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Today, the Transformer model, which allows parallelization and also has its own internal attention, 
has been widely used in the field of speech recognition. The great advantage of this architecture is the 
fast learning speed, and the lack of sequential operation, as with recurrent neural networks. In this 
work, Transformer models and an end‑to‑end model based on connectionist temporal classification 
were considered to build a system for automatic recognition of Kazakh speech. It is known that 
Kazakh is part of a number of agglutinative languages and has limited data for implementing speech 
recognition systems. Some studies have shown that the Transformer model improves system 
performance for low‑resource languages. Based on our experiments, it was revealed that the joint 
use of Transformer and connectionist temporal classification models contributed to improving the 
performance of the Kazakh speech recognition system and with an integrated language model it 
showed the best character error rate 3.7% on a clean dataset.

Innovative information and digital technologies are increasingly making their way into the life of a modern 
person: this applies to deep learning systems like voice recognition, images, speech recognition and synthesis. 
Namely, speech technologies are widely used in communications, robotics and other areas of professional activity. 
Speech recognition is a way to interact with technology. Speech recognition technology provides recognition of 
individual words or text, with its further conversion into a sequence of words or commands. There are traditional 
speech recognition systems that are based on acoustic, language models and lexicon. The acoustic model (AM) 
was built based on hidden Markov models (HMM) with the Gaussian Mixture Model (GMM), and the language 
model (LM) was based on n-gram models. The components of these systems were trained separately, which made 
it difficult to manage and configure them, which led to a decrease in the efficiency of using these systems. With 
the advent of deep learning, the performance of speech to text systems has improved. Artificial neural networks 
began to be used for acoustic modeling instead of GMM, which led to improved results that were obtained in 
many research  works1–3. Thus, the HMM-DNN architecture has become one of the most common models for 
continuous speech recognition.

Currently, the end-to-end (E2E) model has become widespread. The E2E structure presents the system as a 
single neural network, unlike the traditional one, which has several independent  elements4,5. The E2E system 
provides direct reflection of acoustic signals in the sequence of labels without intermediate states, without the 
need to perform subsequent processing at the output, which makes it easy to implement. To increase the perfor-
mance of E2E systems, it is necessary to solve the main tasks related to the definition of the model architecture, 
the collection of a sufficiently large speech corpus with the appropriate transcription, and the availability of 
high-performance equipment. Solving these issues ensures the successful implementation of not only speech 
recognition systems, but also other deep learning systems. In addition, E2E systems can significantly improve 
the quality of recognition from learning large amounts of training data.

Models based on the Connectionist temporal  classification6 (CTC), models based on the attention  mechanism7 
are illustrative examples of end-to-end systems. In a CTC-based model, there is no need to align at the frame level 
between acoustics and transcription, since a special token is allocated, like an "empty label" which determines the 
beginning and end of one  phoneme8. In the attention mechanism based encoder/decoder models, the encoder is 
an AM—converts input speech into a high-level representation, the attention mechanism is an alignment model, 
and determines encoded frames that are related to the creation of the current output, the decoder is similar to the 
AM—operates autoregressive, predicting each output token depending on previous  predictions9. The above E2E 
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models are based on convolutional and modified recurrent neural networks (RNNs). The models implemented 
using RNN perform calculations on the character positions of the input and output data, thus generating a 
sequence of hidden states depending on the previous hidden state of the network. This sequential process does 
not provide parallelization of learning in training examples, which is a problem with a longer sequence of input 
data and takes much longer to train the network.  In10, another Transformer-based model was proposed, which 
allows parallelization of the learning process, and this model also removes repetitions and uses its internal atten-
tion to find the dependencies between the received and resulting data. The big advantage of this architecture is 
the fast-learning rate and the lack of sequential operation, as with RNN. In previous  studies11,12 it was revealed 
that the combined use of Transformer models and an E2E model, like CTC, contributed to the improvement of 
the quality of the English and Chinese speech recognition system.

It should be noted that the attention mechanism is a common method that greatly improves the quality of the 
system in machine translation and speech recognition. And the Transformer model uses this attention mecha-
nism to increase the learning rate. This model has its own internal attention, which aligns all positions of the 
input sequence to find a representation of the set, which does not require alignments. In addition, Transformer 
does not need to process the end of the text after processing its start.

