In the work, the results showed that µand Ks decreased as the load increased from 10 to 15 N. At 6 N µ was high 
perhaps due to tearing of the fibre tribo layer at the contact region. This finding was contrary to results obtained 
by39 when abrasive wear of reinforced carbonized bone ash particulate polypropylene was investigated. It was 
found that Ks increased as the load increased from 5 to 15 N. Ks was low at high load because of great increase 
in apparent contact area at higher loads thereby leading to increase in contact area permitting a large number of 
particles to meet the interface and share the stress. This, in turn, reduced the wear rate.

Effect of abrasive size on µ and Ks.  As shown in Fig. 2b increase in abrasive sizes decrease the both µ and 
Ks. High µ at small grit size is related to high roughness of SiC particles that offered significant amount of resist-
ance while the low µ is attributed to smoothness of the SiC particles that offered little resistance to the materials 
all due to formation of protective layer at contact surface. Decrease in wear rate due to increase in abrasive size is 
related to clogging of the wear track with wear debris and reduction in cutting efficiency of the abrasives due to 
transfer. Similar results were reported in40 where the abrasive wear performance of elastomers was investigated. 
In the study, different abrasive size of 82, 125, 269 and 425 µm was used as the counterface at constant speed of 
0.01 m, applied load of 10 N but varying speed of 0.25, 0.5 and 1 m/min. It was observed that as the abrasive size 
of the SiC increased both the µ as well as Ks reduced.

Effect of sliding distance on µ and Ks.  Figure  2a,b shows the relationship between the parameters 
and the µ and Ks, respectively. As observed in the figure, increasing the sliding distance increase the µ while a 
decrease in Ks observed. This is explained on the basis that distance acted as a lubricant to rubbing surfaces and 
therefore separated pin specimens from the counter front. Ks reduction due to increase in sliding distance is 
attributed to pull out or fracture of abrasives as a result of presence of tough fibres. Additionally, wear debris is 
transferred to counterface from the PTFE causing reduced wear rate. This result is validated by41 in which two-
body abrasive wear property of silicon carbide filled glass fabric epoxy composites glass was studied. Grit sizes 
of 600 and 1000 mesh and sliding distance of 25, 50, 75 and 100 m were used as experimental conditions. The 
results revealed that Ks significantly reduced as abrading distances and grit size increased. Drastic reduction of 
Ks was observed at 25–50 m.

Figure 1.   (a) Major keywords used over the literature on the abrasive tribology of PTFE based composites field 
(1989–2021), (b) the investigated the research region for abrasive.
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Effect of sliding speed on µ and Ks.  As the sliding speed increase µ as well as Ks decrease and high µ and 
Ks are noticed at low speed due to samples’ increased contact time with the counterface (Fig. 2a,b. As the rota-
tion rate increases and the samples are oxidized, the temperature at the contacting surfaces changes. This aids 
formation of a mechanically mixed and rough coating which is laid on the parts. This coating is impervious to 
removal and depreciates the µ and Ks significantly. When the surface of the counterface is less touched and the 
protection of the hard layer is heavily mixed tribological behaviours are reduced. It has been shown that reduc-
tion in wear rate depends on production of adherent, uniform and thin hard layer on the counter front when 
polyphenylene reinforced with CuO, SiC, TiO2 and ZnO nano particles to study the influence of these particles 
on the wear rate of the composites. It was found that with the addition of these particles there was a formation 
of adherent and uniform tribolayer between the samples and the counterface especially with 2 wt% of CuO and 
TiO2

42. More so, it was observed in43 when the function of filler deformation, filler-bonding and counterface of 
Ag2S, CuS, ZnF2 and SnS inorganic fillers were introduced into polyphenylene sulfide. The results indicated that 
minimum wear achieved by Ag2S and CuO was due to the formation of thin, adherent and uniform transfer film 
formed on the counterface preventing the samples from coming into direct contact with surface while ZnF2 and 
SnS high wear rate was attributed to thick, non-uniform tribolayer between contact surface and samples. Similar 
observation was made in44 when SiC and graphite particles as secondary filler was added to epoxy polymer to 
study the influence of speed, distance and load on the epoxy composites. It was found that as the speed increased 
the wear properties of the reinforced epoxy composites decreased results. Similar result was reported by44 when 
3 body abrasive tribological property of glass fibre reinforced polyester composites was investigated. It was found 
that as the speed increased the wear rate of the composites decreased at constant applied load as well as particles 
of 200 and 300 6 µm.

In all the analysis, it was found that addition of bronze and carbon fillers into PTFE improved the virgin 
PTFE’s tribological rate. This might be attributed to stiffness and hardness of the fillers. However, BF40 compos-
ites showed a slightly lower wear resistance than CF25 composites. This is explained on this basis of the higher 
weight percentage of the bronze particles that induced more hardness and larger size about 6 µm.

Results using Taguchi approach.  The experimental data in Table 1 was transformed into signal to noise 
ratios (SNRs) using Eq. (4) and the corresponding SNRs was as shown in Table 1. Larger SNRs indicate the mini-

Table 1.   Experimental results and their corresponding SNRs of filled PTFE composites based on Taguchi L27
(34) OA.

Trial

Experimental results Experimental results Signal to noise ratio Signal to noise ratio

µ Ks (mm3N−1 m−1) µ SNR(dB) Ks (dB)

