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Real‑time realizable mobile 
imaging photoplethysmography
Hooseok Lee1,4, Hoon Ko1,4, Heewon Chung1,4, Yunyoung Nam2, Sangjin Hong3 & 
Jinseok Lee1*

Photoplethysmography imaging (PPGI) sensors have attracted a significant amount of attention 
as they enable the remote monitoring of heart rates (HRs) and thus do not require any additional 
devices to be worn on fingers or wrists. In this study, we mounted PPGI sensors on a robot for active 
and autonomous HR (R-AAH) estimation. We proposed an algorithm that provides accurate HR 
estimation, which can be performed in real time using vision and robot manipulation algorithms. By 
simplifying the extraction of facial skin images using saturation (S) values in the HSV color space, 
and selecting pixels based on the most frequent S value within the face image, we achieved a reliable 
HR assessment. The results of the proposed algorithm using the R-AAH method were evaluated by 
rigorous comparison with the results of existing algorithms on the UBFC-RPPG dataset (n = 42). The 
proposed algorithm yielded an average absolute error (AAE) of 0.71 beats per minute (bpm). The 
developed algorithm is simple, with a processing time of less than 1 s (275 ms for an 8-s window). 
The algorithm was further validated on our own dataset (BAMI-RPPG dataset [n = 14]) with an AAE of 
0.82 bpm.

Owing to their capacity to measure heart rates (HRs) without any contact with human skin, photoplethysmog-
raphy imaging (PPGI) sensors have been the focus of considerable attention. A PPGI sensor uses a camera with 
the capability of face detection and records images of facial skin, as skin can represent changes in arterial blood 
volume between the systolic and diastolic phases of the cardiac cycle1,2. Thus, these sensors enable remote moni-
toring of HRs and do not require any device to be worn on the finger3–5 or wrist6–8. However, these convenient 
monitoring capabilities have not led to successful commercialization through FDA approval, because they have 
a lower accuracy than contact-PPGs, as they can be sensitive to human movement and ambient light change. 
Recently, PPGI sensors have been utilized in webcams (as a low-cost and low-quality solution) or high-quality 
industrial cameras (as a high-cost and better-quality solution) connected to a computer; moreover, various studies 
have presented diverse algorithms that have yielded high accuracy results9–17. However, this is a static approach, 
which makes it difficult to measure HRs during daily life activities; moreover, it makes practical application dif-
ficult in many real-life medical fields. In addition, most studies do not consider the computational complexity 
because a general purpose computer connected to a camera deals with the entire required process including 
face detection, face skin extraction, PPG acquisition and HR estimation. We believe that, for PPGI sensors to be 
applied and utilized in various medical fields, it is necessary to acquire PPG signals without space restrictions.

To extend the use of PPGI sensors, in this paper, we propose an algorithm that provides accurate HR estima-
tion, and can be performed in real time using vision and robot manipulation algorithms. We mounted PPGI 
sensors on a robot for active and autonomous HR (R-AAH) estimation. This dynamic approach allowed the robot 
to actively monitor HRs, which enables active medical services; the services include providing HR information 
to people in the vicinity of the robot. The proposed R-AAH navigates a specific physical space, while avoiding 
obstacles. It recognizes human faces and records images of facial skin while in motion; these images are then 
converted into PPGI signals, which are used in the estimation of the person’s HR. More specifically, R-AAH 
involves six stages: simultaneous localization and mapping (SLAM), robot navigation, face detection, facial skin 
extraction, PPGI signal conversion, and HR estimation. SLAM is the initial stage, whereby the robot constructs 
or updates a map of an unknown environment while simultaneously keeping track of its position18. During the 
robot navigation stage, the robot determines its own spatial position and constructs a plan for a path toward a 
designated position19. The face detection stage uses computer vision to detect faces in the environment20. The 
facial skin extraction stage identifies facial skin pixels that change according to the cardiac cycle. The conversion 
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of the PPGI signal and estimation of the person’s HR are then used to compute the HR value using the acquisition 
of PPG signals obtained from the facial skin pixels over time.

For the fast conversion of the PPG signal and estimation of the HR, we propose a simplified facial skin extrac-
tion algorithm, which allows for accurate HR estimation in real-time, even when using low-power hardware. We 
focused on reducing the computational complexity of the algorithm and increasing the accuracy for real-time 
implementation. Notably, the aim of this study is not to obtain a full-fledged optimized robot system, but to 
describe the implementation of all the six required stages, and focus on the development of an achievable real-
time system for estimating HR values per second using low-power hardware. In particular, we optimize the facial 
skin image by selecting pixels based on the most frequent saturation (S) value in the image, which resolved one 
of the obstacles of real-time operation.

Methods
Robot system description.  Figure 1 shows our designed device for active and autonomous HR estimation 
using a robot equipped with PPGI sensors. The complete system involves six stages, as outlined in the previ-
ous section. Figure 1a shows the robot we developed using a turtlebot2 framework (YUJIN ROBOT, Incheon, 
Korea). Within the framework, a three-dimensional (3D) camera (ASTRA PRO, ORBBEC, Michigan, USA) was 
mounted on the device for the SLAM and robot navigation stages; a web camera (Logitech BRIO, Switzerland) 
was used for the remaining stages. Both cameras were operated through a laptop computer (TFG175, Hansung, 
Seoul, Republic of Korea) with an AMD Ryzen 5 3400G, 3.70 GHz processor (having 8 GB RAM with 8 threads). 
The web camera had a frame rate of 30 frames per second (fps) and a pixel resolution of 640 × 480 in an uncom-
pressed 8-bit RGB format.