In order to implement such models, a large amount of speech data are required for training, which is prob-
lematic for languages with limited training data, namely for the Kazakh language, which is included in the group 
of agglutinative languages. To date, systems have been developed based on the CTC  model13,14 for recognizing 
Kazakh speech with different sets of training data. The use of other methods and models to improve the accuracy 
of recognition of the Kazakh speech is a promising direction and can improve the performance of the recognition 
system with a small size of the training sample.

The main goal of our study is to improve the accuracy of the automatic recognition system for Kazakh 
continuous speech by increasing training data, as well as the use of models based on Transformer and CTC for 
recognizing Kazakh speech.

The structure of the work is given in the following order: Sect. 2 presents traditional methods of speech 
recognition, Sect. 3 provides an analytical review of the scientific direction. Section 4 describes the principles of 
operation of the Transformer-based model and the model we proposed. Further, in Sects. 5 and 6, our experi-
mental data, corpus of speech, and equipment for the experiment are described, and the results obtained are 
analyzed. The conclusions are given in the final section..

Traditional speech recognition methods
Traditional sequence recognition focused on estimating the maximum a posteriori probability. Formally, this 
approach is a transformation of a sequence of acoustic speech characteristics X into a sequence of words W. 
Acoustic characteristics are a sequence of feature vectors of length T: X = {xt ∈ RD | t = 1,…, T}, and the sequence 
of words is defined as W = {wn ∈ V | n = 1,…, N}, having length N, where V is a vocabulary. The most probable 
word sequence W* can be estimated by maximizing P(W|X) for all possible word sequences V* (1)15. This process 
can be represented by the following expression:

Therefore, the main goal of the automatic speech recognition (ASR) is to find a suitable model that will 
accurately determine the posterior distribution P(W |X).

The process of automatic speech recognition consists of sequences of the following steps:

• Extraction of features from the input signal.
• Acoustic modeling (determines which phones were pronounced for subsequent recognition).
• Language modeling (checks the correspondence of spoken words to the most likely sequences).
• Decoding a sequence of words spoken by a person.

The most important parts of a speech recognition system are feature extraction methods and recognition 
methods. Feature extraction is a process that allocates a small amount of data essential for solving a problem. To 
extract features, Mel-frequency cepstral coefficients (MFCC) and perceptual linear prediction (PLP) algorithms 
are commonly  used16–18. The popular one is MFCC.

In the speech recognition task, the original signal is converted into feature vectors, on the basis of which 
classification will then be performed.

Acoustic model. The acoustic model (AM) uses deep neural networks and hidden Markov models. Deep 
neural network, convolutional neural network (CNN), or long short-term memory, which is a variant of the 
recurrent neural network is used to map the acoustic frame xt to the phonetic state of the subsequent ft at each 
input time t (2):

Before this acoustic modeling procedure, the output targets of the neural network models, a sequence of pho-
netic states at the frame level f1:T, are generated by HMM and GMM in special training methods. GMM models 
the acoustic element at the frame level x1:T, and HMM estimates the most probable sequence of phonetic states f1:T.

The acoustic model is optimized for the cross-entropy error, which is the phonetic classification error per 
frame.

(1)
W∗ = argmax P(W |X)

W ∈ V∗

(2)P
(

ft |xt
)

= AcousticModel(xt)
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Language model. The language model p(w) models the most probable sequences of words regardless of 
acoustics (3):

where w<u is the previous recognized word.
Currently, RNN or LSTM are commonly used extensively for language model architecture, as they can capture 

long-term dependencies rather than traditional n-gram models, which are based on the Markov assumption and 
limited to a certain n-range of word history.

Hidden Markov models. For a long time, a system based on hidden Markov models (HMM) was the main 
model for continuous speech recognition. The HMM mechanism can be used not only in acoustic modeling but 
also in the language model. But in general, the use of the HMM model gives a greater advantage when modeling 
the acoustic component.

In this HMM, the phone is the observation and the feature is the latent state. For an HMM that has a 
state set {1,…, J}, the HMM-based model uses the Bayesian theorem and introduces the HMM state sequence 
S = {st ∈ {1,…, J} | t = 1,…, T} пo p (L|X) (4).

p(X|S), p(S|L), and p(L) in Eq. (4) correspond to the acoustic model, the pronunciation model and the lan-
guage model, respectively.

