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In situ process quality monitoring 
and defect detection for direct 
metal laser melting
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Quality control and quality assurance are challenges in direct metal laser melting (DMLM). 
Intermittent machine diagnostics and downstream part inspections catch problems after undue 
cost has been incurred processing defective parts. In this paper we demonstrate two methodologies 
for in-process fault detection and part quality prediction that leverage existing commercial DMLM 
systems with minimal hardware modification. Novel features were derived from the time series of 
common photodiode sensors along with standard machine control signals. In one methodology, 
a Bayesian approach attributes measurements to one of multiple process states as a means of 
classifying process deviations. In a second approach, a least squares regression model predicts severity 
of certain material defects.

Direct metal laser melting (DMLM) is an additive manufacturing process where complex parts are built by 
directing a laser into a bed of powdered metal in a pattern defined by computer control. This process can exhibit 
significant variability from layer to layer and across the build area. The lack of sufficient quality control and 
assurance limits the potential of DMLM for high-performance components and high-volume production. Con-
ventional approaches include between-build machine diagnostics and downstream part inspection, but these 
processes catch problems only after undue cost has been incurred processing defective parts.

The need for in-process monitoring and control has been the subject of ongoing  reviews1–4,32.  Recent work has 
explored in-process monitoring and defect detection using many different sensing and imaging  modalities5–32. 
The majority of these methods employ custom instrumentation and produce high-resolution and high-speed 
data streams, making them difficult to deploy on commercial machines in a production setting.

This paper describes new in-process monitoring methods, developed under the guiding principle of easy 
deployment on original equipment manufacturers’ machines with minimum modifications to available sensor 
packages. Two techniques are proposed, one to classify process shifts using time-dependent models of photodiode 
signals and another to predict severity of part defects using machine learning models.

Methods
Machine configuration. Figure 1 shows a representative system configuration of a commercially available 
DMLM machine with a standard melt pool monitoring package. An industrial PC interprets input design files 
to provide control to a galvanometric scanner and the laser. Additional optics direct light emitted from the melt 
pool to in-line sensors including photodiodes and CMOS cameras. A data acquisition system collects the sensor 
signals and synchronizes them with a laser trigger signal. The methods described in this paper were evaluated on 
Concept Laser M2 machines with QMMeltpool 3D melt pool monitoring system, which includes a down-beam 
photodiode and a CMOS camera, and EOS M290 machines with EOSTATE melt pool monitoring system, which 
includes a down-beam photodiode and an off-axis photodiode. The M2 machine used in this study comprises a 
build envelope of 250 × 250 × 350  mm3 (x,y,z) equipped with a laser system with power available up to 400 W, a 
scanning speed of 7 m/s and allows layer thicknesses between 20 – 80 μm. EOS M290 machine has a build enve-
lope of 250 × 250 × 325  mm3 (x,y,z), equipped with a 400 W Yb-fiber laser allowing a layer thickness of 100 μm.

Process fault detection. One aim of this study was to investigate if and how the transient melt pool behav-
ior can be used to detect off-normal process conditions. As described in “Machine configurat ion” section, the 
additive machines are equipped with multiple sensors (photodiodes and/or cameras) to monitor the melt pool 
behavior during the build process. We consider the response of the melt pool as measured from S sensors (where, 
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S denotes the number of sensors on the machine). A laser strike is defined as the interaction between the laser 
and the material being melted from the time the laser turns on to when the laser turns off, and the correspond-
ing melt pool emissions. The beginning of each laser strike is identified in the sensor signals because the data 
acquisition system synchronizes the sensor measurements with the laser trigger signal. The sensor signals are 
referenced from when the laser turns on for each strike at sample k = 1 . Samples up to k = kT are considered 
transient, and samples k > kT are steady state. The parameter, kT , was chosen heuristically: an initial choice was 
based on qualitative judgement of when the process response to each laser strike settled close to a steady value 
for a variety of process conditions. kT was later iteratively refined based on the sensitivity of the results to this 
parameter, as well as computational considerations.

For process fault detection we have employed a multiple model hypothesis test (MMHT), which is a Bayesian 
approach that compares sensor measurements to multiple pre-estimated models to indicate a deviation from 
normal conditions. A model of the normal process is required, and models of one or more off-normal processes 
are optional. While we describe a particular form of model here, the framework is effective for different types 
of models (e.g. auto-regressive, PCA, physics-based, etc.). At each sample, k = 1, 2, . . . ; and for a given process 
condition; the measurements from S sensors are modeled as a jointly Gaussian random vector. The set of process 
models (for example, processes with different shifts in laser power level), are indexed by m = 1, 2, . . . ,M. The 
likelihood of a set of sensor measurements x ∈ R

S is

where the covariance matrix, �k , and the mean vector, µk are constant for k > kT . Time-dependent correlation 
of the measurement samples is neglected in this analysis. While better classification performance may be pos-
sible if such correlation is accounted for, this assumption facilitates computational flexibility to aggregate points 
arbitrarily in spatial dimensions.

