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CT‑based radiomics signature 
for differentiation between cardiac 
tumors and thrombi: 
a retrospective, multicenter study
Ji Won Lee1,4, Chul Hwan Park2,4, Dong Jin Im3, Kye Ho Lee3, Tae Hoon Kim2, 
Kyunghwa Han3,4* & Jin Hur3,4*

The study aimed to develop and validate whether the computed tomography (CT) radiomics analysis 
is effective in differentiating cardiac tumors and thrombi. For this retrospective study, a radiomics 
model was developed on the basis of a training dataset of 192 patients (61.9 ± 13.3 years, 90 men) 
with cardiac masses detected in cardiac CT from January 2010 to September 2019. We constructed 
three models for discriminating between a cardiac tumor and a thrombus: a radiomics model, a clinical 
model, which included clinical and conventional CT variables, and a model that combined clinical 
and radiomics models. In the training dataset, the radiomics model and the combined model yielded 
significantly higher differentiation performance between cardiac tumors and cardiac thrombi than 
the clinical model (AUC 0.973 vs 0.870, p < 0.001 and AUC 0.983 vs 0.870, p < 0.001, respectively). 
In the external validation dataset with 63 patients (59.8 ± 13.2 years, 26 men), the combined model 
yielded a larger AUC compared to the clinical model (AUC 0.911 vs 0.802, p = 0.037). CT radiomics 
analysis is effective in differentiating cardiac tumors and thrombi. In conclusion, the combination of 
clinical, conventional CT, and radiomics features demonstrated an additional benefit in differentiating 
between cardiac tumor and thrombi compared to clinical data and conventional CT features alone.

Although cardiac tumors are rare, it is very important to diagnose them accurately due to various complications 
such as stroke, myocardial infarction, and arrhythmia1. In particular, the differential diagnosis of cardiac tumors 
and cardiac thrombi is essential for establishing treatment strategies2,3. Surgical resection is recommended for 
benign tumor such as cardiac myxoma or large papillary fibroelastoma, whereas cardiac thrombus can be man-
aged with anticoagulation or thrombectomy3,4. Cardiac magnetic resonance imaging (CMR) has been widely 
used as an imaging modality of choice in patients with a cardiac mass5. However, the CMR process is hampered 
by high cost, long acquisition time, relatively low spatial resolution, and limited feasibility in unstable patients. 
Cardiac computed tomography (CT) can be an alternative imaging technique for evaluating cardiac masses, 
especially in patients with known contraindications for CMR or in patients with non-diagnostic images from 
other non-invasive methods. However, cardiac CT has not been widely used for this purpose because the tissue 
contrast of cardiac CT is inferior to that of CMR6. Also, additional non-contrast and delayed CT imaging can be 
required to distinguish cardiac tumors from thrombi7.

Radiomics, which is an emerging tool in the field of precision medicine, is a quantitative method of reveal-
ing associations between qualitative and quantitative information extracted from clinical images8,9. Radiomics 
converts clinical images such as CT scans into high-throughput quantitative data that can be used to improve 
diagnostic, prognostic, and predictive accuracy. The basic concept of the process is that both qualitative and 
quantitative information in clinical images may reflect the basic pathophysiology of the tissue10. Therefore, 
non-invasive and quantitative radiomic features can complement the information gained from tissue sampling 
and circulating biomarkers. Radiomics has mainly been applied to oncology studies, but recently it has gained 
increasing use for the diagnosis and assessment of prognosis of cardiovascular disease11–17. A recent study using 
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CMR introduced the diagnostic potential of the radiomics score derived from native T1 maps to differentiate 
cardiac tumors from thrombi18.

This study aimed to develop a radiomics signature and validate whether a CT radiomics analysis is effective in 
differentiating cardiac tumors and thrombi. In addition, we evaluated whether the CT radiomics analysis could 
provide additional diagnostic performance to differentiate between a cardiac tumor and a thrombus compared 
to clinical and conventional CT features.