The acoustic model P (X|S) indicates the probability of observing X from the hidden sequence S. Accord-
ing to the probability chain rule and the observation independence hypothesis in the HMM (observations at 
any time depend only on the hidden state at that time), P(X|S) can be decomposed into the following form (5):

In the acoustic model, p  (xt|st) is the probability of observation, which is usually represented by mixtures of 
Gaussian distributions. The distribution of the posteriori probability of the hidden state p  (st|xt) can be calculated 
by the method of deep neural networks.

Two approaches, HMM-GMM and HMM-DNN, can be used to calculate p (X|S) in Eq. 5. The first approach 
HMM-GMM was for a long time the main method for building speech-to-text technology. With the develop-
ment of deep learning technology, DNN is introduced into speech recognition for acoustic modeling. The role 
of DNN is to calculate the posterior probability of the HMM state, which can be converted into probabilities, 
replacing the usual GMM observation probability. Consequently, the transition of HMM-GMM to the hybrid 
model HMM-DNN has yielded excellent recognition results, and is becoming a popular ASR architecture.

Hybrid models have some important limitations. For example, ANN with more than two hidden levels were 
rarely used due to computational performance limitations, and the context-dependent model described above 
takes into account numerous effective methods developed for GMM-HMM.

The learning process is complex and difficult for global optimization. Components of traditional models are 
usually trained on different datasets and methods.

Hybrid models based on DNN‑HMM. To calculate P(xt|st) directly, GMM was used, because this model 
gives the possibility to simulate the distribution for each state, allowing to obtain probability values of input 
sequences. However, in practice, these assumptions cannot always be modeled by GMM. DNNs have shown sig-
nificant improvements over GMMs due to their ability to study nonlinear functions. DNN cannot directly pro-
vide a conditional probability. The frame-by-frame posterior distribution is used to turn the probability model 
P(xt|st) into a classification problem P(st|xt) using a pseudo-likelihood trick as a joint probability approximation 
(6)15. The application this probability is referred to as a "hybrid  architecture".

A numerator is a DNN classifier trained with a set of input functions as input xt and target state st. The 
denominator P(st) is the prior probability of the state st. Frame-by-frame training requires frame-by-frame 
alignment with xt as input and st as target. This negotiation is usually achieved by using a weaker HMM/GMM 
negotiation system or using human-made dictionaries. The quality and quantity of alignment labels are usually 
the most significant limitations of the hybrid approach.

End‑to‑end speech recognition models. E2E automatic speech recognition is a new technology in the 
field of  ASR based on a neural network, which offers many advantages. E2E ASR is a single integrated approach 
with a much simpler training approach with models that work at a low audio frame rate. This reduces learn-
ing time, decoding time, and allows joint optimization with subsequent processing, such as understanding the 
natural language.

(3)P(wu|w<u) = LanguageModel(w<u)

(4)argmax
L∈γ ∗

p
(

L|X
)

≈ argmax
L∈γ ∗

∑

S

p
(

X|S
)

p
(

S|L
)

p(L)

(5)p(X|S) =

T
∏

t=1

p(xt |x1, . . . , xt−1, S) ≈

T
∏

t=1

p(xt |st) ∝

T
∏

t=1

p(st |xt)

p(st)

(6)
T
∏

t=1

P(xt |st) =

T
∏

t=1

P(xt |st)

p(st)
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For the global calculation of P(W | X) using E2E speech recognition models, the input can be represented as 
a sequence of acoustic features X = (x1,…, xt), the sequence of target marks as y = (y1,…, yt), and the sequences 
words in the form W = wm = (w1,…, wm).

Thus, the ANN finds probabilities P(∙|x1),…,P(∙|xt), where the input probability parameters are some repre-
sentations of a sequence of words, i.e. labels.

The basic principle of operation is that modern E2E models are trained on the basis of big data. From the 
above, we can detect the main problem, it concerns the recognition of languages with limited training data, such 
as Kazakh, Kyrgyz, Turkish, etc. For such low-resource languages, there are no large corpuses of training data.

Related work/literature review
The Transformer model was first introduced  in8, in order to reduce sequential calculations and the number of 
operations for correlating input and output position signals. Experiments were conducted on machine translation 
tasks, from English to German and from English to French. As a result, the model was shown to have achieved 
good performance compared to existing results. Moreover, Transformer works perfectly for other tasks with 
large and limited training data, and is very fruitful for all kinds of seq2seq tasks.