Next, we define a kernel by a set of points aggregated in either space or time. Let I be the set of N indices 
defining the kernel and XI ∈ R

S×N be the matrix of measurements from S sensors corresponding to the indices 
in the kernel. Because of the time-based independence assumption, the likelihood of XI can be computed easily 
for arbitrary kernels. This flexibility is important for being able to spatially aggregate measurements that may 
not have occurred adjacent in time. A square kernel is illustrated in the top right of Fig. 2a, with indices that 
identify the set of measurement points within that square. We apply Bayes’ rule to compute a posterior prob-
ability for each process model as

where Pr(m) is the prior probability model ,m. The likelihood of XI is
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Figure 1.  Schematic of a representative setup used in the experiments. The photodiode is used as the primary 
sensor to evaluate the emission spectra (the camera was not used in the results reported here).
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where xn is the nth column of XI , and kn is the laser-on index associated with the n th sample in the kernel. We 
also introduce an “unknown” likelihood,

where punk can be chosen to prevent measurements from being attributed to an existing model if the associated 
likelihood is too low. In this study, punk was chosen to be equal to the likelihood at 2.3 standard deviations from 
the mean (i.e., corresponding to the 99% confidence interval) of the average of a Gaussian distributed-variable, 
with an assumed standard deviation, averaged over S × N  measurements. The standard deviation was based 
on an approximate signal-to-noise ratio and is assumed to be comparable in all process states. Finally, we use a 
maximum a posteriori (MAP) decision rule to attribute the measurements to the model (or unknown) that has 
the highest posterior probability. Figure 2a illustrates the MMHT process. The left side of the figure shows an 
example of models for the normal process and representative faulted processes. For ease of illustration, a one-
dimensional model with only on-axis photodiode data is shown, with markers and error bars representing the 
mean and variance, respectively, of the model for each sample time. (Note that with multiple sensors, the model 
would include a mean vector and covariance matrix.) The right side illustrates a square spatial kernel that aggre-
gates points across multiple laser strikes. These points are then aggregated and analyzed as previously described.

(3)p(XI |m) =

N
∏

n=1

p(xn|m, kn)

(4)p(XI |M + 1) = punk

Figure 2.  (a) Multiple model hypothesis test using a point-wise model of the melt pool response during 
laser strikes. Left side of figure shows actual models for the on-axis photodiode for the normal process and 
representative faulted processes. The right side illustrates a square spatial kernel that aggregates points across 
multiple laser strikes. These points are then analyzed as described in the text. (b) Four nominal models to 
analyze Concept Laser data. The solid lines represent the mean intensity models while the dashed lines represent 
one standard deviation bounds.
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The primary experiments were conducted on the EOS M290 system on which measurements were collected 
from a down-beam photodiode sensor and an off-axis photodiode at 60 kHz , for the hatch scan strategy. Raw 
measurements were normalized to remove fixed trends across the build plate area due to machine-specific optic 
artifacts. Then the measurements from both sensors were combined into a vector (i.e., S = 2 in Eq. (1)). The 
mean vector and covariance matrix for the two sensors at each sample time were estimated by compiling intensity 
measurements from representative training builds, including a normal process and a series of processes in which 
laser power, scan speed, or hatch spacing were shifted in different increments. The parts in these builds included 
a variety of geometries such as holes, thinner walls, and sharp corners.

Finally, validation builds were run with different process parameter shifts to test the ability of the algorithm 
to accurately classify deviations from the normal process. In addition, builds that experienced shifted gas flow 
and damaged optics were considered to evaluate the detection of localized process anomalies. For the process 
shifts, training and validation builds were produced by the same machine. In the case of optic defects, the data 
was from a real occurrence from a production setting, so training and validation was performed on different 
layers of the same build.

Though the primary experiments for process fault detection analysis were performed using EOS machines, 
the analysis was later expanded to include Concept Laser (CL) M2 machines in a limited scope. The default scan 
strategy for the builds used in this analysis was to divide a part into skin and core areas. Collectively these would 
comprise the regions of the part that are labeled as hatch in an EOS system. Scope of our analysis has been to 
focus on the hatch scan strategy since the volumetric bulk of most parts are processed under those conditions. 
The M2 machine used in this program was of dual scan head configuration. They are situated one in front of 
the other with the scan head towards the back of the build plate being Head 0 (LH0) and the front scan head 
being Head 1 (LH1). M2 machines are equipped with both on-axis photodiode and camera sensors. However, 
the camera was not properly configured in the machine used for this analysis and, hence, we only considered 
the on-axis photodiode. To classify nominal conditions for the Concept Laser parameter set, four models were 
built using the on-axis photodiode, one per scan head per scan parameter (skin/core): LH0—Skin, LH0—Core, 
LH1—Skin and LH1—Core (Fig. 2b). The core parameter set uses a higher laser power than the skin parameter 
set and a larger spot size. The goal of this analysis was to use a part wise kernel (following the same MMHT 
framework) with the nominal CL models to classify parts built with the different parameter sets. It is important 
to note that in practice, all four parameter sets would be considered “normal”, but they were used in this study 
to demonstrate classification of different process states.