Methods
Ethical considerations.  This retrospective multicenter study was approved by the Institutional Review 
Board of each center (Severance Hospital clinical trial center, Pusan National University Hospital clinical trial 
center and Gangnam Severance Hospital clinical trial center), and the requirement of obtaining informed con-
sent was waived (Severance Hospital clinical trial center, Pusan National University Hospital clinical trial center 
and Gangnam Severance Hospital clinical trial center). All methods were performed in accordance with the 
relevant guidelines and regulations.

Study design and patient selection.  In this multicenter study, a radiomic analysis was applied retro-
spectively to two independent data sets. For the training dataset, we retrospectively enrolled 257 consecutive 
patients who met the following inclusion criteria at each institution I: (1) ≥ 19 years old, (2) underwent a cardiac 
CT scan for a suspected cardiac mass from January 2010 to September 2019, (3) cardiac mass ≥ 1 cm on car-
diac CT, and (4) underwent surgery, biopsy, or follow-up CT/transesophageal echocardiography for diagnosis 
of a cardiac mass. Among them, we excluded patients with unsatisfactory CT image quality (n = 35), patients 
whose final diagnosis was inconclusive (n = 18), or patients whose medical records such as risk factors, physical 
examination, and blood tests were missing (n = 12). Finally, a total of 192 patients (mean age of 61.9 ± 13.3 years, 
90 men) with cardiac masses were included in the training dataset. For the external validation dataset, we ret-
rospectively included 63 patients (mean age of 59.8 ± 13.2 years, 26 men) with cardiac masses who underwent 
cardiac CT from two independent institutes (Institution II and Institution III) with the same inclusion and 
exclusion criteria. (Fig. 1).

All data entry, data management, and analyses were coordinated or performed at a data-coordinating center. 
In our database, the following clinical and radiological characteristics were recorded: age, sex, history of cerebro-
vascular accident (CVA), atrial fibrillation or flutter, diabetes mellitus, hypertension, dyslipidemia and smoking, 
history of cardiac disease (including valvular heart disease, and congestive heart failure), histology subtypes, 
cardiac mass location, mass size, and mass density.

Cardiac computed tomography (CT) examinations.  All patients were required to be fasting for at 
least 4 h and abstain from caffeine at least 12 h before their CT examination. Beta blockers were administered 
in patients with high heart rates. All cardiac CT examinations were performed using a (at minimum) 64-slice 
multi-detector single- or dual-source CT scanner. The type of scanner used differed among institutions and 
included both single-source and dual-source scanners. For the training dataset, imaging was performed using 
the following CT scanners: SOMATOM Definition Flash, (Siemens, GmbH, Erlangen, Germany) and Revolu-
tion CT, (GE Healthcare, Waukesha, WI, USA). For the external validation dataset, imaging was performed 
using the following CT scanners: SOMATOM Definition, Revolution CT, and Brilliance 64 (Philips Healthcare, 
Cleveland, OH, USA). All CT images were acquired according to standardized scanning protocols (Supplemen-

Figure 1.   Patient selection flowchart.
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tary Table 1) adapted to the equipment at each center. Axial CT images reconstructed with 0.625–0.9 mm slices 
and 0.45–0.625 mm intervals were used for image analysis.

Image analysis.  Image analyses were performed at the data-coordinating center by two experienced board-
certificated cardiac radiologists with 8 and 11 years of experience in cardiac CT imaging who were blinded to 
the clinical and histologic findings. Conventional CT variables including cardiac mass location, mass size, mass 
density (defined by the Hounsfield unit [HU]) were recorded.

CT radiomic feature extraction.  The process of radiomics analysis is depicted in Fig. 2. Contrast enhanced 
cardiac CT images were first registered, followed by mass segmentation by two experienced board-certificated 
cardiac radiologists who were blinded to the clinical and histologic findings for the training dataset. A Digital 
Imaging and Communications in Medicine (DICOM) file was loaded to commercialized software (AVIEW, 
Coreline soft Inc., Seoul, South Korea) and lesion segmentation was performed for analysis. For quantitative 
analysis, the entire volume of interest (VOI) of the cardiac mass was delineated around the mass outline slice 
by slice on the axial CT images using the software. Specifically, after importing DICOM files into the software, 
we used brush tools to manually delineate the VOI slice-by-slice at the voxel level. Image magnification and 
3-dimensional view techniques were used to facilitate precise segmentation. Feature extraction was performed 
using an AVIEW software package (Coreline Soft Co., Ltd., version 1.0.34.26) based on open source program 
for radiomic analysis, Pyradiomics (Pyradiomics library, version 2.2.0; Computational Imaging and Bioinfor-
matics Lab, Harvard Medical School19. In this study, 127 radiomic features were extracted: 25 shape features, 31 
first-order histogram features, 22s-order texture features, and 49 high-order features. For the external validation 
dataset, radiomic features were extracted in the same way by one radiologist.