The use of Transformer for speech-to-text conversion also showed good results and was reflected in the fol-
lowing research papers:

To implement a faster and more accurate ASR system, Transformer and ASR achievements based on RNN 
were combined by Karita et al.11. To build the model, a Connectionist temporal classification (CTC) was  E2E with 
Transformer for co-learning and decoding. This approach speeds up learning and facilitates LM integration. The 
proposed ASR system implements significant improvements in various ASR tasks. For example, it lowered WER 
from 11.1% to 4.5% for the Wall Street Journal and from 16.1% to 11.6% for TED-LIUM, introducing CTC and 
LM integration into the Transformer baseline.

Moritz et al.19 proposed a Transformer-based model for streaming speech recognition that requires an entire 
speech utterance as input. Time-limited self-attention in the encoder and triggered attention for the encoder-
decoder with attention mechanism were applied to generate the output after the spoken word. The model archi-
tecture achieved the best result in E2E streaming speech recognition − 2.8% and 7.3% WER for "pure" and "other" 
LibriSpeech test data.

The Weak-Attention Suppression (WAS) method was proposed by Yangyang Shi and  other20, which dynami-
cally causes sparse attention probabilities. This method suppresses the attention of uncritical and redundant 
continuous acoustic frames and is more likely to suppress past frames than future ones. It was shown that the 
proposed method leads to a decrease in WER compared to the basic types of Transformer. In Test LibriSpeech, 
the proposed WAS method reduced WER by 10% in cleanliness testing and by 5% in another test for streaming 
Transformers, which led to a new advanced level among streaming models.

Dong Linhao and co-authors21 presented a Speech-Transformer system using a 2D attention mechanism that 
co-processes the time and frequency axes of 2D speech inputs, thereby providing more expressive representa-
tions for the Speech-Transformer. The Wall Street Journal (WSJ) corpus was used as training data. The results 
of the experiment showed that this model allows to reduce the training time and at the same time can provide 
a competitive WER.

Gangi et al.22 suggested Transformer with SLT adaptation—an architecture for spoken language translation, 
for processing long input sequences with low information density to solve ASR problems. The adaptation was 
based on downsampling the input data using convolutional neural networks and modeling the two-dimensional 
nature of the audio spectrogram using 2D components. Experiments show that the SLT-adapted Transformer 
outperforms the RNN-based baseline in both translation quality and learning time, providing high performance 
in six language areas.

Takaaki Hori et al.23 advanced the Transformer architecture, on the basis of which a context window was 
developed, which was trained in monologue and dialogue scenarios. Monologue tests on CSJ and TED-LIUM3 
and dialog tests on SWITCHBOARD and HKUST were applied. As a result, results were obtained that surpass 
the basic E2E ASR with one sound and with or without speaker i-vectors.

In the E2E system, the RNN-based encoder-decoder model was replaced by the Transformer architecture 
in Chang X. et al.  research24. And in order to use this model in the masking network of the neural beamformer 
in the multi-channel case, the self-attention component has been modified so that it is limited to a segment, 
rather than the entire sequence, in order to reduce the amount of computation. In addition to improvements to 
the model architecture, preprocessing of external dereverberation, weighted prediction error (WPE), was also 
included, which allows the model to process reverberated signals. Experiments with the extended wsj1-2mix 
corpus show that Transformer-based models achieve better results in echo-free conditions in single-channel and 
multi-channel modes, respectively.

Transformer architecture
The Transformer model was first created for machine translation, replacing recurrent neural networks (RNNs) 
in natural language processing (NLP) tasks. In this model, recurrence was completely eliminated, instead, for 
each statement, using the internal attention mechanism (self-attention mechanism), signs were built to identify 
the significance of other sequences for this utterance. Therefore, the generated features for a given statement are 
the result of linear transformations of sequence features that are significant.

The Transformer model consists of one large block, which in turn consists of blocks of encoders and decoders 
(Fig. 1). Here, the encoder takes as input the feature vectors from the audio signal X = (x1,…,xT) and outputs a 
sequence of intermediate representations. Further, based on the received representations, the decoder reproduces 
the output sequence W = wm = (w1,…,wM). Each stage of the model uses the previous symbols to output the next, 
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because it is autoregressive. The Transformer architecture uses several layers of self-attention in the encoder and 
decoder blocks that are interconnected with each other. Consider each block individually.

Encoder and decoder networks. Conventional E2E  encoder/decoder models for speech recognition 
tasks consist of a single encoder and decoder, an attention mechanism. The encoder converts the vector of acous-
tic features into an alternative representation, and the decoder predicts a sequence of labels from the alternative 
information provided by the encoder, then attention highlights the significant parts of the frame for predicting 
the output. In contrast to these models, the Transformer model can have several encoders and decoders, and 
each of them contains its own internal attention mechanism.