The device was provided with an initial map that indicated the designated start and destination coordinates 
(Fig. 1b, left); the robot then performed the SLAM, constructed a map of its surroundings based on data from 
the 3D camera (Fig. 1b, right), and localized its position within the mapped environment18,21. SLAM iterates 
the mapping and localization data (Fig. 1c, left) with respect to the initial map. In this study, we used a factored 
solution, FastSLAM, which estimated the robot’s position using a particle filter, and updated the map using an 
extended Kalman filter22.

Once the robot completed the SLAM, it navigated to the designated start position, and continued until 
it reached the designated destination. The navigation stage included two iterative steps of localization and 
pathfinding (Fig. 1c, right); we used the adaptive Monte Carlo localization (AMCL), known as particle filter 
localization23–25, for localization. The algorithm used a particle filter to determine the distribution of likely states 
to define where the robot was initially localized, combined with a posterior particle density estimation function. 
With each movement of the robot, the device updated the particle distribution to predict its new state (position 

Figure 1.   Overview of the proposed system for HR estimation using a PPGI mounted on a robot; (a) Robotic 
device based on a turtlebot2 framework with a 3D camera, a laptop and a webcam; (b) SLAM and navigation; 
(c) Real-time HR estimation via face detection, face skin image extraction, PPGI acquisition; (d) Algorithm flow 
chart for SLAM and navigation.
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and velocity); then, the particles were resampled using recursive Bayesian estimation based on measurements 
obtained (depth information) from a 3D camera. For the path-finding step, we used a dynamic window approach 
(DWA) to efficiently generate the trajectory of subsequent movement26. A DWA is an online collision avoidance 
strategy for mobile robots, derived directly from the dynamics of the robot; it is normally designed to adapt to 
the constraints imposed by the limited velocities and accelerations of the robot.

As the robot navigated, it searched for a human in its surroundings by detecting faces using the web cam-
era. For real-time face detection, we used a deep neural network (DNN) based single shot scale-invariant face 
detector (S3FD)27. The S3FD uses a scale-equitable framework with a wide range of anchor-associated layers 
and a series of appropriate anchor scales to handle different facial sizes. The architecture consists of a truncated 
VGG-16 network with extra convolutional layers, detection convolutional layers, normalization layers, predicted 
convolutional layers, and a multi-task loss layer. The detection layers are associated with specific anchor scales, 
ranging from 16 to 512, which enable the robot to detect different facial sizes. The DNN was trained using 12,880 
images from the WIDER FACE training set28, and the trained model achieved state-of-the-art performance on 
the majority of common face detection benchmarks, such as Annotated Faces in the Wild (AFW)29, PASCAL 
Face30, Face Detection Dataset, and the Benchmark (FDDB)31. The results of the face detection are summarized 
in Supplementary Table 1, where the WIDER FACE dataset was used for evaluation, and S3FD was used for face 
detection in this study.

Once a face was detected, the robot paused its navigation and performed HR estimation using PPG acqui-
sition. The image with the detected face was then categorized into two regions: facial skin providing pulsatile 
information, and non-facial skin, such as background or hair. The face skin regions were extracted from the 
image, and the non-pulsatile information was removed. Finally, the images of the extracted regions were con-
verted into a PPGI signal, which provided a real-time HR value (Fig. 1d). The robot estimated the person’s HR 
for 1 min, after which it resumed navigation to the original destination, repeating its search for a human in its 
surrounding. The process was repeated until the robot reached the final destination.

Problems with real‑time PPG acquisition.  In our proposed system, video images are acquired at a rate 
of 30 frames per second (fps). A key aspect of this study is to ensure that all steps, including those of face detec-
tion, skin image extraction, PPG signal conversion, and HR estimation, are realizable in real-time. Thus, for the 
given frame rate, to acquire a 1 s PPG, we need to perform 30 face detections and 30 skin image extractions from 
30 video images within a second. A short PPG window can increase time-resolution, while a long PPG window 
can improve SNR. However, the gain in performance from using a longer window comes at the price of an 
increased latency. In this study, for real-time HR estimation, we used an 8 s window PPGI segment per second 
(i.e., an 8 s window with a 1 s shift), similar to the parameters used in previously reported algorithms8,32. Using 
this method, we can provide an 8 s average HR value every second. However, the following question arises: is 
it possible to acquire the PPG signal and compute HR measurements within a second on a single CPU? Most 
previous studies have focused on the accuracy of HR estimation using PPGI17,33–36; however, such an algorithm, 
when applied to a robot in a system similar to the one we designed in this study, should focus not only on accu-
racy, but also on the complexity of the computations. Although it is beyond the scope of the current study, via 
accurate and real-time HR estimation, a robot can perform additional real-time calculations such as heart rate 
variability (HRV) analysis37, atrial fibrillation diagnosis38, and cardiac rehabilitation39,40, based on HR values.