1 0.1115 8.5700E−06 19.05 101.74

2 0.2485 1.3333E−05 12.09 97.91

3 0.1695 9.8361E−06 8.83 92.07

4 0.1930 1.7284E−05 14.29 95.65

5 0.2790 2.2584E−05 11.09 93.34

6 0.2865 6.9217E−06 28.18 103.82

7 0.1335 1.1977E−05 17.49 98.84

8 0.2265 1.7443E−05 12.90 95.58

9 0.5330 1.8281E−05 10.57 91.08

10 0.2735 4.6737E−06 11.26 107.01

11 0.2025 1.5357E−06 13.87 116.69

12 0.2220 3.8251E−06 10.46 115.86

13 0.3035 3.4632E−06 10.36 109.61

14 0.1265 6.7258E−06 17.96 103.86

15 0.9595 6.2096E−06 13.07 112.50

16 0.1115 2.1261E−05 19.05 93.85

17 0.5565 2.8293E−05 5.09 91.38

18 0.4475 1.9563E−05 22.38 88.89

19 0.3680 2.9341E−06 8.68 111.05

20 0.0335 2.9071E−06 29.50 111.14

21 0.0490 2.0864E−06 12.18 116.02

22 0.0855 9.5238E−06 21.36 100.83

23 0.1155 1.2683E−05 18.75 98.35

24 0.2805 8.3789E−06 12.08 104.74

25 0.4025 6.0553E−06 7.90 104.76

26 0.2885 1.1623E−05 10.80 99.11

27 0.3075 1.0403E−05 14.33 110.76
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mum variation difference between wanted response and measured response. The maximum value of SNRs at the 
main effect plot for SNRs give the desired results. Figure 3a,b shows the mean SNRs of µ and Ks, respectively. 
Table 2a,b presents the computed mean SNRs for the µ and Ks, respectively. As seen in Fig. 3a, the maximum 
mean SNR achieved for µ were load at 9 N, grit size at 1000 mesh, sliding distance at 25 m and sliding speed at 
0.14 ms−1. Thus, the estimated optimum parameters for achieving a minimum µ via Taguchi optimization can be 
coded as L3G1SD1SS3. For the Ks (Table 2b; Fig. 3b), the highest mean SNR obtained for Ks were load at 9 N, 
grit size at 1000 mesh, sliding distance at 55 m and sliding speed at 0.04 ms−1. Therefore, by Taguchi method 
the predicted optimum parameters are styled as L3G1SD3SS1. ANOVA depicts the parametric setting that sig-
nificantly influence the abrasive behaviours. Similarly, the important parametric factor that significantly affect 
the µ were found as grit size followed by load, distance and speed 3(a). The percentage contribution of grit size, 
load, distance and speed were computed as 37.24%, 33.92%, 17.62% and 11.20%, (Table 3a). Table 2b shows the 
percentage contribution of the parameters on Ks. As seen grit size contributed 51.06%, load contributed 24.65% 
distance contributed 22.57% and speed contributed 1.72% implying that grit size most significantly influence the 
Ks followed by load, distance and speed, respectively.

Optimization using hybrid Taguchi model.  As seen above, Taguchi can only optimize a parameter at 
a time and thus it involves more cost, time and effort. Therefore, Deng widely called grey relational analysis 

Figure 2.   Main effect plot for mean (a) µ and (b) Ks of filled PTFE composites.
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Figure 3.   Main effect plot for SNRs of (a) µ and (b) Ks.

Table 2.   Response table for SNRs of (a) µ and (b) Ks.

(a) (b)

Level L (N) G (mesh) SD (m) SS (ms−1) L (N) G (mesh) SD (m) SS (ms−1)

1 11.92 8.78 12.35 9.59 96.88 96.26 97.23 101.54

2 8.28 10.42 11.29 10.92 102.16 100.03 101.54 99.85

3 12.53 13.53 9.09 12.3 103.82 106.57 104.09 101.47

Delta 4.27 4.75 3.25 2.64 6.94 10.31 6.86 1.69

Rank 2 1 3 4 2 1 3 4
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(GRA) is principally used to optimize multiple parameters by combining all outputs into an output. Deng is used 
to unravel real problems made up of a bounded amount of data. It is commonly employed to approximate the 
properties of indefinite systems having no black and white solution. With respect to grey system black signifies 
without information whereas white connotes with information. This technique is largely utilized to maximize or 
minimize problems which have to do with several factors and responses. Data preprocessing through GRA was 
executed on test data of responses in Table 1 i.e. µ as well as Ks. Table 3 shows the reference sequence obtained 
by normalization (Eq. 5). In due course, the deviation sequence was computed following Eq. (6) (Table 3). Grey 
relation coefficient (GRC) and grey relational grade (GRG) of µ as well as Ks were determined using Eqs. (6) 
and (7), respectively. Subsequently, the mean of GRCs is calculated to establish the GRG. Calculated values of 
GRGs were employed to produce equivalent SNRs. A larger magnitude of SNR is useful alluding the tests lay 
in proximity to the actual normalized magnitude of GRG. Figure 4 depicts the plot of GRG against SNRs. It 
indicates that the 21st trial possesses the highest SNR. Correspondingly, the first rank was designated to 21st 
trial. The straggling disposition of the GRG, below the plot of SNRs in Fig. 4, also adds to the aforementioned 
explanation. Ever the ranks determined (Table 5), GRG response table was contrived. Individual factor of GRG 
at the preferred level was chosen as well as average computed to obtain the mean GRG for separate parameters. 
The mean response table for the GRG is presented in Table 6.

For example, variable G at level 1 in the first, fourth and seventh runs of the test. The concomitant GRG values 
in Table 5 were used for computation using Eq. (8). The mean of the chosen GRGs was computed through the 
method aforementioned put together to generate the mean response table (Table 4). The grades in the response 
table is used as a degree of correlation45. Hence, from Table 4, it is possible to achieve combination of optimum 
parameters which maximize the overall response. As observed in Table 5, the maximum GRG exists at L3, G1, 
SD3 and SS3. Therefore, to wrap it up, the best parameter settings for useful abrasive tribological behaviours of 
filled PTFE composites are load at 9 N, grit size at 1000 mesh, distance at 55 m and sliding speed at 0.14 ms−1 
coded as L3G1D3S3. ANOVA for GRG shows that grit size with 68.57% ranks as the most influential followed by 
load with 20.57%, followed by distance having a contribution of 7.78% and finally speed with least contribution 
of 3.38% for minimum tribological loss. Ramesh and Suresha used Taguchi Deng model to optimize the abrasive 
wear mode of carbon fabric reinforced epoxy composite filled with Al2O3 and MoS2 as fillers. They reported that 
optimum parameters for minimum wear rate were found to be load at level 3 (15 N), grit size at level 3 (320), 
filler content at level 3 (10 wt%) and sliding distance at level 3 (30 m). ANOVA revealed that filler content with 
52.08% was the most significant factor affecting the wear mode of the composites46.

Table 3.   Reference and deviation sequences post data processing.

Run

Reference sequence Reference sequence Deviation sequence Deviation sequence

µ Ks µ Ks

1 0.9158 0.6657 0.0842 0.2629

2 0.7678 0.4395 0.2322 0.4409

3 0.8531 0.6056 0.1469 0.3102

4 0.8278 0.2518 0.1722 0.5886

5 0.7349 0.0000 0.2651 0.7866

6 0.7268 0.7441 0.2732 0.2013

7 0.8920 0.5039 0.1080 0.3902

8 0.7916 0.2442 0.2084 0.5945

9 0.4606 0.2044 0.5394 0.6258

10 0.7408 0.8509 0.2592 0.1173

11 0.8175 1.0000 0.1825 0.0000

12 0.7964 0.8912 0.2036 0.0856

13 0.7084 0.9084 0.2916 0.0720

14 0.8996 0.7534 0.1004 0.1940

15 0.0000 0.7779 1.0000 0.1747

16 0.9158 0.0624 0.0842 0.7375

17 0.7910 0.9840 0.2090 0.0160

18 0.5529 0.1435 0.4471 0.6737

19 0.6388 0.9336 0.3612 0.0523

20 1.0000 0.9348 0.0000 0.0513

21 0.9833 0.9738 0.0167 0.0206

22 0.9438 0.6205 0.0562 0.2985

23 0.9114 0.4704 0.0886 0.4166

24 0.7333 0.6749 0.2667 0.2558

25 0.6015 0.7853 0.3985 0.1689

26 0.7246 0.5207 0.2754 0.3770

27 0.7041 0.5787 0.2959 0.3314
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Figure 4.   GRG versus SNRs plot.

Table 4.   Response table for GRGs.

Level L (N) G (mesh) SD ( m) SS (ms−1)

1 0.6218 0.5687 0.6315 0.6665

2 0.6620 0.6651 0.6733 0.6635

3 0.7391 0.7890 0.7181 0.6929

Delta 0.1173 0.2203 0.0867 0.0294

Rank 2 1 3 4

Table 5.   Rank of GRG with SNRs.