CT radiomic feature selection and model construction.  Prior to feature selection and model build-
ing, no data transformation or standardization was conducted. Intraclass correlation coefficients based on a two-
way mixed effect, were applied to perform a reproducibility assessment of CT radiomic features. The features 
with correlation coefficients > 0.75 were chosen for further analysis (Supplementary Table 2). Therefore, a total 
98 of 127 features were selected as candidates for a least absolute shrinkage and selection operator (LASSO) 
analysis. The LASSO logistic regression model was used to select the appropriate radiomics features and build a 
classification model20. Ten-fold cross validation was performed to solve the overfitting. Features were selected if 
the mean of the calculated area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 
equivalent to the maximum value. In addition, multivariable logistic regression was used to generate clinical and 
CT variables. Only variables with p < 0.05 in the univariable analyses were added to the final multivariable mod-
els to prevent model over-fitting. We constructed three models for discriminating between a cardiac tumor and 
a thrombus: a radiomics model, using CT radiomics variables; a clinical model, using clinical and conventional 
CT variables; a combined model, using clinical, conventional CT, and radiomics variables. Feature selection was 
performed only on the training dataset in order to maintain independence between the training and external 
validation datasets. The ROC curve was plotted to assess the differentiating performance of the three models 
with the training and external validation datasets.

Statistical analysis.  Categorical variables were compared by the chi-square or Fisher’s exact test. The dif-
ferences of continuous variables were analyzed through the Student’s test or the Mann–Whitney U test. Demo-
graphics, CT results, and CT radiomic features were compared between cardiac tumor and thrombus groups. 
The best cutoff for the predicted probability of each model in the training set was based on the Youden index 
(when the sum of sensitivity and specificity becomes the maximum). The model performance was compared 
using the ROC curve of each model to identify the model with the higher predictability. Calibration curves 
were performed to assess the calibration of the radiomics model, accompanied with the Brier score and the 
Spiegelhalter z-test. To quantify the discrimination performance of the radiomics model, AUCs were calculated 
in training and external validation datasets. Obuchowski method and Delong method were used to compare the 
performance of the ROC curves21,22.

Figure 2.   Flowchart showing the process of radiomics analysis. LASSO least absolute shrinkage and selection 
operator; ROC receiver operating characteristic.
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Values of p < 0.05 were considered statistically significant. All statistical analyses were completed by an R 
statistical package (version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria). The packages named 
‘caret’, ‘rms’, and ‘pROC’ were used for feature selection.

Results
Patient characteristics.  The study included 192 (mean age of 61.9 ± 13.3 years, 90 men) and 63 patients 
(mean age of 59.8 ± 13.2 years, 26 men) in the training and external validation datasets, respectively. The number 
of patients who underwent surgery or biopsy in the training and external validation datasets were 112 and 39, 
respectively. The cardiac masses in the other patients (80 in the training set and 24 in the external validation set) 
were diagnosed as thrombi based on the patients’ response to anticoagulation treatment during follow-up. In 
the training dataset, there were 101 cardiac tumors and 91 thrombi in the 192 patients. Among the 101 cardiac 
tumors, 82 were benign, including myxoma (n = 69), papillary fibroelastoma (n = 4), cavernous hemangioma 
(n = 3), lipoma (n = 3), and fibroma or angiofibroma (n = 3). Nineteen were malignant, including metastasis 
(n = 11), lymphoma (n = 7) and sarcoma (n = 1). In the external dataset, there were 38 cardiac tumors and 25 
thrombi in the 63 patients. Among the 38 cardiac tumors, 36 were myxoma and 2 were sarcoma. All tumors were 
confirmed by surgical excision or biopsy.