Part quality prediction. In addition to displaying signatures of process anomalies, melt pool behavior has 
a strong relationship to resultant part quality. Process deviations that cause porosity, lack of fusion, and cracks 
are observable in the melt pool response. Here we develop a statistical model to predict the relationship between 
sensor data and the severity of different material defects as measured from optical micrographs for representa-
tive pins made from CoCr. Several solid pins were built across the build plate in a Concept Laser M2 machine 
by varying power, speed and spot size of the processing parameters from the nominal values (details of nominal 
values are withheld due to proprietary nature of the process parameter set) by up to 50% to simulate defects 
caused by both higher and lower energy densities. A lower energy density would cause lack of fusion while a 
higher energy density will cause boiling porosity. Cracks are typically formed by rapid cooling of the melt pool. 
This expected nature of the relationship between defects and process observables is accounted for through the 
selection of features in the regression model, some of which include laser control parameters:

where Ddefect is the area fraction of a given type of defect, which can be obtained from either optical micrograph 
from part cut ups, CT scans of the part, or physical testing of the part. The defect score of each type is then calcu-
lated based on the ratio of the total area belonging to a certain defect class in a cross section to the total area in the 
said cross section. Laser parameters are given at the beginning of build process: p is power, s is speed, f  is focus, 
p/s is linear energy density, and h is hatch spacing. Sensor data are aggregated into part level variables: µpart is the 
part-wise average intensity, σpart is the standard deviation of the part-wise intensity, and σµlayer is the standard 
deviation of layer-wise average intensity. The transfer function (Eq. 5) was obtained using stepwise ordinary 
least squares (OLS) optimization for each of the defects. Given the presence of collinearity, we constrained the 
variance inflation factor when applying stepwise OLS optimization to determine the significant model features.

Results
Process fault detection. We found that the transient response of the melt pool provided better discrimi-
natory information than the steady state response. This can be seen in Fig. 2a, where the steady-state melt pool 
intensity from a build with 10% higher power overlaps with the intensity from a build with 10% lower speed, 
while the transient responses to these shifts were distinct. A chosen transient length of 45 samples demonstrated 
compelling classification performance, while also balancing computational load.

Analysis of shifts in bulk parameters (laser power, speed, and hatch spacing) was performed using a kernel 
that captured all points in a layer. A square spatial kernel tuned to 0.39 mm per side was used to detect localized 
process anomalies such as optic damage and artifacts of low gas flow. This kernel size was tuned to balance clas-
sification accuracy and resolution.

Figure 3a shows the classification results for EOS M290 for bulk parameter shifts on data from validation 
builds that were different from the training build. There is a tradeoff of classification accuracy for an extended 
model set that incorporates more failure modes. In other words, with more candidate process models, there are 

(5)Ddefect = g
(

p, s, f ,
p

s
, h,µpart, σpart, σµlayer

)
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more opportunities to confuse their output signatures. The most frequent confusion was between processes with 
shifted hatch spacing and a normal process, suggesting a relative insensitivity of the melt pool to this parameter 
shift. Another prominent confusion was between wider hatch spacing and lower power, indicating there may 
be a thermal effect that could be added to the model to improve classification. It might be reasonable to exclude 
hatch spacing in order to improve results, since this is a parameter defined by the build strategy that is unlikely 
to deviate during a process and it could be verified by other means upstream of the build process.

The image on the top right of Fig. 3a shows detection of a real optic defect that occurred in a production 
setting. The signature for this anomalous condition was relatively dramatic, so local classification of the defect 
was unambiguous. The bottom right image in Fig. 3a shows low gasflow-induced anomalies, including unknown 
classifications for unmodeled behavior. The model for a low gasflow defect was trained in regions of the sensor 
data thought to be associated with smoke occlusion of the laser beam. However, when the classification algorithm 
was applied, large areas of another anomalous condition were identified. This demonstrates the utility of the 
“unknown” model for detecting off-normal conditions, even if an explicit model of this condition does not exist.