Grey relational coefficient Grey relational coefficient

Grey relational grade SNRs(dB) Rankµ Ks

0.8558 0.5993 0.7276 − 2.7625 10

0.6829 0.4715 0.5772 − 4.7738 21

0.7730 0.5591 0.6660 − 3.5304 13

0.7438 0.4006 0.5722 − 4.8494 22

0.6535 0.3333 0.4934 − 6.1358 25

0.6466 0.6615 0.6541 − 3.6877 15

0.8224 0.5020 0.6622 − 3.5805 14

0.7058 0.3982 0.5520 − 5.1615 23

0.4810 0.3859 0.4335 − 7.2606 27

0.6586 0.7703 0.7145 − 2.9205 11

0.7326 1.0000 0.8663 − 1.2467 3

0.7107 0.8213 0.7660 − 2.3155 5

0.6317 0.8452 0.7384 − 2.6339 7

0.8327 0.6697 0.7512 − 2.4846 6

0.3333 0.6925 0.5129 − 5.7994 24

0.8558 0.3478 0.6018 − 4.4108 18

0.7053 0.9609 0.8331 − 1.5862 4

0.5279 0.3686 0.4483 − 6.9692 26

0.5806 0.8827 0.7316 − 2.7141 9

1.0000 0.8847 0.9424 − 0.5157 2

0.9676 0.9503 0.9589 − 0.3642 1

0.8990 0.5685 0.7338 − 2.6889 8

0.8495 0.4856 0.6676 − 3.5099 12

0.6521 0.6060 0.6290 − 4.0264 16

0.5565 0.6996 0.6280 − 4.0404 17

0.6448 0.5106 0.5777 − 4.7657 20

0.6282 0.5427 0.5855 − 4.6499 19
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Validation.  Having determined the optimum parameters, the final phase in Taguchi-Deng is prediction as 
well as validation of performance enhancement of the dual responses. The predicted GRG was calculated as per 
Eq. (7). Validation experiments were executed to validate the results of the analysis. Validated results showed that 
minimum µ and Ks were 2.0 × 10–1 and 1.5353 × 10–6 mm3 N−1 m−1, respectively. More so, it can be implied from 
Table 6 that the findings of the validation phase are consistent with the computed values. Besides, an enhance-
ment of 55% in GRG was achieved (Table 6). This performance enhancement in the results obtained through the 
experiments over the initial design parameter confirms the validity of the Taguchi-Deng method for studying 
the abrasive tribological behaviours of filled PTFE composites. An improvement of 8.4% in GRG was reported 
by47 when the same method was used to optimize wear parameters of silicon nitride reinforced AA6063 matrix 
composites.

Performance appraisal of the models.  One of the aims of this work is building hybrid SVR models 
namely SVR-PSO and SVR-HHO models and compare their efficiency in predicting tribological behaviours of 
filled PTFE composites. For this objective, tribological behaviours (µ and Ks) were obtained via experimental 
results of Table  1. Prediction of tribological behaviours by traditional methods is time and energy consum-
ing due to nonlinearity between tribological independents and dependents of filled polymer composites lead-
ing to inaccuracy. These issues can be addressed by nonlinear models. Subsequently, this section details the 
results achieved in visualized and graphical forms. Before the models simulations, the data was normalized 
using Eq. (16). Data normalization disallows larger values overshadowing lower values, takes care of units and 
improves the efficiency of the models.

The simulation process was performed in MATLAB 9.3 (R2020 (a)).Optimized structure of SVR model was 
chosen via trial-and-error approach. An efficient model is that which allays the prerequisites of model appraisal 
metrics. Prediction efficiency of the models were appraised using two goodness of fit (R2, R) and two prediction 
error (RMSE, MAPE) metrics in training as well as testing regimes. The simulated outcomes of the individual 
SVR models for the prediction of µ and Ks are quantitatively presented in Table 7. From Table 7, it can be seen 
that the single SVR models achieved various adequacies according to the statistical evaluation metrics. More 
so, SVRµ shows best results in terms of goodness of fit in both testing and training stages as compared to SVRKs 
model. However, with respect to prediction errors SVRKs with RMSE 5 × 10–6 and MAPE 29% proved to be a 
relatively adequate model in predicting the tribological behaviours of filled PTFE composites than SVRµ whose 
accuracy is extremely poor (61%). To have a graphical map of SVR models for the tribological behaviours, a 
scatter plot is used. A scatter plot gives the degree of agreement between measured and calculated values for the 
overall goodness of fit. Figure 5a,b depicts the scatter plot of the whole data for SVRµ as well as SVRKs models, 
respectively. Arising from the scatter plots, it is interesting to note here that SVRKs model indicated better fitness 
in comparison to SVRKs when the whole data points were put together.

Nevertheless, overall prediction accuracy of the single SVR models was inadequate, especially for SVRµ model. 
The accuracy can be enhanced using optimization approaches namely PSO and HHO. Fundamentally, it should 
be considered that the promising prediction accuracy occurred in the course of the training state which is origi-
nally used to measure precisely the model based on known inputs and outputs. Nevertheless, the verification stage 
is significant in appraising the prediction efficiency of the models since it inspects closely the models’ prediction 
accuracy based upon unknown magnitudes. This advantage is not enjoyed by the training phase. Consequently, 
a robust model should possess determinate and balanced performance in both training and testing regimes. In 
general, hybridized models showed a promising ability when compared to un-hybridized models. For consist-
ency the same model evaluation metrics are used to assess the prediction accuracy of the hybridized models. 
Table 9 shows the results of the hybrid models in both calibration and validation regimes. In spite of the fact it is 
hard to rank the models as per the model evaluation criteria, the SVR-HHO model indicated higher prediction 
accuracy in both conditions. From Table 8, it was observed that SVR-HHOµs indicated R2 > 90% R = 95%, 99.26%, 
RMSE > 5%, and MAPE of 5% = Similarly, SVR-HHOKs R2 > 95%, R > 97%, RMSE < 1% as well as MAPE = 3%. This 

Table 6.   Results of the confirmatory test.

Initial design parameter

Optimal parameter

Prediction Validation

Level settings L1G3SD3SS1 L3G1SD3SS3 L3G1SD3SS3

GRG​ 0.4335 0.9589 0.9556

Enhancement (%) 54.56 54.66

Table 7.   Results of appraisal for single SVR models of µ and Ks.

Models

Calibration Validation

R2 R RMSE MAPE R2 R RMSE MAPE

SVRKs 0.5919 0.7694 0.000005 0.3938 0.5360 0.7321 0.000003 0.2911

SVRµ 0.8026 0.8959 0.1974 0.7914 0.8984 0.9478 0.1016 0.6164
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implies SVR-HHO model performed better than SVR-PSO model for prediction of the tribological behaviours 
of the filled PTFE composites. The predictive superiority of HHO to others is in concord with results obtained 
by48. Figures 6 and 7 present the scatter plot of the SVR hybrid models. Close consistency between measured and 
calculated points was achieved for SVR-HHO model as compared to SVR-PSO model. More so, R values of the 
hybrid models lie between 85 and 99%. This agrees with conclusions drawn by49–51 that values of R greater than 
70% are regarded as acceptable. Therefore, all the optimized hybrid models are acceptable (Table 8).