The baseline characteristics of all patients are summarized in Table 1. In the training dataset, patients with 
thrombi had higher incidences of history of CVA (p = 0.004), atrial fibrillation or flutter (p < 0.001), and history of 
cardiac disease (p < 0.001) than those with cardiac tumors. Other clinical characteristics of the two groups were 
not significantly different. The mean diameter of cardiac tumors was significantly larger than that of thrombi 
(35.7 ± 16.7 vs 27.7 ± 15.0 mm, p < 0.001). In the external validation dataset, patients with thrombi had higher 
incidences of a history of atrial fibrillation or flutter (p = 0.005) than those with cardiac tumors. The mean diam-
eter of the cardiac tumors was significantly larger than that of thrombi (33.9 ± 15.2 vs 26.2 ± 13.7 mm, p = 0.045).

Clinical and CT variables associated with cardiac tumor or thrombus.  The univariable logistic 
regression analysis showed that the presence of old CVA (odds ratio (OR), 0.191; 95% confidence interval (CI), 
0.061–0.604; p = 0.005), history of cardiac disease (OR, 0.100; 95% CI, 0.032–0.331; p < 0.001), atrial fibrillation 
or flutter (OR, 0.100; 95% CI, 0.052–0.213; p < 0.001), and location of left ventricle (LV) (OR, 0.132; 95% CI, 
0.042–0.347; p < 0.001) was predictive of cardiac thrombi. In addition, larger mass (OR, 1.032; 95% CI, 1.013–
1.062; p = 0.004) was significantly associated with a prediction of a cardiac tumor (Table 2). In the multivariable 
logistic regressions that were adjusted for age and sex, the presence of old CVA (OR, 0.291; 95% CI, 0.088–0.960; 
p = 0.043), history of cardiac disease (OR, 0.072; 95% CI, 0.022–0.236; p < 0.001), atrial fibrillation or flutter (OR, 
0.053; 95% CI, 0.020–0.236; p < 0.001), and cardiac mass in the LV (OR, 0.121; 95% CI, 0.038–0.389; p < 0.001) 
were predictive of cardiac thrombi. In addition, larger mass (OR, 1.038; 95% CI, 1.038–1.074; p = 0.034) was 
significantly associated with the prediction of a cardiac tumor (Table 2).

Table 1.   Baseline characteristics of training and validation study datasets. Values are presented as mean value 
(± standard deviation) or patient number (%). CT computed tomography, CVA cerebrovascular accident, 
HU hounsfield unit, LA left atrium, LV left ventricle, RA right atrium, RV right ventricle. a Current or former 
smoker. b Cardiac disease includes valvular heart disease and congestive heart failure.

Characteristic

Training dataset External validation dataset

Tumor Thrombus

p value

Tumor Thrombus

p value(n = 101) (n = 91) (n = 38) (n = 25)

Age 62.0 ± 13.8 61.9 ± 12.8 0.975 59.1 ± 13.0 60.5 ± 13.4 0.672

Sex (male) 45 (44.5) 45 (49.4) 0.592 14 (36.8) 12 (48.0) 0.53

Clinical condition

Old CVA 4 (3.9) 16 (17.6) 0.004 3 (7.9) 6 (24.0) 0.156

History of cardiac diseaseb 3 (2.9) 22 (24.1)  < 0.001 4 (10.5) 8 (32.0) 0.072

Atrial fibrillation or flutter 11 (10.8) 50 (54.9)  < 0.001 3 (7.9) 10 (40.0) 0.005