An encoder block consists of sets of encoders; as a study, 6 coders are usually taken, which are located one 
above the other. The number of encoders is not fixed, it is possible to experiment with an arbitrary number of 
encoders in a block. All encoders have the same structure but different weights. The input of the encoder receives 
extracted feature vectors from the audio signal, obtained using Mel-frequency cepstral coefficients or convolu-
tional neural networks. Then the first encoder transforms these data using self-attention into a set of vectors, and 
through the feed forward ANN transmits the received outputs to the next encoder. The last encoder processes 
the vectors and transfers the data of the encoded functions to the decoder block.

A decoder block is a set of decoders, and their number is usually identical to the number of encoders. Each 
part of the encoder can be divided into two sublayers: the input data entering the encoder first passes through 
the multi-head attention layer, which helps the encoder look at other words in the incoming sentence during 
encoding of a particular word. The output of the inner multi-head attention layer is sent to the feed-forward 
neural network. The exact same network is independently applied to each word in the sentence.

The decoder also contains two of these layers, but there is an attention layer between them that helps the 
decoder focus on significant parts of the incoming sentence, as is similar to the usual attention mechanism in 
seq2seq models. This component will take into account previous characters/words and, based on these data, 
outputs the posterior probabilities of the subsequent character/words.

Self‑attention mechanism. The Transformer model includes Scaled Dot-Product  Attention10. The advan-
tage of self-attention is fast calculation and shortening of the path between words, as well as potential interpret-
ability. This attention includes 3 vectors: queries, keys and values, and scaling (7):

These parameters are considered useful for calculating attention. Multi-head attention combines several self-
attention maps into general matrix calculations (8):

Here sh = Attention(QW
Q
h ,KW

K
h ,VW

V
h ) . h is the amount of attention in the layer, QWQ

h ,KW
K
h ,VW

V
h , sh 

– trained weight matrices.
The multi-head attention mechanism can be used as an optimization problem. Using this mechanism, you 

can bypass problems associated with unsuccessful initialization, as well as improve the speed of training. In addi-
tion, after training, you can exclude some parts of the heads of attention, since these changes will not affect the 
quality of decoding in any way. The number of heads in the model is designed to regulate attention mechanisms. 
In addition, this mechanism helps the network to easily access any information, regardless of the length of the 
sequence, because this is done easily, regardless of the number of words in the set.

(7)Attention
(

UQ ,UK ,UV
)

= softmax

(

Q,K ,V
√
dattention

)

V

(8)MultiHeadAttention(Q,K ,V) = Concat(s1, . . . , sh)U
head

Encoder block 

Decoder block 

Sequence of words 

Figure 1.  General scheme of the model.
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In the Transformer architecture, you can see the Normalize element, which is necessary to normalize feature 
values, since after using the attention mechanism, these values can have different values. As a normalization, the 
Layer Normalization method is usually used (Fig. 2).

The outputs of several heads can also be different, and in the final vector the spread of values can be large. 
To prevent this, an approach has been  proposed11 where values at each position are converted with a two-layer 
perception. After applying the attention mechanism, the values are projected to a larger dimension using the 
trained weights, where they are then transformed by the nonlinear activation function ReLU, and then these 
values are projected to the original dimension, after which the next normalization occurs.

Proposed model. Typically, Connectionist temporal classification (CTC) is used as a loss function to train 
recurrent neural networks to recognize input speech without pre-aligning the input and output  data11. To achieve 
high performance from the CTC model, it is necessary to use an external language model, since direct decoding 
will not work correctly. In addition, the Kazakh language has a rather diverse mechanism of word formation, 
which the use of language mode contributes to an increase in the quality of recognition of Kazakh speech.

In this work, we will jointly use the Transformer and CTC models with LM. The use of LM CTC in decoding 
results in rapid model convergence, which reduces the amount of time to decode and improves system perfor-
mance. The CTC function, after receiving the output from the encoder, finds the probability by formula 9 for 
arbitrary alignment between the encoder output and the output symbol sequence.

Here x is the output vector of the encoder, R is an additional operator for removing blank spaces and repeated 
symbols,γ is a series of predicted symbols. This equation determines the sum of all alignments using dynamic 
programming, and helps to train the neural network on unlabeled data.