Overall data flow.  Figure 2 illustrates the data flow for the estimation of a person’s HR. First, faces are 
detected in consecutive image frames (240 frames in 8 s, given the frame rate of 30 fps) and facial skin regions 
are extracted. The extracted images of multiple skin regions are then converted to PPG. Finally, HR is estimated 
using power spectrum analysis.

Face skin extraction with relative saturation value range (RSVR).  A facial landmark-based 
approach has been widely described for the task of extracting facial skin from an image17,33,34,41. This approach 
involves the recognition of the geometric structure of faces in images, and obtains a canonical alignment of a 

Figure 2.   Overview of the data flow for HR estimation.
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face based on translation, scale, and rotation. The resulting facial landmark-based networks proposed a variety 
of facial skin areas, such as rectangle-, bottom faced-, and polygon-shaped areas; they were able to estimate HRs 
with high accuracy. However, the use of the face landmark-based approach lead to heavy computational com-
plexity. This can make real-time processing difficult when computing HR values per second or when the robot is 
connected to a personal laptop computer.

To reduce the computational complexity, we identified facial skin areas using S values in the HSV color 
space. However, the detected face image may sometimes include hair and/or background that is not facial skin 
(Fig. 3a, yellow rectangle). Because the hair and background images do not contain any pulsatile information, 
the face skin extraction stage is one of the most important stages in acquiring a clean PPG signal. To extract only 
the facial skin areas (pixels) as the region of interest (ROI), we first converted the images with a detected face 
(inside the rectangle area) to HSV color space images, and obtained a histogram of the converted S values. We 
then applied a median filter of length 5 to the histogram (Fig. 3b). The most frequent S value in the image was 
denoted by histmax , and the width of the considered face skin region centered at histmax was defined as THrange . 
The S value in the (i, j) pixel from the k-th frame image was denoted by Sijk , and satisfies the following condition:

The red, green, and blue values in the (i, j) pixel from the original image in the k-th frame were denoted by 
R
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To find the optimum value of THrange , we set the value to be proportional to the size of the value histmax , as 
follows:

where α is a constant. In this study, we set α = 0.2 . We investigated the effects of a constant value α, and the 
method of choosing the S feature over the hue (H), value (V), red (R), green (G), and blue (B) to extract the face 
skin regions; these investigations are discussed in the “Results” section. Figure 3c shows the resultant face skin 
image obtained. Recently, Boccignone et al. argued that facial skin extraction requires an adaptive threshold 
technique because each face has its own features42. However, in this study, because the relative S value range 
(RSVR) extracts the face skin pixels based on the different histmax values in each image, the resultant successive 
image pixels over time are able to represent the pulsatile component of the cardiac cycle under different condi-
tions (i.e., ambient light and/or different subjects). Furthermore, the RSVR-based facial skin extraction method 
significantly reduces the complexity of the computations compared to current state-of-the-art methods17,33,34,41.
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Figure 3.   Overview of face skin extraction (from the public dataset UBFC-rPPG): (a) detected face is outlined 
by a yellow rectangle and may include hairs and parts of the background; (b) histogram of S values, distributed 
around the center value histmax (the most frequent S value on the face image); (c) resultant face skin image after 
applying the relative saturation (S) value range.
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 represent the averaged pixel value for each channel, W and H are the width and 

height of the detected face image (rectangle area), and Cotherwise
k  is the number of pixels in the rectangle area 

that are outside the optimal range histrange for each channel. The averaged pixel values for each channel can be 
arranged according to the image frame as

where N is the total number of image frames. Hence, the 8 s red channel data corresponding to the 240 samples 
can be expressed as

where s + 1 represents the starting image frame. Note that green and blue channel data can be expressed similarly 
(i.e. Gs+1:s+240 and Bs+1:s+240 ). Based on Rs+1:s+240 , Gs+1:s+240 , and Bs+1:s+240 , we applied the chrominance-based 
(CHROM)37, and derived the PPG signal, Ss+1:s+240 , as follows:

where

where the operator σ is the standard deviation.
Using this approach, we were able to obtain an 8 s PPG window signal every second. For each window signal, 

we applied a fourth-order Butterworth bandpass filter (BPF), with cutoff frequencies of 0.4 and 4 Hz. All subjects 
had HRs in the approximate range of 40–200 bpm, which includes both at rest subjects and subjects engaging 
in a high-intensity physical activity43–45. The filtered signal was then normalized to a zero mean with a unit vari-
ance. Subsequently, we estimated the power spectral density (PSD) of the filtered signal using Welch’s method46, 
in which the segment was divided into 8 sub-segments with 50% overlap, and each sub-segment was windowed 
with a Hamming window. Finally, we found the maximum power frequency fHR (Hz), and estimated the HR 
as HRest(t) = 60 · fHR bpm. The aforementioned framework for HR estimation using RSVR is summarized in 
Algorithm 1.
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Algorithm 1: Heart rate estimation method using RSVR method

Input: RGB/HSV W  H images

Initialize window index: = 0

// For 8-s window images (8  30 fps)
While (s<0 or stop)

For = 1:240

// : S value of (i ,j) pixel for the kth image
// , , : R, G and B values of (i ,j) pixel for the kth image

Find 

= 0

For =

For =

IF < +
0.2 ∙

2
> ―

0.2 ∙

2

THEN, [ ] = [ ]

ELSE

THEN, [ ] = [0 0 0]