Diabetes mellitus 23 (22.7) 23 (25.3) 0.8 6 (15.7) 6 (24.0) 0.621

Hypertension 38 (37.6) 41 (45.1) 0.364 14 (36.8) 8 (32.0) 0.903

Dyslipidemia 4 (3.9) 9 (9.9) 0.171 7 (18.4) 4 (16.0) 0.925

Smokinga 29 (28.7) 31 (34.1) 0.515 6 (15.7) 7 (28.0) 0.388

Location

LA 68 (67.4) 60 (65.9) 0.947 24 (63.2) 14 (56.0) 0.758

LV 6 (5.9) 17 (18.7) 0.012 3 (7.9) 7 (28.0) 0.074

RA 22 (21.8) 14 (15.4) 0.342 10 (26.3) 4 (16.0) 0.531

RV 5 (4.9) 0 (0.0) 0.092 1 (2.6) 0 (0.0) 0.823

CT measurement

Size (mm) 35.7 ± 16.7 27.7 ± 15.0  < 0.001 33.9 ± 15.2 26.2 ± 13.7 0.045

CT density (HU) 74.3 ± 25.7 69.2 ± 20.6 0.134 74.9 ± 26.2 58.7 ± 16.3 0.007
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Model performance and validation.  Of the 127 radiomics features, the 98 most reproducible features 
(interobserver intraclass correlation coefficient values > 0.75) were selected for subsequent analysis. Using 
LASSO regression, a total of 64 features (Supplementary Table 3) were selected to construct a radiomics model 
for discriminating cardiac tumors and cardiac thrombi. Table 3 and Fig. 3 demonstrate the discrimination per-
formance of the radiomics, clinical, and the combined (radiomics plus clinical model) models. In the training 
dataset, the radiomics model showed good discriminatory performance with an AUC of 0.973 [95% CI, 0.956–
0.989]. Using optimal cutoff values of 0.507, 0.684, and 0.488, diagnostic accuracy of the radiomics, clinical, and 
combined models were 93.0%, 81.5%, and 93.5%, respectively. The radiomics and combined models yielded 
significantly higher discriminating performance between cardiac tumors and thrombi than the clinical model 
(AUC 0.973 vs 0.870, p < 0.001 and accuracy 93.5% vs 81.5, p < 0.001; AUC 0.983 vs 0.870, p < 0.001 and accu-
racy 93.5% vs 81.5%, p < 0.001, respectively). Combined model yielded higher discriminating performance than 
radiomics model alone (AUC 0.983 vs AUC 0.973, p = 0.022). In the external validation dataset, the combined 
model yielded the largest AUC of 0.911 [95% CI, 0.839–0.982], which supported the improved discriminating 
performance compared to the clinical model (AUC 0.911 vs 0.802, p = 0.037). Sensitivity and accuracy of the 
radiomics model and the combined model was significantly higher than those of the clinical model. However, 
the difference of the differentiation performance between the radiomics model and the clinical model was not 
statistically significant (AUC 0.872 vs 0.802, p = 0.331). The calibration curves of the combined model showed 

Table 2.   Univariable and multivariable analysis of training dataset for the clinical model (clinical and CT 
variables) predicting the cardiac tumor. Values are presented as mean value (± standard deviation) or patient 
number (%). AUC​ Area under the curve, NA not applicable. a Current or former smoker.

Characteristic
AUC of individual characteristics (95% 
CI)

Univariable analysis Multivariable analysis

OR (95% CI) p value OR (95% CI) p value

Age 0.510 (0.427–0.592) 1.0 (0.980–1.020) 0.975 1.019 (0.984–1.055) 0.300

Sex (male) 0.476 (0.405–0.547) 0.821 (0.475–1.452) 0.497 0.980 (0.466–2.061) 0.957

Clinical condition

Old CVA 0.432 (0.388–0.476) 0.191(0.061–0.604) 0.005 0.291 (0.088–0.960) 0.043

History of cardiac disease 0.394 (0.347–0.441) 0.100 (0.032–0.331)  < 0.001 0.072 (0.022–0.236)  < 0.001

Atrial fibrillation or flutter 0.720 (0.660–0.780) 0.100 (0.052–0.213)  < 0.001 0.053 (0.020–0.236)  < 0.001

Diabetes mellitus 0.487 (0.427–0.548) 0.871 (0.451–1.692) 0.685

Hypertension 0.463 (0.393–0.533) 0.743 (0.412–1.312) 0.297

Dyslipidemia 0.470 (0.434–0.507) 0.382 (0.112–1.267) 0.114

Smokinga 0.474 (0.407–0.541) 0.894 (0.607–1.304) 0.536

Location

LA NA 1 1

LV NA 0.132 (0.042–0.347)  < 0.001 0.121 (0.038–0.389)  < 0.001

RA NA 0.531 (0.240–1.213) 0.131

RV NA 3.772 (0.412–502.4) 0.292

CT measurement

Size (mm) 0.647 (0.571–0.723) 1.032 (1.013–1.062) 0.004 1.038 (1.003–1.074) 0.034