Figure 3.  (a) Classification of process defects using MMHT on EOS M290. On the left is a confusion matrix for 
bulk parameter shifts. On the right are examples of detection of localized defects. (b) Classification of process 
shifts using MMHT on Concept Laser M2. The plot shows skin sections from a layer of a 36-cylinder build. The 
top 3 rows of parts, built using laser head 0, were correctly classified by the LH0-skin model (green, figure on 
the left) while they were classified as unknown (yellow) by the LH0—Core model (figure on the right). The table 
shows classification results aggregated over 20 layers. Models from builds with two parameter sets (skin and 
core) correctly classify the parts built with corresponding parameter sets with high accuracy (> 90%).
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Figure 3b shows results from the limited analysis that was performed on the Concept Laser M2 machine. 
Using the same MMHT framework, we demonstrate that models built on a combination of scan head and build 
parameters are highly successful in classifying parts built with the same scan head and different build parameters. 
For instance, the LH0-Skin model correctly classifies all the parts built with LH0 and Skin parameters as true 
positives while the same parts were (correctly) classified as true negatives when analyzed using the LH0-Core 
model.

The proposed fault detection methodology was optimized computationally to complete analysis within a layer 
cycle time, providing an ongoing process monitoring diagnostic during a build.

Part quality prediction. As previously mentioned, training builds for this study included pins with vary-
ing parameter shifts with the intent of generating parts with correspondingly varying defect severity, defined by 
percent area as observed in standard optical micrographs. The micrographs of the samples are obtained from the 
cross-sectional view from an STL file generated by a standard micro CT module. A proprietary image processing 
algorithm is used on the cross-sectional views to identify pores, cracks and lack of fusion defects and get their 
dimensions to micron resolution. Figure 4 shows fits of the respective regression models and lists the significant 
factors for each one. Predictions for pores and lack of fusion had a relatively high R-Squared value, which is an 
indicator of goodness of fit of the model. On the other hand, cracks were harder to predict since our models 
were primarily trained on parts made of CoCr, a material that is typically less prone to cracking. For all defects, 
predictive factors were contained in both the photodiode signal features and certain laser control parameters. 
Part quality predictions were analyzed on a part-wise basis at the end of a build.

Conclusion
We successfully implemented in situ analytics that leverage process monitoring packages available on two com-
mercial DMLM machines. In one experiment on an EOS system, process defect detection was able to resolve 
10–20% shifts in bulk process parameters, and detect other localized defects to sub-millimeter accuracy, all 
within layer cycle time. This was accomplished by extracting discriminatory information from the transient 
response of the melt pool in the microseconds after the laser turns on at the beginning of each strike. There are 
several opportunities for further refinement of this method. First, classification performance may be improved 
by removing the hatch spacing variation models as discussed in “Process fault detection” section. Second, while 
normalization of the raw sensor measurements effectively removed gross trends due to optical artifacts, additional 
systematic variations were observed in the sensor measurement that limited system resolution. Ongoing work is 
focused on understanding these variations and creating parametric predictive models against which the sensor 
signals can be compared. Third, there is potential to refine performance based on a more systematic selection 
of the defined length of the “transient” (defined by parameter, kT ). Finally, incorporating other available sensor 
signals such as the CMOS camera in the Concept Laser system could provide process signatures with better 
discriminatory power.

Next steps would also address several limitations of the study described here. Detection of bulk parameter 
shifts was tested on builds that included a variety of part geometries within the build, but the training and vali-
dation builds had the same parts. Further studies are needed to characterize classification performance when 

Figure 4.  Performance of defect predictor of different types of defects. A high concentration of points along the 
45° line indicates high performance.
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the training build differs in geometry from the build being evaluated. Also, unlike the bulk parameter shift test, 
localized anomalies were not evaluated with all available candidate models together. A more systematic study of 
localized defect detection is recommended. The main challenge with local defects is that the process conditions 
associated with them tend to be more difficult to induce in a controlled manner in order to train reliable models.

These results of the second study demonstrate a proof of concept that for defects of a certain level of severity 
caused by the variation in input parameters, part quality can be successfully predicted without deploying the 
time-consuming method of optical micrograph analysis. This was also accomplished through selection relevant 
features derived from both the sensor signals and machine control parameters. The scope of this study was limited 
to CoCr only, so future evaluation would expand to other materials.

In spite of the limitations discussed here, results, show that the sensor data can be used to model nominal 
processes and identify in situ process shifts; and that there is a high correlation between down-beam photodiode 
sensor data and as-built material defect severity. These early, nondestructive diagnostics enable cost savings and, 
with adequate validation, could potentially serve as quality assurance metrics. Note, however, that due to the 
aforementioned limitations, the analytics described in this paper is limited to research applications and further 
development of the technology along the suggested lines will be required to mature the technology  into a com-
mercial offering.
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