Figure 5.   Scatter plot of (a) SVRµ model; (b) SVRKs model for the whole data.µ

Table 8.   Findings of appraisal of the hybrid models for predicting for µ and Ks.

Models

Calibration Validation

R2 R RMSE MAPE R2 R RMSE MAPE

SVR-PSOµ 0.8790 0.9376 0.1210 0.5274 0.9221 0.9603 0.0779 0.0513

SVR-HHOµ 0.9123 0.9551 0.0877 0.5139 0.9364 0.9677 0.0636 0.0490

SVR-PSOKs 0.8424 0.9178 0.000003 0.1446 0.9301 0.9644 0.000001 0.1601

SVR-HHOKs 0.9468 0.9730 0.000002 0.0857 0.9853 0.9926 0.000001 0.0322

Figure 6.   Scatter plot for (a) SVR-PSOµ and (b) SVR-HHOKs models all data sets.
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Zheng et al. used SVR coupled with guided PSO to predict the wear rate of aeroengine. The results indicated 
better prediction accuracy when compared with single SVR52. In a related development, Kahhal et al. optimized 
and predicted the process parameters of friction stir welding of AH12 1050 using response surface algorithm 
coupled with PSO model. It was reported that that the hybrid model indicated superior prediction accuracy53. 
The prediction efficiency of HHO coupled with generalized neural network was reported in the literature54 to 
predict the abrasion resistance of ultra-strength martensitic steel. The results showed that observed and the 
computed values of the wear property lie within the uncertainty range of 3–4%. In a dissimilar fashion, Sammen 
et al. hybridized artificial neural network (ANN) with PSO, HHO and genetic algorithm (GA) to predict the 
scour depth downstream of ski-jump spillway. It was observed that of all the hybrid models, ANN-HHO model 
superior prediction accuracy with mean absolute error of 0.1760 and root mean square error of 0.253854. The 
findings in these literatures reinforced the results of this study that hybrid models could increase the effective-
ness of single models.

Comparing the performance of the models.  The SVR model and its hybrids namely SVR-PSO and 
SVR-HHO models are compared via 2D Taylor’s plot as shown in Figs. 8 and 9, respectively. As seen in the 
Taylor’s plot SVR-HHO model indicated better fitness in both cases with values of 97% and 99% for µ and Ks, 
respectively in the calibration regime. Therefore, it can wrapped up that SVR, SVR-PSO and SVR-HHO models 
can understand and follow the intricate and nonlinear correlation between tribological input parameters and 
response parameters of filled PTFE composites in abrasive conditions. Additional analysis can be done using a 
radar plot for the prediction of the µ and Ks as shown in Fig. 10. It can as well be seen that SVR-HHOµ > SVR-
PSOµ > SVRµ and SVR-HHOKs > SVR-PSOKs > SVRKs. This implies that in both cases SVR-HHO model was able 
of capturing the best fitting trend of the tribological behaviours of filled PTFE composites.

In spite of the availability of ample of predictive models, there is no particular model that can guarantee 
consistent optimal performance in addressing various types of issues. Yet, latest research on unique population-
based as well as nature inspired optimization paradigm (HHO) models indicated better adequacy in establishing 
optimal solutions for multi-objective problems. The statistical analysis outcomes and comparisons revealed that 
SVR-HHO model yields promising and often competitive outcomes than well-established models.

Multi linear regression MLR has been widely used as conventional approach for prediction tribological behav-
iour of materials. Ikpambese and Lawrence used MLR and artificial neural network (ANN) to predict friction 
and tribological rate of reinforced palm kernel epoxy for brake pad application. The prediction accuracy in terms 
of RMSE for the MLR and ANN models were found to be 0.0082 and 0.00450, respectively55. These values are 
less effective compared to RMSE of 0.000001 for SVR-PSO and SVR-HHO in this article. Similarly, Altay et al. 
used LR, SVM and Gaussian process regression to predict the wear rate of ferro-alloy coating56. They reported 
RMSE and R2 for LR, SVM and GPR as 0.86, 0.69, 0.69 and 0.93, 0.96 and 0.96, respectively which were higher 
than the reported RMSE and R2 of this article was higher than as depicted in Table 8. With this it can be said 
that the proposed models of this study are more effective than the conventional models in predicting the wear 
rate of materials.

Using the proposed models in the scientific community and industry for the optimization and prediction of 
composite materials will lead to many benefits. Among these benefits are significant aspects such as minimiza-
tion of cost, reduction in human effort, prevention of time loss during experiments. The developed models are 
expected to be specifically applied in the design and/or modification and development of existing/new materials 
for tribological applications in agricultural machinery, rolling industry, and mining industry, such as crushing 
and milling.

Figure 7.   Scatter plot for (a) SVR-PSOµ and (b) SVR-HHOKs models for all dataset.
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Conclusions
In this study, multi-response optimization and prediction of objective functions of coefficient of friction (µ) 
and specific wear rate (Ks) of tribological behaviour of filled polytetrafluoroethylene (PTFE) composites was 
presented using Taguchi Deng and two hybrid SVR models (SVR-PSO and SVR-HHO). More so, effect of load, 
grit size, distance and speed on the two responses were studied. It was found that as load, grit size and speed 
increased µ and Ks decreased. However, increase in distance led to increase in µ and decrease in Ks. Based on 
the Taguchi Deng optimization, the optimum parameter levels were found to be load at level 3 (9 N), grit size at 
level 1 (1000 mesh), distance at level 3 (55 m) and speed at level 3 (0.14 ms−1) coded as L3G1SD3SS3. ANOVA 
for GRGs indicated that grit size with 68.57% was the most influential parameter, followed by load with 20.57%, 
followed by distance with 7.78% and then speed with least influence of 3.38% affecting the tribological behav-
iours of filled PTFE composites. Validation test revealed that there was an enhancement of 55% in GRG from 
0.4335(L1G3SD3SS1) for initial design settings to 0.9589 for the optimized levels (L3G1SD3SS3). For the predic-
tion accuracy of the models, it was found that SVRKs outperformed SVRµ model. As regards to hybrid models, 
there was an increase in prediction effectiveness for both SVR-PSO and SVR-HHO over SVR. Even though both 
SVR-HHO and SVR-PSO models were able to accurately predict the µ and Ks, SVR-HHO model exhibited the 
lowest prediction error of 4.06% on the average as compared to SVR-PSO model whose prediction accuracy 
was found to be 10.57% on the average. The integration of Taguchi with Deng approach and SVR with PSO and 

Figure 8.   Taylor diagram for µ models in (a) calibration stage and (b) verification stages.
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HHO resulted in the optimization and prediction of tribological behaviour of reinforced PTFE composites with 
low experimental cost and superior accuracy.