= + 1

END For

END For

[ + + + ] =
1

∙ ―
∙

=1 =1

END For

Convert to PPG signal 
1+ + = [ 1+ , 2+ ⋯ 240+ ]

1+ + = [ 1+ , 2+ ⋯ 240+ ]

1+ + = [ 1+ , 2+ ⋯ 240+ ]

1+ + = 1+ + ― 1+ +

1+ + = 1+ + + 1+ + ― 1+ +

1+ + = 1+ + ―
1+ + )

1+ + ) 1+ +

Estimate HR 
Normalize with unit variance 

Apply a fourth-order Butterworth BPF of 0.4~4Hz cutoff frequency

Apply Welch method

Find the frequency corresponding the highest power

= + 30

END While

UBFC‑rPPG dataset.  The publicly released UBFC-RPPG47 dataset was used for training; this dataset is 
specifically designed for remote HR measurement tasks, and contains 42 one-minute long videos from 42 differ-
ent subjects. All participants provided consent for the publication of identifying images in an online open-access 
publication. The videos were recorded using a Logitech C920HD Pro camera with 30 fps and a resolution of 
640 × 480 pixels in an uncompressed 8-bit RGB format. Each subject was made to sit in front of a camera at a 
distance of approximately 1 m. Subjects were required to play a time-sensitive mathematical game, which caused 
variations in their HRs. The video recorded the natural rigid and non-rigid movements of the subjects. During 
the video recording, a transmitting pulse oximeter CMS50E-based PPG signal was simultaneously measured 
from a finger to obtain a reference HR, denoted HRtrue(t) . Pulse peaks in the reference HR were identified and 
inter-beat intervals were calculated, which were then resampled to 4 Hz by fitting a cubic spline to obtain con-
tinuous HR values.

BAMI‑rPPG dataset.  We tested our proposed algorithm, with the R-AAH framework, in real time. This 
testing dataset, named BAMI-rPPG, comprised a total of 14 participants (10 male and 4 female), with an average 
age of 29.21 ± 2.36 years. This study was approved by the institutional review board of Wonkwang University in 
Korea. All participants provided written informed consent. All methods were performed in accordance with 
the relevant guidelines and regulations. The BAMI-rPPG dataset was built using our designed robot navigation 
system, as outlined in Fig. 1. Each participant was randomly positioned in an indoor environment, measuring 
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8.5 m × 4.7 m, which the robot navigated using SLAM, searching for a human using face detection. When a face 
was detected, the face images were recorded, the facial skin area was extracted with the relative S value range, 
and the CHROM method was used for PPG acquisition. Every second, the final 8-s PPG was filtered, and the 
HR was estimated using PSD. During the 1 min HR estimation, a transmitted PPG signal was obtained from 
the finger-type oxygen saturation device for the reference HR, HRtrue(t) . As for the UBFC-rPPG dataset, we first 
found the pulse peaks of the reference HR and then calculated the inter-beat intervals, which were resampled to 
4 Hz by fitting a cubic spline to obtain continuous HR values.

Evaluation and metrics.  Python 3.6.8, OpenCV 4.2.0, NumPy 1.18.2, SciPy 1.4.1, Scikit-learn 0.22.2, Ten-
sorFlow 1.8.0 and ROS Melodic 1.14.5, including SLAM, navigation and Turtlebot packages, were used for the 
implementation of our proposed algorithm and R-AAH method. We investigated the effect of selecting the S 
feature over the hue (H), value (V), red (R), green (G), and blue (B) values for facial skin extraction in the train-
ing dataset, UBFC-RPPG (n = 42). In addition, we investigated the effects of the parameter α by varying it from 
0.1 to 0.5, at intervals of 0.1. Furthermore, the performance of the proposed algorithm was evaluated in terms of 
accuracy and computation complexity. We first compared the performance of our algorithm with that of ICA17, 
POS35, and CHROM36. We then compared the performances when ICA, POS, and CHROM were each applied 
to the landmark-based face skin extraction method. We also compared the performance of the landmark-based 
approach with the rectangle17-, bottom33- and polygon34-face based methods shown in Fig. 4. Furthermore, we 
validated our proposed algorithm on the testing dataset, BAMI-RPPG (n = 14). For validation, we compared 
the performance of our algorithm with state-of-art methods in terms of accuracy and computation complexity.

The accuracy of the algorithm was evaluated by calculating the absolute error (AE) of its estimation:

where HRtrue(i) is the true HR (bpm) in the ith window. The overall evaluation of HR estimation was performed 
on the basis of the absolute value of the AEs (AAE; bpm) and the average of the relative AEs (ARE; %):

where N is the total number of windows used for the HR estimation.
To determine the computation complexity, we investigated the computation time for all stages (face detec-

tion, face skin extraction, PPG acquisition, and HR estimation), and evaluated whether the proposed process 
was achievable in real-time. Over the entire process, the robot needs to perform 30 face detections and 30 face 
skin extractions, one PPG conversion, and one HR calculation within a second. Thus, we defined the processing 
time within a second (PTOS; ms) as:

where Tfd , Tfse , Trc and The denote the computation time of face detection, face skin extraction, PPG conversion, 
and HR estimation, respectively.