The general structure of the resulting model is shown in Fig. 3.
During training, the multi-task loss method was used to bring the general formula for combining probabilities 

according to the negative logarithm, as presented  in10.
Thus, the resulting model can be represented by the following expression (10):

(9)PCTC(W |Encoder(x)) =
∑

γ ǫR−1(y)

p(γ |x)

(10)P(w|x) = �PTransformer + (1− �)PCTC
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where �—configurable parameter and satisfies the condition—0 ≤ � ≤ 1.
The following additions have been included to improve model performance:
(1) Using a character-level language model in feature extraction. Convolutional neural networks were used 

to extract features. To extract high-dimensional features from the audio data, we first wrap all the network 
parameters under the last hidden CNN layer. Softmax was used as an activation function. Next, a maxpooling 
layer was added to eliminate noise signals and reduce noise with dimensionality reduction. This layer is needed 
to reduce the size of the collapsed element into a vector. Also it helps to reduce the processing power required 
for data processing by reducing the dimensionality. And adaptation of training with character-level language 
model, without disturbing the structure of the neural network during training, allows us to preserve maximum 
non-linearity for subsequent processing. Thus, our extracted features are already high-level, and there is no need 
to map these raw data to phonemes.

(2) Application of a language model at the level of words and phrases when decoding together with CTC.
To measure the quality of the Kazakh speech recognition system, the following parameters were used: CER—

the number of incorrectly recognized characters, because characters are the most common and simple output 
units for generating texts; and based on the word error rate (WER)25.

Experiments and results
Dataset. To train the Transformer, Transformer + CTC models with LM and without LM, it was decided to 
divide the corpus of 400 h of speech into two parts: 200 h of "pure" speech and 200 h of spontaneous telephone 
speech. This corpus was assembled in the laboratory "Computer Engineering of Intelligent Systems" IICT MES 
 RK13,26. When creating the corpus, various types of speech were taken into account: prepared (reading), spon-
taneous. In the corpus, sound files are divided into training and test parts, these are 90% and 10%, respectively.

The pure speech database consists of recordings of 380 speakers, native Kazakh speakers of different ages and 
genders, as well as speech data from artistic audiobooks and audio data of news broadcasts. The voice acting 
and recording of each speaker took about 40–50 min. For the text, sentences with the richest phoneme of words 
were selected. Text data was collected from news sites in the Kazakh language, and other materials were used in 
electronic form in the Kazakh language.

To record the speakers, students, doctoral students and undergraduates were involved as a scientific practice, 
as well as employees of the institute, colleagues from different parts of the country, as well as acquaintances and 
relatives. Recording the voice-overs took about a year, and experts in the field of linguists and linguistics were 
involved to evaluate and review the corpus in order to ensure high quality.
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Recordings of telephone conversations were provided by the telecommunications company for scientific use 
only. Transcribing of telephone conversations was carried out on the basis of the developed methodology for the 
compilation of texts, since this speech is spontaneous, and may contain information in a foreign language, and 
also speech may contain various kinds of speech noises, non-speech noises, such as a tone dial signal, a telephone 
beep, sounds resembling a blow, a click, as well as sounds that serve to think about the next statement. In addi-
tion, there may be slurred speech, overlapping of several speakers, etc. It should be noted that the selection of text 
arrays with predetermined statistical requirements for the contextual use of phonemes is a very time-consuming 
task and took quite a long time. This process took 5–6 months and is still ongoing. it was necessary to check not 
only the speech data, but also the correctness of the transcription of the data.

The speech recognition system does not require the creation of a dictionary at the phoneme level, it is enough 
to have audio data with text data.

After the above works, one of the important elements was created—a vocabulary base for the speech recogni-
tion system (10,805 non-repeating words). All recorded texts are collected in one file and repeated words have 
been removed. Once sorted alphabetically.

The audio data were in .wav format. All audio data have been converted to a single channel. The PCM method 
was used to convert the data into digital form. Discrete frequency 44.1 kHz, 16-bit.

The PyTorch toolkit was used for the Transformer models. The experiments were carried out on a server 
with eight AMD Ryzen 9 GPUs with a GeForce RTX3090. The datasets were stored on 1000 GB SSD memory 
to allow faster data flow during training.