Methods
Experimental set up.  The materials utilized in this work are polytetrafluoroethylene (PTFE), carbon-filled 
composites (CF25) and bronze-filled composites (BF40) because of their availability and wider applications. 
Abrasive tribological experiment was conducted according to ASTM G99 standard using pin-on-disc tribometer 
(Model: Arton Paar, Made in Switzerland) shown in Fig. 11. The counterface material for the wear test is a steel 
of disc 140 mm in diameter and thickness of 10 mm that has been heat treated to obtain a surface hardness of 
55–60 RC. This is grounded to a surface finish of nearly 0.12 µm centerline average. The samples of dimension 
20 mm long, width 10 mm and depth 6 mm were cut from compression moulded rectangular plates whose 
dimensions are (500 × 500 × 6) mm using computer numerical control water jet machining for the pin-on-disc 
abrasive experiment. A specially designed fixture for holding the square samples was designed and fabricated. 
The samples were inserted into the fixture, bolted and then loaded against silicon carbide (SiC) abrasive papers 
glued to the hardened steel holder by means of liquid adhesive. Control parameters and their levels are shown 
in Table 9.The experimental design is as shown in Table 10. In all the experiments, mass before (m1) and mass 

Figure 9.   Taylor diagram for Ks models in (a) calibration and (b) verification of the models.
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Figure 10.   Radar plot for (a) µ and (b) Ks in calibration and verification regimes.

Figure 11.   Arton Paar Tribometer used for the experiment.

Table 9.   Parameters and their levels.

Parameters Symbol Level 1 Level 2 Level 3

Load, (N) L 3 6 9

Grit, (mesh) G 1000 400 150

Sliding distance, (m) SD 25 45 55

Sliding speed , (ms−1) SS 0.04 0.08 0.14
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after (m2) was measured using digital weighing balance (Model: PS 1000.RS RADWAG, Made in Poland) with 
10–3 g precision accuracy. Test was performed at room temperature (29 °C and relative humidity 55%). Samples 
were cleaned with a brush before and after the experiment to get rid of debris and then weighed. The loss in pin 
weight (WL), volume (VL) and specific wear rake (Ks) was determined through the mathematical Eqs. (1), (2) 
and (3), respectively.

where WL = weight loss (g), VL = volume loss (mm3) mb = mass before test (g), ma = mass after test (g), ρ = (g cm−3) 
of materials, L = load in N and D = sliding distance (m). Each trial was performed twice and averaged.

Taguchi optimization approach.  Single parameter optimization and percentage contribution of each 
parameter can be performed using Taguchi L27 (34) orthogonal array (OA). Taguchi is an optimization process 
to establish the best process parameter. In this study, four parameters with three levels (34) are considered for 
the configuration of the test. Twenty seven trials have been performed based on Taguchi L27 (34) OA as shown 
in Table 10. The Taguchi method was chosen in this study because of its simplicity of analysis, substantial reduc-
tion in the cost of experiment and validity over a wide region spanned by the control factors and their settings. 
Signal to noise ratios (SNRs) are used to establish the optimum parameters. There exist three types of quality loss 
function for SNRs namely: nominal the better; higher is the better; lower the better. Thus, the lower the better 
function was used to obtain the optimum wear-rate parameters in this study. SNRs for µ and Ks was computed 
using Eq. (4) for all the 27 trials in accordance with Taguchi L27(34) OA.

(1)WL = mb −ma

(2)VL =
ML

ρ

(3)KS =
ML

ρ
LD

Table 10.   Experimental design of reinforced PTFE composites against SiC particle based on Taguchi L27(34) 
OA.

Trial L (N) G (mesh) SD (m) SS (ms−1)

1 3 1000 25 0.04

2 3 1000 25 0.04

3 3 1000 25 0.04

4 3 400 45 0.08

5 3 400 45 0.08

6 3 400 45 0.08

7 3 150 55 0.14

8 3 150 55 0.14

9 3 150 55 0.14

10 6 1000 45 0.14

11 6 1000 45 0.14

12 6 1000 45 0.14

13 6 400 55 0.04

14 6 400 55 0.04

15 9 1000 55 0.14

16 6 150 25 0.08

17 6 150 25 0.08

18 6 150 25 0.08

19 9 1000 55 0.08

20 9 1000 55 0.08

21 9 1000 55 0.08

22 9 400 25 0.14

23 9 400 25 0.14

24 9 400 25 0.14

25 9 150 45 0.04

26 9 150 45 0.04

27 9 150 45 0.04
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where n = number of experiments and yi = experimental value.

Optimization using Taguchi‑Deng approach.  Taguchi optimization is capable only of optimizing 
a single response. However, when two or more responses of distinct features are involved Taguchi technique 
is limited. Thus an optimization method called Deng popularly referred to as grey relational analysis (GRA) 
becomes a panacea. This approach is capable of addressing the limitation imposed by Taguchi approach by 
integrating multiple responses into a single response whose optimal parameters combination represents the 
several responses thereby minimizing cost and time spent while using Taguchi optimization method. Taguchi 
L27 (43) OA with Deng was used to obtain the optimum levels of tribological parameters. Data normalization 
is categorized as smaller or larger the better. Let the actual sequence and the comparison sequences be X∗

i (k) 
and ϕi(k) , respectively. i = 1, 2, 3….; m = 1, 2, 3…and n and m represent the total number of experiments and 
experimental values, respectively. Data preprocessing is used to transform the actual sequence into an identical 
sequence. Many data preprocessing techniques can be utilized in Taguchi-Deng method, depending upon the 
features of the actual sequence. Generally, series is normalized between 0 and 120. For this study, the target value 
is “the smaller the better”. Consequently, the actual sequence is pre-processed via Eq. (5).

where X∗
i (k) = normalized for the ith experiment and ϕi(k) = initial sequence of the average responses. After data 

normalization, the succeeding phase is computation of deviation sequence of the normalized data using Eq. (6).

where �oi(k) = deviation, X∗
0 (k) = normalized data and X∗

i (k) = comparability sequence. Grey relational coef-
ficient (GRC) is thus estimated through Eq. (7).

where ξi(k) = GRC of each response, �min and �max = lowest and the highest deviations of the individual target 
factor, respectively. Differentiating or identification coefficient is symbolized by ζ and is demarcated within the 
range of ζǫ[0, 1] . This is usually set at ½ to assign equivalent weights to every variable. As indicated in (Eq. 8) 
GRG is then determined by taking mean of GRG of each output parameter:

where γi = GRG obtained for ith test run, n = summation count of performance attributes. Following the deter-
mination of the optimal levels of parameter, the last phase is to predict and validate the result using Eq. (9):

where γ0 represents the highest of mean GRG at optimum levels of variables and γm defines the average GRG. q 
= parameter that signifies factors influencing the target values.