Results
Results using the UBFC‑rPPG dataset.  Using the UBFC-RPPG dataset, our proposed algorithm was 
evaluated for a total of 2184 windows, i.e., 42 1 min videos. Figure 5 shows a representative example of the pro-
posed face skin extraction method based on different features (H, S, and V) and different values of α (0.1–0.5). 
The results show that using the S feature preserves more face skin pixels when α = 0.2. We further investigated the 
effect of both HSV and RGB features for all 42 subjects, by performing skin segmentation based on different fea-
tures (H, S, V, R, G and B), and estimated HRs by converting the skin images to a PPG signal. Table 1 summarizes 

(10)AE(t) = |HRest(t)−HRtrue(t)|

(11)AAE =

∑N
t=1 AE(t)

N

(12)ARE =

∑N
i=1

AE(t)
HRtrue(t)

× 100

N

(13)PTOS (ms) = 30 ·
(

Tfd + Tfse

)

+ Trc + The

Figure 4.   Landmark-based face skin extraction: (a) a rectangular face ROI17, (b) a bottom face ROI33, and (c) a 
polygonal face ROI34.
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the resultant AAE values according to each feature (H, S, V, R, G, and B) for different values of the parameter α 
(0.1–0.5). Among all possible features, S provided the lowest AAE, with a value of 0.71 bpm, when α = 0.2.

Table 2 compares the characteristics of AAE, ARE, and PTOS. When ICA, POS, and CHROM were used 
without face skin extraction, the AAE values (i.e., the accuracy) were 2.09 bpm, 1.26 bpm, and 1.13 bpm, respec-
tively. When the landmark- based facial skin analysis was applied, the AAE values decreased to 0.79 bpm (i.e., 
the accuracy was enhanced). However, the computation time, PTOS, significantly increased, to 80,181 ms on 
an ADM Ryzen 5 3400G CPU at 3.70 GHz personal computer. Conversely, our method provided not only low 
AAE and ARE values of 0.71 bpm and 0.75%, respectively, but also a low PTOS of 275 ms, which means that our 
method is achievable in real-time. Notably, a PTOS of 275 ms is approximately 290 times faster than the other 
landmark-based methods (80,180 ms).

Results using the BAMI‑rPPG dataset.  Our proposed algorithm, based on the S feature and with 
α = 0.2, was applied to the test dataset (BAMI-RPPG). The overall performance for all 14 subjects is summarized 

Figure 5.   Landmark-based face skin extraction: (a) a rectangular face region of interest (ROI)17, (b) a bottom 
face ROI33, and (c) a polygonal face ROI34.

Table 1.   AAE values for face skin extraction based on H, S, V, R, G, and B features for different values of the 
parameter α, using the UBFC-RPPG dataset.

Dataset α

HSV RGB

H S V R G B

UBFC-RPPG

0.1 1.94 0.73 1.22 1.23 1.15 1.29

0.2 1.63 0.71 1.04 0.98 1.07 0.99

0.3 1.43 0.82 0.87 0.96 0.92 0.94

0.4 1.46 0.94 0.85 0.93 0.92 0.88

0.5 2.57 0.96 0.86 0.93 0.89 0.89
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in Table 3, where we compare the landmark-based approach to our proposed algorithm, in terms of AAE, ARE 
and POTS. The results show that our algorithm provides a low AAE of 0.82 bpm and an ARE of 1.12%. The 
landmark-based approaches yield AAEs ranging between 0.77 and 2.03 bpm, and the AREs ranged between 1.04 
and 2.39%. The proposed algorithm showed similar superior accuracy when compared to the landmark-based 
approach, which required high computation complexity. The POTS of the proposed algorithm was 275 ms, 290 
times faster than the landmark-based approaches. This indicates that RSVR can obtain accurate HR estimation 
in real-time, even when using low-power hardware.

Figure 6a displays the Pearson correlations between the estimated and true HRs. The Pearson correlation 
coefficient of our model was 0.9925 ( r2 = 0.9851 ). Figure 6(b) shows a Bland–Altman plot for the estimated 
and true HRs, with a limit of agreement (LOA) between − 4.05 and 4.09 bpm (mean − 0.0315 bpm, standard 
deviation 2.1005 bpm).

Analysis of motion and lighting variation.  The PPG acquisition is based on non-contact reflectance; 
thus, its signal-to-noise (SNR) is relatively low, especially under ambient light changes and movement artifacts. 
In both of the datasets (UBFC-RPPG and BAMI-RPPG) used in this study, the detected face was relatively 
immobile, and the ambient light was relatively constant, thus we were able to obtain accurate HR estimation 
results. If the detected face is in fast motion and/or there is a fast or strong change in the ambient light, the face 
skin ROI can undergo dynamic changes, which, in turn, results in a low-quality PPG signal and an inaccurate 
HR estimation.

To investigate the performance of our method under these adverse conditions, we performed additional 
experiments. We recorded 1-min videos in which the subject was moving their head rapidly, along with further 
1-min videos in which the subject was placed under highly variable ambient light conditions. A transmitted PPG 
signal was obtained using a finger-type oxygen saturation device to record the reference HR. Under these two 
adverse conditions, our algorithm provided AAEs as high as 2.79 bpm and 4.11 bpm, and the AREs increased by 
3.89% and 5.57% (for the high motion and variable ambient light, respectively); this is summarized in Table 4. 

