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Low-dimensional physics of clay
particle size distribution and layer
ordering
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Clays are known for their small particle sizes and complex layer stacking. We show here that the
limited dimension of clay particles arises from the lack of long-range order in low-dimensional
systems. Because of its weak interlayer interaction, a clay mineral can be treated as two separate
low-dimensional systems: a 2D system for individual phyllosilicate layers and a quasi-1D system for
layer stacking. The layer stacking or ordering in an interstratified clay can be described by a 1D Ising
model while the limited extension of individual phyllosilicate layers can be related to a 2D Berezinskii—
Kosterlitz-Thouless transition. This treatment allows for a systematic prediction of clay particle size
distributions and layer stacking as controlled by the physical and chemical conditions for mineral
growth and transformation. Clay minerals provide a useful model system for studying a transition
from a 1D to 3D system in crystal growth and for a nanoscale structural manipulation of a general type
of layered materials.

Clays are ubiquitous in the Earth system, especially in sedimentary and weathering systems. Clays are layers of
aluminosilicates (Fig. 1), in which one aluminum oxide octahedral sheet joins with one or two silica tetrahedral
sheets to form what is called 1:1 (e.g. kaolinite) and 2:1 (e.g. smectite and illite) phyllosilicate layers. The thickness
of a 2:1 layer is about 0.65 nm'. The Si and Al centers in the layers can partially be substituted by lower-valent
metals, resulting in negative charges in the layers, which are then balanced by interlayer cations®. Clay are known
for their small particle sizes and high density of defects’. The a-b dimension of clay crystallites ranges from a
few nanometers to micrometers*, while the dimension along the c-direction ranges from ~ 1to ~ 100 nm*°. The
dimension disparity between the two directions can be up to 200 times. Based on the Periodic Bond Chains
(PBCs) theory, Meunie' suggested that the size and shape of a single clay platelet might depend on the amount
of crystal defects along the three axes of symmetry [100],[110], and [110]. Depending on cation ordering and
occupancy in octahedral and tetrahedral sheets, crystal defects may tend to concentrate and thus poison crystal
growth along one, two, or three PBCs, therefore limiting crystal dimensions in growth. The PBCs theory may
provide a plausible explanation for the fibrous nature of some clay minerals such as sepiolite, but it fails to explain
other key features of clay minerals such as the great dimensional disparity between illite and muscovite in spite
of both minerals possessing a similar structure®.

Under certain conditions, clays tend to form mixed layers with complex layer stacking patterns (see” and
refs. therein). For example, in the transformation of smectite to illite, the percentage of illite layers increases
with temperature, geological time, and water/rock ratio, and accordingly the layer stacking mode shifts from R0
(random) to R1 (alternating), and then to longer-range order (R3)*. Based on a 1D Ising model, Zen® attempted
to provide a thermodynamic explanation for the formation of different layer stacking modes. By assuming that
the interaction energy between layers depends only on the nearest neighbors, he showed that if the excess inter-
action energy between two unlike layers was large and positive, segregation into discrete crystals would result,
and if the energy was large and negative, unlike layers would tend to alternate, forming a regular 1:1 mixed-
layer crystal for equal proportions of the two layers. Intermediate energy values would result in irregular mixed
layers, and a truly random layers would occur when the excess energy approaches to zero. In contrast, Wang
and Xu” suggested that the layer stacking would be a kinetic process and the sequence of layer stacking could
be described by a one-dimensional logistic map, such that non-periodic interstratification emerges when the
contacted solution becomes slightly supersaturated with respect to both structural components. The transition
from one interstratification pattern to another reflects a change in the chemical environment during mineral
crystallization. In all these models, the underlying assumption is that any ordered structure would extend to an
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Figure 1. High resolution transmission electron microscope images of interstratified layers of chlorite (C) and
pyrophyllite (P). Modified from Wang and Xu’.
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Figure 2. Clay particle thickness distributions for illites in shale from the Glarus Alps®. Metamorphic grade
increases from sample MF4 (blue) to MF23 (orange) and to MF998 (green). Solid lines are fits to the Weibull
distribution given by Eq. (22), where 8 represents the effective dimensionality of the clay particles and
represents the characteristic thickness. The inset shows a log-linear plot of the distributions, indicating nearly
exponential tails in the clay particle size distribution for all the samples.

infinite physical domain as commonly assumed for a crystalline system. With this assumption, one would hope
that a mixed-layer clay can be modeled with a fixed composition and well-defined structure. However, as we show
below, this assumption may no longer be appropriate for a clay system, in which a limited dimension becomes
an inherent attribute of the material and the size of particles and the range of ordering are intimately related.
Furthermore, no existing model can explain the observed layer thickness distribution along the c-direction of clay
crystallites, which usually deviates from a lognormal distribution and highly skews towards small sizes (Fig. 2)*°.

In this paper, we show that a clay mineral can be treated as two separate low-dimensional systems: a 2D
system for the individual layers and a 1D system for the layer stacking. By formulating an appropriate statistical
mechanical model for each system, we show that the dimension of clay particles is inevitably limited by the lack
of long-range order in low-dimensional systems. This treatment will provide a new perspective on mineral phase
definition and thermodynamic modeling of clay materials as well as the transition from a 1D or 2D system to
a 3D system. Since layered minerals are a large set of materials with a wide range of applications in advanced
technologies’, the work presented below will also provide an insight into the structural manipulation and syn-
thesis of these materials.
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Results

Clay as a low-dimensional system. The interlayer interaction in a clay mineral involves the electrostatic
(electric double layer like), van der Waals, and hydration forces!?, which are much weaker than the intralayer
ionic/covalent bonding, leading to a significant anisotropy in mineral mechanical properties''. In an expansive
clay such as smectite, multiple layers of water can exist in an interlayer. As the clay expands due to hydration, the
interlayer interaction can become further weakened'?, and the mineral can easily be exfoliated". All these sug-
gest that the growth of individual phyllosilicate layers can approximately be treated as a 2D system. Also, since
the interlayer interaction is relatively uniform within the a-b plane, the layer stacking along the c-direction can
be treated as a quasi-1D system.