Support vector regression (SVR) model.  In 1995 Vapnik contrived and implemented support vector 
machine (SVM) was contrived and implemented, which is regarded an observer-based learning approach. The 
minimization of structural risk as well as statistical learning theory are the most important function of the SVM. 
Nevertheless, the properties which distinguish SVM from ANN are complexities, minimization of error as well 
as gain in the network’s performance capability. SVM can be categorized into linear support regression as well as 
nonlinear support regression (NSVR). Several engineering fields such as have witnessed the application of SVM’s 
kernel function. SVR model could be thought of as SVM on the basis of layers which include kernel function 
weighting on the inputs as well as function weighted sum of kernel targets. By and large, SVM is codified into 
two codes namely Support Vector Regression (SVR) and Support Vector Classifier (SVC) models. SVR model is 
made up of predictions whereas SVC model treats classifications. SVR model is designated as:

where w stands for weight of the vector displayed in feature space, � shows the transfer function, b is bias. 
Therefore, in order to show the SVR function f (x) , problem of regression is presented as:

Subject to the conditions:

(4)(SNR)STB = −log10
1

n
(

n∑

i=0

(
yi
)2
)

(5)X∗
i (k) =

maxϕi(k)− ϕi(k)

maxϕi(k)−minϕi(k)

(6)�oi(k) = |∗0(k)− X
∗
i (k)|

(7)ξi(k) =
�min + ζ�max

�oi(k)+ ζ�max

(8)γi =
1

n

n∑

i=1

ξi(k)

(9)γpredicted = γm +

q∑

i=1

γ0 − γm

(10)f (x) = w ×�(x)+ b

(11)Minimize :
� w�2

2
+ C

[∑N

i=1
ξ + ξ∗

]



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10393  | https://doi.org/10.1038/s41598-022-14629-5

www.nature.com/scientificreports/

where ‖ w‖2  = weight norm vector, C = penalty parameter, ξi and  ξ∗ = slack variables. By using Lagrange func-
tions, the solution of the nonlinear regression function can be presented based on optimization as follows:

where K(x, xi) shows the kernel function and  are binary variables ( αiandα∗
i > 0) . There exist several kinds of 

kernel functions including sigmoid, linear, polynomial but the commonly used kernel function is the radial basis 
function (RBF). Consequently, the RBF kernel was used in this study and it is expressed as (Eq. 13).

where γ = kernel parameter. SVR model performance is affected by C, γ and ε (size).

Harris Hawk optimization (HHO) model.  HHO is a unique model worked out by simulating the hawk’s 
hunting process. Lately, the procedure has been used with success in solving several intricate engineering as well 
as science issues. The hawks mostly operate alone whereas the Harris hawks pursue and hunt through operating 
and cooperating together. Hence, the HHO method is similar to Harris Hawks’ natural hunting characteris-
tic and cooperative methodology. HHO model hunting methodology entails tracing, encircling, approaching 
and attacking. These mechanisms are achieved in three principal phases namely: exploration, a transition from 
exploration to exploitation as well as exploitation (Fig. 12).

Particle swarm optimization (PSO) model.  In 1995, PSO was presented by Kennedy and Eberhart. 
It is a search method based on population which is inspired by the social behaviour and dynamics of animals. 
The initial intention of the SPO philosophy was to clearly mimic animals’ social behaviour bird flocking as an 
instance to detect trends that control capability of birds to fly with precision at the same time and to all of a 
sudden alter the direction with regathering in an optimum style. Arising from this first purpose, the philosophy 
inspired into a simple and efficient optimization approach. PSO is initiated with a group of random particles that 
look into an optimum value by updating the two best values in each iteration. The first one is named the personal 
best (pbest). This is the best value so far obtained by any particle in the population. All the particles explore the 

(11a)yi − f (x) ≤ +ε + ξi

(11b)f (x)− yi ≤ +ε + ξ∗

(11c)ξi , ξ
∗
i ≥ 0, i = 1, 2, . . .N

(12)f (x) =

N∑

i=1

(
αi − α∗

i

)
K(x, xi)+ b

(13)K(x, xi) = exp(−γ � xi − x�2)

Figure 12.   Various stages in HHO57.
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search space and the information collected by them is utilized for finding the best particle in the swarm referred 
to as global best (gbest). Thereafter, the particle updates its velocity and positions according to Eqs. (14, 15):

where Vk+1
i  = the velocity of individual I at iteration k +1, Vk

i  = the velocity of individual i at iteration k , ω stands 
for inertia weight parameter, c1 and c2 show the cognitive parameters, r1 and r2 = random numbers between 0 and 
1, Xk

i  = position of individual i at iteration k, pbestki  = the best position of individual I at iteration k and gbestk 
indicates the best position of the group until iteration k. Figure 13 shows the flowchart of the PSO algorithm.

Hybrid SVR model.  Improving the SVR model’s performance needs a cautious delineation of parameters 
involved in the SVR model. The strength of the SVR model relies upon the precise choice of C, γ and ε . Yet, 
these parameters having a wide range make the search space very large thus making it difficult to choose precise 
parameters. Therefore, this issue can be addressed as optimization issue that requires sorting out via optimiza-
tion methods. Integration of SVR model with PSO as well as HHO models that are algorithms inspired by nature 
led to the following hybrid model namely: SVR-PSO and SVR-HHO for the prediction of tribological behaviours 
of filled PTFE composites. The nature inspired models were utilized to choose the SVR model parameters viz: C, 
γ and ε . Proposed flow-chart of the hybrid model illustrated in Fig. 14.

Data pre‑processing, model validation and performance metrics.  One of the significant aims of 
any soft computing model is to ascertain that models conform to acceptable data based on the models evalua-
tion metrics utilized to obtain a dependable and strong computed outcome of the unknown data. Nevertheless, 
overfitting as well as local minima problems occur in the data validation. Hence, the performance of the learning 
phase might be unsatisfactory. This is especially when the analysis deals with a relatively small amount of dataset, 
as in this study. Various validation methods can be employed including cross-validation (k-fold), hide-out and 
leave one out. Here, the k-fold approach was used to repeal overfitting issues. With respect to this study, the 
data was split into (70%) and (30%) for training and testing, respectively. The data obtained through abrasive 
experiments was pre-processed and normalized according to Eq. (16). Data normalization was performed prior 
to model training and it usually enhances the efficiency of the predictive models. The current work introduced 
SVR model coupled with particle swarm optimization (PSO) and Harris Hawk optimization (HHO) models 
to predict abrasive tribological behaviours of filled PTFE composites. Prediction of tribological behaviours is 
important. However, creation of a reliable model is often challenging and difficult given the nature of the data 
set obtained from the experiments.

where y = normalized data, x = is the experimental data while  xmaxandxmin are the maximum and minimum 
experimental data, respectively.

Generally, model efficiency performance should include at least one goodness of fit and at least one predic-
tion error metrics58. Based on this determination coefficient (R2), correlation coefficient (R), root mean square 
error (RMSE) and mean absolute percentage error (MAPE) are chosen as models appraisal metrics of the soft 
computing methods. R2, R, RMSE and MAPE are given below. These statistical tools furnish the information 
on efficiency of models.

where x, y, x̂  and ŷ  are the actual, predicted, average actual and average predicted values, respectively.

(14)Vk+1
i = ωVk

i + c1r1 ×
(
pbestki − Xk

i

)
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i )
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i
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Figure 13.   PSO algorithm flow chart.