Results. To optimize the model, a gradient descent optimizer based on  Adam27 was used with optimal 
parameters β1 = 0.8, β2 = 0.95 и ϵ =  10−4, which leads to an increase in the learning  rate10. To improve the model, 
parameter values during training that affect model learning qualities were configured. At the training stage, 3 
regularization methods were used, as indicated  in10, these are residual dropout, level normalization and label 
smoothing. Residual dropout is applied before data normalization with a factor equal to 0.3 and then nor-
malization is applied. The label smoothing method was applied during training with a parameter of 0.1. These 
regularization techniques improve the accuracy of the system’s metrics and keep training from overlapping the 
training set. The proposed  in28 method was used to initialize the Transformer weights and as a study, 6 encoders 
and 6 decoders were installed, which are located one above the other. All configurable parameters were set the 
same for the two datasets. The packet size was fixed at 64. For the CTC, the interpolation weight was set to 0.2 
and consists of a directional six-layer BLSTM with 256 cells in each layer. The beam research width at the decode 
stage is 15. The language model contains two 1024-unit LSTM layers and it was trained with crated vocabulary 
base for speech recognition system. The model has been trained for 45 epochs.

The following tables (Tables 1,2) show the results for CER and WER of the built models on two databases 
(dataset). Experiments were carried out to recognize Kazakh speech using different models.

The model trained on a pure data set showed competitive results only with the use of an external language 
model. In Table 1, it can be seen that the Transformer model with CTC works well with and without the use of 
the language model and achieved a CER of 6.2% and a WER of 13.5%. The integration of an external language 
model made the system heavier, but significantly reduced the CER and WER rates by 3.7 and 8.3%, respectively.

As can be seen from the tables, the Transformer + CTC LM model shows the best result on two databases. 
In addition, the Transformer model with CTC learned faster and converged quickly compared to other models 
than without it (Figs. 4,5).

The resulting model was also easier to integrate with LM. With the help of the CTC, the obtained data were 
aligned.

The results obtained during the experiment prove the effectiveness of the joint use of the CTC with the  
E2E language model and showed the best result on all datasets in Kazakh. In addition, adding a CTC to our 

Table 1.  Model results on database 1—Read speech.

Model CER WER

CTC LM 8.5 16.9

Transformer 7.6 14.1

Transformer + CTC decode 6.2 13.5

Transformer + CTC LM 3.7 8.3

Table 2.  Model results on database 2—Conversational telephone speech.

Model CER WER

CTC LM 11.2 18.5

Transformer 15.9 21.2

Transformer + CTC decode 10.5 17.4

Transformer + CTC LM 9.6 15.8
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model generally improves the performance of the system. In the future, it is necessary to expand our speech 
corpus and improve CER and WER.

Discussion
To improve the performance of these metrics, a language model trained on the basis of RNN was integrated 
into the model. This is the only way to achieve good results in our case. In addition, if you conduct additional 
experiments with a corpus that has more volume, then this addition can also affect the quality of recognition. 
However, increasing the amount of data for training will probably not solve the problem just like that. There are 
a large number of dialects and accents of Kazakh speech. It is not possible to collect enough data for all cases.

Speech recognition systems make many more errors as noise increases. This can be noticed on the basis of 
experiments related to the recognition of conversational telephone speech (Table 2). The model cannot simulta-
neously recognize 2 people who are talking at the same time, this leads to the overlap of voice data. The issues of 
diarization and separation of sources and the indicators for determining semantic errors have not been resolved.

Transformer takes into account the entire context and learns the language model better, and CTC helps the 
model learn to produce recognition that is optimally aligned in time with the recording. This architecture can 
be further adapted for streaming speech recognition.

Conclusion
In this paper, the Transformer architecture for automatic recognition of Kazakh continuous speech was consid-
ered, which uses self-attention components. Despite the multiple model parameters that need to be tuned, the 
training process can be shortened by parallelizing the processes. The combined Transformer + CTC LM model 
showed better results in Kazakh speech recognition in terms of character and word recognition accuracy, and 
reduced these figures by 3.7 and 8.3%, respectively, than using them separately. This proves that the implemented 
model can be applied to other low-resource languages.

In further research, it is planned to increase the speech corpus for the Kazakh language to conduct experi-
ments on the implemented model, and it is also necessary to make significant improvements to the Transformer 
model to reduce word and symbol errors in the recognition of Kazakh continuous speech.

Figure 4.  Comparing curves when training a model on Read speech.

Figure 5.  Comparative graph of Transformer + CTC and other models on the test set on Read speech.
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