Table 2.   Comparison of the performances of various methods, in terms of accuracy (AAE and ARE) and 
computation time (PTOS), on UBFC-RPPG (42 datasets).

Face skin 
extraction None

Landmark41

Our method

Rectangle17 Bottom face33 Polygon face34

PPG conversion ICA17 POS35 CH-ROM36 ICA17 POS35 CH-ROM36 ICA17 POS35 CH-ROM36 ICA17 POS35 CH-ROM36

AAE ± Std. (bpm) 2.09 ± 3.65 1.26 ± 2.29 1.13 ± 2.02 2.62 ± 3.31 0.79 ± 1.43 0.78 ± 1.44 0.79 ± 1.43 0.79 ± 1.43 0.79 ± 1.43 1.05 ± 1.87 0.91 ± 1.58 0.80 ± 1.48 0.71 ± 1.38

ARE ± Std. (%) 2.07 ± 3.58 1.28 ± 2.34 1.19 ± 2.12 2.66 ± 3.33 0.82 ± 1.48 0.82 ± 1.52 0.82 ± 1.48 0.82 ± 1.48 0.82 ± 1.48 1.07 ± 1.89 0.94 ± 1.64 0.84 ± 1.54 0.75 ± 1.46

PTOS (ms) 245 244 244 80,181 80,180 80,180 80,181 80,180 80,180 80,181 80,180 80,180 275

CPU Info AMD Ryzen 5 3400G at 3.70 GHz

Table 3.   Performance comparison of various methods in terms of accuracy (AAE and ARE) and computation 
time (POTS): independent testing dataset – BAMI-RPPG (n = 14).

Subjects

Face skin 
extraction

Landmark41

Our method

Rectangle 17 Bottom face 33 Polygon face 34

PPG 
acquisition

ICA17 
AAE (bpm)
ARE (%)

POS35 
AAE (bpm)
ARE (%)

CH-ROM36 
AAE (bpm)
ARE (%)

ICA17 
AAE (bpm)
ARE (%)

POS35 
AAE (bpm)
ARE (%)

CH-ROM36 
AAE (bpm)
ARE (%)

ICA17 
AAE (bpm)
ARE (%)

POS35 
AAE (bpm)
ARE (%)

CH-ROM36 
AAE (bpm)
ARE (%)

1 1.51 (2.11) 1.37 (1.88) 1.45 (1.99) 1.13 (1.55) 1.26 (1.73) 1.40 (1.92) 0.80 (1.15) 0.80 (1.15) 1.22 (1.73) 0.84 (1.21)

2 0.82 (1.28) 1.06 (1.63) 1.01 (1.56) 0.76 (1.19) 0.83 (1.28) 1.03 (1.60) 0.48 (0.75) 0.49 (0.76) 0.54 (0.84) 0.56 (0.86)

3 0.66 (0.87) 0.56 (0.74) 0.65 (0.86) 0.63 (0.83) 0.57 (0.76) 0.65 (0.86) 0.75 (0.99) 0.62 (0.81) 0.66 (0.87) 0.55 (0.73)

4 0.77 (1.09) 0.57 (0.82) 0.61 (0.86) 0.93 (1.32) 0.71 (1.02) 0.79 (1.13) 0.59 (0.84) 0.42 (0.59) 0.47 (0.67) 0.63 (0.89)

5 0.57 (0.81) 0.55 (0.79) 0.57 (0.81) 0.42 (0.59) 0.38 (0.53) 0.39 (0.55) 0.42 (0.60) 0.41 (0.58) 0.45 (0.64) 0.48 (0.69)

6 1.02 (1.09) 1.06 (1.14) 1.42 (1.49) 0.99 (1.05) 0.91 (0.99) 0.95 (1.02) 17.4 (18.7) 0.71 (0.77) 1.03 (1.11) 0.65 (0.70)

7 0.73 (0.84) 0.73 (0.84) 0.67 (0.78) 0.91 (1.01) 0.59 (0.68) 1.13 (1.30) 0.97 (1.12) 1.43 (1.69) 1.70 (1.99) 1.00 (1.18)

8 0.40 (0.54) 0.44 (0.61) 0.44 (0.60) 0.41 (0.56) 0.48 (0.66) 0.47 (0.64) 0.39 (0.53) 0.42 (0.57) 0.46 (0.63) 0.35 (0.48)

9 0.51 (0.67) 0.60 (0.79) 0.71 (0.93) 0.54 (0.70) 0.63 (0.83) 0.68 (0.88) 0.53 (0.70) 0.57 (0.75) 0.60 (0.78) 0.53 (0.70)

10 0.45 (0.58) 0.48 (0.63) 0.66 (0.87) 0.49 (0.64) 0.54 (0.70) 0.51 (0.67) 0.45 (0.58) 0.48 (0.62) 0.49 (0.63) 0.47 (0.61)

11 1.97 (3.13) 1.60 (2.53) 2.04 (3.23) 0.76 (1.18) 0.83 (1.28) 1.22 (1.88) 0.95 (1.47) 0.80 (1.23) 0.79 (1.22) 0.80 (1.24)

12 2.45 (3.75) 2.78 (4.25) 2.53 (3.87) 2.57 (3.88) 2.64 (4.05) 2.65 (4.04) 1.11 (1.72) 1.40 (2.21) 1.04 (1.61) 1.98 (3.04)