20

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10393  | https://doi.org/10.1038/s41598-022-14629-5

www.nature.com/scientificreports/

Received: 24 February 2022; Accepted: 9 June 2022

References
	 1.	 Unal, H., Sen, U. & Mimaroglu, A. Abrasive wear behaviour of polymeric materials. Mater. Des. 26, 705–710 (2005).
	 2.	 Bijwe, J., Logani, C. M. & Tewari, U. S. Influence of fillers and fibre reinforcement on abrasive wear resistance of some polymeric 

composites. Wear 138, 77–92 (1990).
	 3.	 Khedkar, J., Negulescu, I. & Meletis, E. I. Sliding wear behavior of PTFE composites. Wear 252, 361–369 (2002).
	 4.	 Suresha, B. & Kumar, K. N. S. Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced 

vinyl ester composites. Mater. Des. 30, 2056–2060 (2009).
	 5.	 Harsha, A. P. & Tewari, U. S. Abrsasive wear resitance of glass fibre reinforced polysulfone composites. Indian J. Eng. Mater. Sci. 9, 

203–208 (2002).
	 6.	 Kukureka, S. N., Hooke, C. J., Rao, M., Liao, P. & Chen, Y. K. The effect of fibre reinforcement on the friction and wear of polyamide 

66 under dry rolling–sliding contact. Tribol. Int. 32, 107–116 (1999).
	 7.	 Ulas, M., Altay, O., Gurgenc, T. & Özel, C. A new approach for prediction of the wear loss of PTA surface coatings using artificial 

neural network and basic, kernel-based, and weighted extreme learning machine. Friction 20, 1–14 (2019).
	 8.	 Unal, H., Yetgin, S. H., Mimaroglu, A. & Sumer, M. The effect of test parameters on friction and wear performance of PTFE and 

PTFE composites. J. Reinf. Plast. Compos. 29, 1978–1986 (2010).
	 9.	 Şahin, Y. & Mirzayev, H. Wear characteristics of polymer-based composites. Mech. Compos. Mater. 51, 543–554 (2015).
	10.	 He, R., Chang, Q., Huang, X. & Bo, J. Improved mechanical properties of carbon fiber reinforced PTFE composites by growing 

graphene oxide on carbon fiber surface. Compos. Interfaces 25, 995–1004 (2018).
	11.	 Suh, J. & Bae, D. Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state 

processing. Compos. Part B Eng. 95, 317–323 (2016).
	12.	 Shipway, P. H. & Ngao, N. K. Microscale abrasive wear of polymeric materials. Wear 255, 25 (2003).
	13.	 Ravi Kumar, B. N., Suresha, B. & Venkataramareddy, M. Effect of particulate fillers on mechanical and abrasive wear behaviour of 

polyamide 66/polypropylene nanocomposites. Mater. Des. 30, 3852–3858 (2009).
	14.	 Liu, C., Ren, L. Q. & Tong, J. Abrsaive wear behavior of particle reinforced ultrahigh molecular weight polethylene composites. 

Wear 225–229, 199–204 (1999).
	15.	 Yousif, B. F., Nirmal, U. & Wong, K. J. Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced 

epoxy (T-BFRE) composite. Mater. Des. 31, 4514–4521 (2010).
	16.	 Pervez, M. N., Shafiq, F., Sarwar, Z., Jilani, M. M. & Cai, Y. Multi-response optimization of resin finishing by using a taguchi-based 

grey relational analysis. Materials (Basel) 11, 426 (2018).
	17.	 Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1 (1989).
	18.	 Dharmalingam, S., Subramanian, R. & Kok, M. Optimization of abrasive wear performance in aluminium hybrid metal matrix 

composites using Taguchi-grey relational analysis. J. Eng. Tribol. 227, 749–760 (2013).
	19.	 Sylajakumari, P. A. & Ramakrishnasamy, R. Taguchi grey relational analysis for multi-response. Materials (Basel) 11, 1–17 (2018).
	20.	 Saravanan, K. G. & Rajasekaran, T. Optimisation of laser parameters and dimple geometry using PCA-coupled GRG. Strojniški 

Vestn. J. Mech. Eng. 20, 20 (2021).
	21.	 Pervez, H., Mozumder, M. & Mourad, A.-H. Optimization of injection molding parameters for HDPE/TiO2 nanocomposites 

fabrication with multiple performance characteristics using the Taguchi method and grey relational analysis. Materials (Basel) 9, 
710 (2016).

	22.	 Adediran, A. A., Akinwande, A. A., Balogun, O. A. & Bello, O. S. Mechanical and optimization studies of polypropylene hybrid 
biocomposites. Sci. Rep. 20, 1–17. https://​doi.​org/​10.​1038/​s41598-​022-​06304-6 (2022).

Figure 14.   Flow chart for the proposed hybrid models.

https://doi.org/10.1038/s41598-022-06304-6


21

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10393  | https://doi.org/10.1038/s41598-022-14629-5

www.nature.com/scientificreports/

	23.	 Lal, S., Kumar, S., Khan, Z. A. & Siddiquee, A. N. Multi-response optimization of wire electrical discharge machining process 
parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Proc. IMechE Part B J. Eng. 
Manuf. 229, 229–237 (2015).

	24.	 Raykar, S. J., Addona, D. M. D. & Mane, A. M. Multi-objective optimization of high speed turning of Al 7075 using grey relational 
analysis. Proced. CIRP 33, 293–298 (2015).

	25.	 Kuram, E. & Ozcelik, B. Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 
material with ball nose end mill. Measurement 46, 1849–1864 (2013).

	26.	 Dhande, D. Y. Comparative analysis of abrasive wear using response surface method and artificial neural network. J. Inst. Eng. Ser. 
D https://​doi.​org/​10.​1007/​s40033-​021-​00250-9 (2021).

	27.	 Zhang, Z., Friedrich, K. & Velten, K. Prediction on tribological properties of short fibre composites using artificial neural networks. 
Wear 252, 668–675 (2002).

	28.	 Velten, K., Reinicke, R. & Friedrich, K. Wear volume prediction with artificial neural networks. Tribol. Int. 33, 731–736 (2000).
	29.	 Jiang, Z., Zhang, Z. & Friedrich, K. Prediction on wear properties of polymer composites with artificial neural networks. Compos. 

Sci. Technol. 67, 168–176 (2007).
	30.	 Jiang, Z., Gyurova, L., Zhang, Z., Friedrich, K. & Schlarb, A. K. Neural network based prediction on mechanical and wear proper-

ties of short fibers reinforced polyamide composites. Mater. Des. 29, 628–637 (2008).
	31.	 Tang, J., Huang, Z., Zhu, Y. & Zhu, J. Neural network compensation control of magnetic levitation ball position based on fuzzy 

inference. Sci. Rep. 20, 1–17. https://​doi.​org/​10.​1038/​s41598-​022-​05900-w (2022).
	32.	 Haghighat Mesbahi, A., Semnani, D. & NouriKhorasani, S. Performance prediction of a specific wear rate in epoxy nanocompos-

ites with various composition content of polytetrafluoroethylene (PTFE), graphite, short carbon fibers (CF) and nano-TiO2 using 
adaptive neuro-fuzzy inference system (ANFIS). Compos. Part B Eng. 43, 549–558 (2012).

	33.	 Ray, S. A comparative analysis of the abrasion wear characteristics of industrial wastes filled glass / polyester composites based on 
the design of experiment and neural network. Polym. Compos. 20, 1–15. https://​doi.​org/​10.​1002/​pc.​25836 (2020).

	34.	 Dutta, S., Pal, S. K. & Sen, R. On-machine tool prediction of flank wear from machined surface images using texture analyses and 
support vector regression. Precis. Eng. 43, 34–42 (2016).