CT density (HU) 0.536 (0.457–0.614) 1.0 (0.991–1.012) 0.831

Table 3.   Discrimination performance of radiomics, clinical, and combined (radiomics plus clinical model) 
models in training and validation datasets. AUC​ area under the curve, NA not applicable.

Dataset

Models p value comparison of models

Radiomics model Clinical model Combined model Radiomics vs clinical
Radiomics vs 
combined Clinical vs combined

Training

AUC (95% CI) 0.973 (0.956–0.989) 0.870 (0.820–0.921) 0.983 (0.971–0.995)  < 0.001 0.022  < 0.001

Sensitivity (%) 92.6 73.8 94.6  < 0.001 0.153  < 0.001

Specificity (%) 93.4 90.1 92.3 0.315 0.478 0.515

Accuracy (%) 93.0 81.5 93.5  < 0.001 0.617  < 0.001

External validation

AUC (95% CI) 0.872 (0.786–0.958) 0.802 (0.690–0.915) 0.911 (0.839–0.982) 0.331 0.342 0.037

Sensitivity (%) 95.5 71.1 100.0  < 0.001 0.426  < 0.001

Specificity (%) 78.0 72.0 81.3 0.229 0.321 0.069

Accuracy (%) 85.3 71.4 89.4 0.021 0.407 0.004
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good calibration for predictive probabilities, with a non-significant goodness of fit in the Spiegelhalter z-test for 
both the training dataset (p = 0.610) and the validation dataset (p = 0.969) (Fig. 4).

Tables 4 and 5 demonstrated the multivariable analysis for the conventional CT model (size and CT density) 
predicting the cardiac tumor in the training dataset and the discrimination performance of the radiomics and 
conventional CT model (size and CT density). In the training dataset, radiomics model yielded significantly 
higher discriminating performance between cardiac tumors and thrombi than the conventional CT model (AUC 
0.973 vs 0.652, p < 0.001). However, the differentiation performance between the radiomics model and the con-
ventional CT model was not statistically significant (AUC 0.872 vs 0.753, p = 0.122) in the external validation 
dataset. (Figs. 5 and 6).

Discussion
This study was designed to develop and validate whether the CT radiomics analysis technique is effective in dif-
ferentiating cardiac tumors and thrombi. The main finding was that a combination of clinical, conventional CT, 
and radiomics features demonstrated additional benefits in differentiating between cardiac tumors and thrombi 
compared to clinical model (clinical and conventional CT features) alone.

Distinguishing a cardiac thrombus from a tumor is challenging because the clinical and radiological signs 
are very similar, but the subsequent medical treatment is different. CMR is currently the standard method for 
evaluating cardiac mass5. Previous studies have reported that late gadolinium enhancement-CMR can be useful 
for differentiating between cardiac tumors and thrombi23–25.

Cardiac CT has been proposed to help differentiate between cardiac tumors and thrombi as part of a multimo-
dality approach. Although useful imaging findings of cardiac tumors and thrombi can be found on CT scans, the 
potential overlap in the imaging findings often may result in persisting uncertainty in the differentiation of the 
two diseases. Previous studies have used only visual assessment or HU–based CT values to differentiate between 
cardiac tumors and thrombi in CT26–28. The problem with these analyses is moderate inter-reader reproducibility 
of visual assessment and only rely on the distribution of CT numbers, which shows major overlaps between 
two disease entities. In our present study, a larger cardiac mass (OR, 1.09; 95% CI, 1.04–1.07; p = 0.034) was 
significantly associated with the prediction of a cardiac tumor, while the CT-based HU value was not predictive 
for either cardiac tumor or thrombus. As different disease entities require different management strategies, it is 
crucial to obtain a correct diagnosis in the most noninvasive way as possible.