13 2.33 (3.07) 0.74 (0.99) 0.60 (0.79) 1.83 (2.40) 1.18 (1.54) 2.39 (3.10) 1.19 (1.55) 0.71 (0.93) 0.89 (1.16) 1.12 (1.45)

14 1.36 (1.67) 1.27 (1.57) 2.00 (2.38) 4.33 (5.35) 1.59 (1.96) 2.20 (2.69) 2.31 (2.81) 1.55 (1.90) 1.94 (2.37) 1.52 (1.85)

Mean 1.11 (1.54) 0.99 (1.37) 1.10 (1.50) 1.19 (1.59) 0.94 (1.29) 1.18 (1.59) 2.03 (2.39) 0.77 (1.04) 0.88 (1.16) 0.82 (1.12)

POTS 80,181 80,180 80,180 80,181 80,180 80,180 80,181 80,180 80,180 275

CPU Info AMD Ryzen 5 3400G @ 3.70 GHz
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As a possible solution, we applied the recently introduced finite state machine framework8, which automatically 
eliminates inaccurate estimates based on four states: stable, recovery, alert, and uncertain. Ever second, the FSM 
framework evaluates its own state based on the estimated results, and also evaluates the signal quality. A stable 
state indicates that the estimated HR is highly likely to be accurate, and thus is declared valid. A recovery state 
indicates that the estimated HR is to some extent likely to be accurate, but there is a need to explore a possible 
transition to a stable state. An alert state indicates that the estimated HR is somewhat likely to be inaccurate, 
whereas an uncertain state indicates that the estimated HR is highly likely to be inaccurate. The FSM framework 
transits from one state to another every second in response to the estimation accuracy indicators, namely the 
crest factor (CF) and the change in HR between consecutive windows. Details of this framework are presented 
in8. The FSM automatically validates the estimation results and ignores inaccurate estimation results, such as 
those caused by extremely low SNRs in PPG signals.

Table 4 shows that, with the FSM framework applied, the AAE values decreased to 0.56 bpm and 0.89 bpm, 
for the high motion and variable ambient light, respectively. However, the valid HR rate (VHR; %), which is the 
percentage of valid results among all the windows, were 63.96% and 72.97%, indicating that 36.04% and 27.03% 
of the estimated results were ignored (or the high motion and variable ambient light, respectively). Figure 7 
compares the estimated HR results using our proposed method with and without the FSM framework. However, 
the FSM framework has a critical drawback in that some estimation results are discarded; hence, the FSM may 
not provide continuous HR results. This is a limitation, as features such as HR variability cannot be employed.

Discussion and conclusion
We presented a system for an active and autonomous estimation of HRs using a PPGI mounted on a robotic 
device. Our proposed system makes it possible to measure HRs during daily life activities without space restric-
tions, and can be applied in various medical fields. For instance, it can be used for the early detection of heart rate 
variability-related diseases, such as asymptomatic atrial fibrillation (AF)48, by actively monitoring HR variability. 
Regarding AF, some patients have no symptoms, a condition referred to as asymptomatic AF; these patients may 
present with devastating thromboembolic consequences or a tachycardia-mediated cardiomyopathy49. If a robot 
can obtain remote HRs or HR variability from a person in daily life or a patient undergoing routine clinical pro-
cedure, it can identify undiagnosed AF patients and provide the information to that patient. In addition to AF, 
we believe that our R-AAH framework provides HR variability analysis without space constraints as the existing 
PPGI techniques have provided HR variability analysis50–53. HR variability is universally accepted as a non-
invasive marker of autonomic nervous system activity and can be related to stress and emotional reactions54–56. 
Stress is associated with an increased risk of cardiovascular disease, and vagal tone is considered to be a pos-
sible determinant of the stress effects. Emotional response and physiological arousal are adjusted by the central 
autonomic network, which can be reflected by HR variability. However, in order to achieve such AF detection 
and HR variability analysis, we should consider the associated challenging issues to accurately perform peak 
detection from PPG signals with low SNRs. This study is the first step in realizing such active medical services.

Figure 6.   (a) Pearson correlations between estimated HRs and true HRs (r = 0.9925). (b) Bland–Altman plot 
(μ = − 0.0315 and σ = 2.1005).

Table 4.   HR estimation performance comparison between the proposed method and the FSM method 
according to the noise type. Values are reported as means ± standard deviations.

Noise Types

Proposed Proposed + FSM

AAE (bpm) ARE (%) AAE (bpm) ARE (%) VHR (%)

Head movement 2.79 ± 5.17 3.89 ± 7.19 0.56 ± 0.47 0.81 ± 0.67 63.96

Lighting interference 4.11 ± 9.06 5.57 ± 12.19 0.89 ± 1.93 1.26 ± 2.73 72.97
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To show that our R-AAH framework can be used in real public places, the robot was made to navigate a 
specific space while avoiding obstacles. In future work, a robot has to minimize irritability by measuring a per-
son who is standing or sitting in public at a distance of a few meters from an immobile person. Such minimal 
irritability is an essential part of our R-AAH framework because some clients will certainly be irritated, maybe 
even scared by a robot coming into the patient rooms to measure their HRs. A recent study reported that some 
of elderly clients perceived the medical robot as nonsense or became irritated while most clients welcomed the 
robot with curiosity57. When we apply our R-AAH framework to the actual medical field, the response level of 
the patients may differ from culture to culture, so various investigations should be preceded in the future.