	35.	 Bhattacharyya, P. & Sanadhya, S. K. Support vector regression based tool wear assessment in face milling. Proc. IEEE Int. Conf. 
Ind. Technol. 20, 2468–2473. https://​doi.​org/​10.​1109/​ICIT.​2006.​372659 (2006).

	36.	 Kalantary, S., Jahani, A., Pourbabaki, R. & Beigzadeh, Z. Application of ANN modeling techniques in the prediction of the diameter 
of PCL/gelatin nanofibers in environmental and medical studies. RSC Adv. 9, 24858–24874 (2019).

	37.	 Pachuri, V. S., Sunjay, S., Om Prakash, V., Bhuvnesh, B. & Tarun Kumar, S. Nikhil Prediction and optimization of abrasive wear 
loss of ultrahigh strength martensitic steel using response surface methodology, Harris Hawk and artificail neural network. Int. J. 
Syst. Assu Eng. Manage. 20, 1–16 (2021).

	38.	 Chowdhury, M. A. et al. Experimental investigation of friction coefficient and wear rate of composite materials sliding against 
smooth and rough mild steel counterfaces. Tribol. Ind. 35, 286–292 (2013).

	39.	 Asuke, F., Abdulwahab, M., Aigbodion, V. S., Fayomi, O. S. I. & Aponbiede, O. Effect of load on the wear behaviour of polypro-
pylene/carbonized bone ash particulate composite. Egypt. J. Basic Appl. Sci. 1, 67–70 (2019).

	40.	 Hakami, F., Pramanik, A., Basak, A. K. & Ridgway, N. Effect of abrasive particle size on tribological behavior of elastomers. J. Eng. 
1, 1–13 (2019).

	41.	 Mohan, N., Natarajan, S. & Kumareshbabu, S. P. Investigation on two-body abrasive wear behavior of silicon carbide filled glass 
fabric-epoxy composites. J. Miner. Mater. Charact. Eng. 9, 231–246 (2010).

	42.	 Bahadur, S. & Sunkara, C. Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene 
sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear 258, 1411–1421 (2005).

	43.	 Schwartz, C. J. & Bahadur, S. The role of filler deformability, filler–polymer bonding, and counterface material on the tribological 
behavior of polyphenylene sulfide (PPS). Wear 251, 1532–1540 (2001).

	44.	 Basavarajappa, S., Arun, K. V. & Davim, J. P. Effect of filler materials on dry sliding wear behavior of polymer matrix composites—a 
Taguchi Approach. J. Miner. Mater. Charact. Eng. 8, 379–391 (2009).

	45.	 Wojceichowski, S., Maruda, R. W., Krolczyk, G. M. & Nieslony, P. Application of signal noise ratio and grey relational analysis to 
minimze forces and vibrations during precise ball end milling. Precis. Eng. 51, 582–5596 (2018).

	46.	 Ramesh, B. N. & Suresha, B. Optimization of tribological parameters in abrasive wear mode of carbon-epoxy hybrid composites. 
Mater. Des. Des. 59, 38–49 (2014).

	47.	 Stalin, B., Kumar, P. R., Ravichandran, M., Kumar, M. S. & Meignanamoorthy, M. Optimization of wear parameters using Taguchi 
grey relational analysis and ANN-TLBO algorithm for silicon nitride filled AA6063 matrix composites. Mater. Res. Express 6, 
106590 (2019).

	48.	 Yu, J., Kim, C.-H. & Rhee, S.-B. The comparison of lately proposed Harris Hawks optimization and Jaya optimization in solving 
directional overcurrent relays coordination problem. Complexity 20, 1–22 (2020).

	49.	 LeGates, D. R. & McCabe, G. J. J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model valida-
tion. Water Resour. Res. 35, 233–241 (1999).

	50.	 Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 
50, 885–900 (2007).

	51.	 Musa, B., Yimen, N., Abba, S. I. & Adun, H. H. Multi-state load demand forecasting using hybridized support vector regression 
integrated with optimal design of off-grid energy systems—a metaheuristic approach. Proceses 20, 1166 (2021).

	52.	 Zheng, B., Gao, F., Ma, X. & Zhang, X. Intelligent prediction of aeroengine wear based on the SVR optimized by GMPSO. Appl. 
Sci. 11, 10592 (2021).

	53.	 Kahhal, P., Ghasemi, M., Kashfi, M. & Menghari, H. G. A multi-objective optimization using response surface model coupled with 
particle swarm algorithm on FSW process parameters. Sci. Rep. 12, 1–20 (2022).

	54.	 Sharma, V., Sharma, S., Prakash, O. & Bhuvnesh, V. Prediction and optimization of abrasive wear loss of ultrahigh strength 
martensitic steel using response surface methodology, Harris Hawk and artificial neural network. Int. J. Syst. Assur. Eng. Manage. 
https://​doi.​org/​10.​1007/​s13198-​021-​01160-5 (2021).

	55.	 Ikpambese, K. K. & Lawrence, E. A. Comparative analysis of multiple linear regression and artificial neural network for predicting 
friction and wear of automotivebrake pads produced from palm kernel shell. Tribol. Ind. 40, 25 (2018).

	56.	 Altay, O., Gurgenc, T., Ulas, M. & Özel, C. Prediction of wear loss quantities of ferro-alloy coating using different machine learning 
algorithms. Friction 8, 107–114 (2020).

	57.	 Islam, M. Z. et al. A Harris Hawks optimization based single- and multi-objective optimal power flow considering environmental 
emission. Sustainability 12, 5248 (2020).

	58.	 Abba, S. I., et al.. Modelling of Uncertain System : A comparison study of Linear and Non-Linear Approaches. 1–6 (2020).

Author contributions
M.A.I. designed, conducted and analyzed the experiments and the results. S.I.A. performed the simulation. H.C. 
and M.A.S. reviewed the manuscript.

https://doi.org/10.1007/s40033-021-00250-9
https://doi.org/10.1038/s41598-022-05900-w
https://doi.org/10.1002/pc.25836
https://doi.org/10.1109/ICIT.2006.372659
https://doi.org/10.1007/s13198-021-01160-5


22

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10393  | https://doi.org/10.1038/s41598-022-14629-5

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.A.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimization and prediction of tribological behaviour of filled polytetrafluoroethylene composites using Taguchi Deng and hybrid support vector regression models
	Results and discussion
	Experimental results. 
	Effect of load on Ks and µ. 

	Effect of abrasive size on µ and Ks. 
	Effect of sliding distance on µ and Ks. 
	Effect of sliding speed on µ and Ks. 
	Results using Taguchi approach. 
	Optimization using hybrid Taguchi model. 
	Validation. 
	Performance appraisal of the models. 
	Comparing the performance of the models. 

	Conclusions
	Methods
	Experimental set up. 
	Taguchi optimization approach. 
	Optimization using Taguchi-Deng approach. 
	Support vector regression (SVR) model. 
	Harris Hawk optimization (HHO) model. 
	Particle swarm optimization (PSO) model. 
	Hybrid SVR model. 
	Data pre-processing, model validation and performance metrics. 

	References