Radiomics is an emerging field of study that allows to extract quantitative imaging features from radiological 
datasets and describe the heterogeneity and spatial complexity of given regions of interest. This feature genera-
tive technique makes it possible to precise identification of phenotype abnormalities in medical images and 
may provide additional information, potentially allowing histological classification of abnormalities based on 
the images29. In this study, we constructed three models for discriminating between cardiac tumor and cardiac 
thrombus and compared the model performance in testing and validation datasets. Our radiomics model showed 
good discriminatory performance between cardiac tumors and thrombi with AUC of 0.973 and 0.872 in train-
ing and validation datasets, respectively. When we combined the radiomics model with the clinical model, our 
combined model showed significantly higher discriminating performance between cardiac tumors and thrombi 
than that of the clinical model (clinical and conventional CT parameters) in an external validation dataset (AUC 
0.911 vs 0.802, p = 0.037). In both training and external datasets, sensitivity and diagnostic accuracy of com-
bined models were higher than those of clinical model. This result validated and supported that radiomics may 
have additional value in the differentiation between cardiac tumors and thrombi using CT. Recent investigation 
demonstrated that when histological classification of coronary lesions can be predicted using a radiomics-based 
machine learning model, which outperformed visual assessment30,31. It seems that radiomics can extract new 
information from medical images, which can improve the discriminatory power of current medical devices.

Figure 3.   ROC curve of the radiomics model, clinical model, and combined model with radiomics and clinical 
model to predict cardiac tumor in different datasets. (a) The training dataset. (b) The external validation dataset.
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Figure 4.   Calibration curves of the different models in the training and validation datasets. (a) The radiomics 
model. (b) The clinical model. (c) The combined model.

Table 4.   Multivariable analysis of training dataset for the conventional CT model (size and CT density) 
predicting the cardiac tumor.

Characteristic Adjusted OR (95% CI) p value

Size (mm) 1.035 (1.012–1.058) 0.003

CT density (HU) 1.004 (0.993–1.016) 0.426
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Table 5.   Discrimination performance of radiomics and conventional CT models in training and validation 
datasets.

Dataset Models AUC (95% CI) p value comparison of models

Training
Radiomics model 0.973 (0.956–0.989)

 < 0.001
Conventional CT model 0.652 (0.576–0.728)

External validation
Radiomics model 0.872 (0.786–0.958)

0.122
Conventional CT model 0.753 (0.625–0.880)

Figure 5.   A 67-year-old man with cardiac thrombus in the left ventricle. A lobulated mass (25 mm) in the left 
ventricle. The predictive probability of tumor based on radiomics features of this mass was 0.237.

Figure 6.   A 53-year-old man with cardiac myxoma in the left atrium. A lobulated mass (43 mm) in the left 
atrium. The predictive probability of tumor based on radiomics features of this mass was 0.821.
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Despite the novel analysis in this study, several limitations must be acknowledged. First, the proposed radiom-
ics model was established on the basis of data obtained from a single center. Although our radiomics model was 
validated with an external validation dataset, prospective multicenter studies with considerably large datasets are 
needed to further validate the robustness and reproducibility of our radiomics analysis. Second, the CT protocol 
can influence the results of the radiomics approach. In our study, image standardization was not performed when 
constructing the CT radiomics model. For CT radiomics, image reconstruction algorithms (i.e., reconstruction 
kernels) and section thickness have been major sources of radiomic feature variability32,33. A previous study 
demonstrated that different kernels significantly reduced the reproducibility of radiomic features, with only 
15.2% of radiomic features were reliable when using different reconstruction kernel33. Although the CT images 
were not standardized, the results of our radiomics model improved the ability to differentiate between cardiac 
tumors and thrombi in external validation datasets with different CT images.

In conclusion, CT radiomics analysis is effective in differentiating cardiac tumors and thrombi. The combi-
nation of clinical, conventional CT, and radiomics features demonstrated additional benefits in differentiating 
between cardiac tumors and thrombi compared to clinical and conventional CT features alone. Hence, the com-
bined model may be useful to differentiate between cardiac tumors and thrombi when other imaging modalities 
are inconclusive.
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