Throughout this paper, we focused on evaluating the accuracy of the HR estimation, which is one of the most 
important issues for PPGI. In order for our proposed system to be applied to real-world situations, however, 
we should also consider more complex environments. We also investigated the performance of the proposed 
method when there were multiple subjects in the designated space. Similar to the previous simulation, two 
participants were closely positioned in an indoor environment, and the robot navigated the area with SLAM, 
searching for a human using face detection. If the two faces were simultaneously detected, the face images were 
recorded separately, and each facial skin area was extracted with the relative S value range. The CHROM method 
was then applied for PPG acquisition. Figure 8 shows a video frame from this experiment, where two faces were 
simultaneously detected, and an estimation of the HR value for each face was provided. The recorded video is 
available in the supplementary video files. The results show that our proposed system is able to estimate the HRs 
of multiple subjects at the same time.

The proposed algorithm, combined with the FSM framework, yields a PTOS of 276 ms, which is achievable in 
real-time. As summarized in Table 5, each PTOS was 243.3 ms for face detection, 30.6 ms for face skin extraction, 
0.46 ms for PPG acquisition, 0.72 ms for HR estimation and 1.12 ms for FSM. However, the FSM framework 
discards some estimation results, which may prevent the acquisition of continuous HR-related physiological 
information, such as for HRV analysis or atrial fibrillation diagnosis. In future studies, we aim to further inves-
tigate how estimations can be improved, without any loss of HR information, even in the presence of fast head 

Figure 7.   Comparison of the estimated HR results using our proposed method with and without the FSM 
framework. The HR is estimated using the proposed method, with detected noise removed by the FSM 
framework: (a) under the rapid head movement condition, (b) under the changes in ambient lighting condition.

Figure 8.   Simultaneous HR estimation of two subjects (additional dataset): An ID is automatically assigned 
to each face, starting from one, and the face frames from each subject are converted to HR values (both 
participants provided written informed consent for the publication of identifying images in an online open-
access publication).
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movements or under variable ambient light conditions. We have shown that simultaneous HR estimation from 
multiple subjects is possible. In future work, we aim to continue investigating dynamic issues, such as occlusion 
or ID assignment with tracking.

To enable the proposed algorithm to be realizable in real-time, we proposed the Relative Saturation Value 
Range (RSVR), which effectively extracts the facial skin image, enhancing the performance of HR estimation 
and reducing the computational complexity. The complexity of the computation can be further reduced by 
incorporating face tracking algorithms, which may allow the face detection process to be performed intermit-
tently, therefore reducing the amount of computations required. In the future, we plan to investigate an optimized 
tracking algorithm as a strategy that can minimize the cost of the face detection process without loss of accuracy. 
In addition, face-tracking algorithms could solve the problem of a subject turning their face to prevent the robot 
from detecting their face. In both of the datasets (UBFC-RPPG and BAMI-RPPG) used in this study, the face 
detection rate was 100% because most subjects did not move. In future work, we aim to consider more realistic 
situations, including more severe facial movement during measurement. We believe that the tracking algorithm 
could replace the FSM framework, which makes HR variability analysis difficult; this would be a significant 
improvement.

Another issue that should be considered arises when the color of facial skin and hairs are similar; this is a 
common challenging issue for the facial skin segmentation task. The UBFC-rPPG dataset used in our experiments 
included subjects of various races; however, many subjects had similar facial skin and/or hair color. Table 2 shows 
that, even with some subjects having similar facial skin and hair color, the RSVR provided high HR estimation 
accuracy. Notably, some hairs were incorrectly identified as facial skin as they were a similar color to the facial 
skin; however, as hairs do not contain any pulsatile information, the segmented hair images do not contribute 
to the final PPG signal. In addition, the area of hair is significantly smaller than the area of facial skin; hence, the 
majority of the segmented area is facial skin. In future work, we would like to address the issue of similar face and 
hair color, and increase HR estimation accuracy by accurately extracting areas that only have facial skin pixels.

The final issue to be considered is whether the average HRs based on an 8 s window can actually detect 
arrhythmias such as AF. Many algorithms have been developed to detect AF and are based on P-wave detection or 
HR variability. In PPG signals, HR variability, or inter-beat interval information, is a key feature for the identifica-
tion of AF. However, even with inter-beat intervals, most algorithms eliminate outliers to filter out premature or 
ectopic beats38,58–60. This outlier elimination also filters out any incorrect inter-beat intervals that originate from a 
missed or false pulse peak. Conversely, the window-based average HR approach is less sensitive to the issues that 
stem from premature/ectopic beats or incorrect inter-beat intervals, and Tables 2 and 3 show that the window-
based approach provided accurate HR estimation results. We believe that the 8 s sliding window with a 1 s shift 
is able to detect cardiac arrhythmia, such as atrial fibrillation. In future work, we aim to investigate whether the 
window-based HR information can actually be applied for the diagnosis of cardiac arrhythmia diseases, such as 
AF, in clinical practice. This validation will also be performed using our developed R-AAH platform.

Data availability
All data generated or analyzed during this study are included with this published article.
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