It is well-known that low-dimensional systems (typically 1D or 2D) with short-range interactions generally do
not exhibit a long-range order or phase transition. This behavior is often attributed to the Hohenberg-Mermin-
Wagner (HMW) theorem!*"* for systems with continuous symmetries such as the XY model, to works by Landau
and Lifshitz'® and Peierls and Born'” for systems with discrete symmetries such as the Ising model, and to van
Hove!® for low-dimensional fluid-like systems. The typical explanation is that in low-dimensional systems, ther-
mal fluctuations or other excitations have a strong tendency to disrupt any long-range order. This result is quite
universal and can be applied to a wide range of systems such as magnets, solids, superfluids, and membranes®.
We postulate that this result can also apply to a clay system, that is, the limited dimension of a clay mineral is
due to the lack of long-range order within its 2D layers and its 1D stacking of those layers.

With respect to individual phyllosilicate layers, much can be learned from the studies of engineered nanolay-
ers. Nanolayers are solid layers with large in-plane dimensions but with nanometer thicknesses. Hong et al.?!
studied the stability of ultrathin membranes of SrTiO3 in epitaxial growth. Atomically controlled membranes
were released after synthesis by dissolving the underlying epitaxial layer. Although all unreleased films were
initially single-crystalline, the SrTiO3 membrane lattice collapsed below a critical thickness. The authors showed
that this crossover from power law to exponential decay of the crystalline order is analogous to the 2D Berezinkii-
Kosterlitz-Thousless (BKT) transition. The BKT transition is a phase transition where the order in a 2D system
of rotors such as the XY model is disrupted by the formation of unbound vortex and anti-vortex pairs*’. The
physics behind this behavior is quite universal and in the context of clay layers or 2D crystals, the lack of long-
range order is due to the disruption of orientational order in a crystalline lattice. In this theory, one can define
the correlation length of the crystalline lattice of a thin membrane. It is interesting to note that, similar to the
process of a membrane released from a substrate, the expansion of clay interlayers through hydration could lead
to a systematic reduction in clay particle size®.

If we assume that clay growth proceeds layer by layer, the BKT transition may take place within an individual
phyllosilicate layer. For a weak interlayer interaction, a growing phyllosilicate layer would be constantly subjected
to environmental fluctuations and any long-range structural order in the layers would be destroyed. Note that the
thickness of a 2:1 phyllosilicate layer is about 0.65 nm!, thinner than the critical thickness for the BKT transition
in an SrTiO3; membrane?!. As noted by Hong et al.?}, the thermal fluctuations alone may be orders of magnitude
lower than the energy required to break chemical bonds in a layer. However, the environmental fluctuations such
as those in chemical potential and impurity concentration may be high enough to disrupt the lattice structure
of a layer, leading to its limited extension.

Layer stacking and the Ising model.  We here develop a statistical mechanical model of an interstratified
clay. Let us assume that an interstratified clay is formed by the stacking of two types of phyllosilicate layers, A and
B. Note that in a more general context, one type of “layer” could not necessarily be a phyllosilicate layer and it
can simply be a structural discontinuity or empty space. This can be useful if one wants to think of a system as a
single type of clay that is fragmented. We further assume that the total energy of the system is determined by the
interactions between nearest-neighbor layers. The Hamiltonian or energy H of this system can be expressed as

H =

N N
€4A + €BB — 2€48B €AA — €BB €4A T €pB + 2€48
—20i0i+1 + 7Z(Ui+0i+1)+ ——F— F N, (1)

4 ° 4 ¢ 4
i=1 i=1
where €44, €pp, and €4 p are the energies for the stacking of AA, BB, and AB layers, respectively; o; is the type
of layer i with o; = 1 representing an A layer and o; = —1, a B layer; and N is the total number of layers in the
system. Suppose that the mineral is in equilibrium with an aqueous solution of fixed chemical potentials 14 and
wp for layers A and B respectively. The partition function of the system can be written as

7 = Z e PH=paNa—upNp)

o

2)
where 8 = 1/kT is the inverse temperature, and N4 and Np are the numbers of A and B layers respectively. The
sum is over all combinations of layer types & = {0;}. We can rewrite the numbers of each layer type as

N

NAzzl—;Ul)NBzzlzdl- 3)

i=1 i=1

Note that this automatically enforces N4 + Np = N. The partition function Eq. (2) can then be recast as

o K . X
7 = Z e—ﬁ[h > 0i0ir1+5 Zi(G1+Ux+l)+NHO} i (@)
o
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where
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Hy = AA BB AB — MA MB4 (50)

4

Equation (4) resembles the standard 1D Ising model for material magnetization®* with an interaction energy
J1 and an external magnetic field K. Parameter ]| controls whether like or unlike layers stack together, which
depends on the interactions between two neighboring layers. K accounts for the difference between the two
phyllosilicate components in the chemical affinity for clay layer precipitation from a contacted solution, which
depends on solution chemistry. As an analogy, K represents the influence of an external chemical potential field.
Hy is simply a constant energy shift that will have no effect on the final results. We can evaluate the partition
function using the transfer matrix method®. The major results are summarized as follows. The free energy of
the interstratified clay is

F=—kTInZ = NHy — kT'In (Y + V), (6)
R ) [ eBULHK) GBIL )
where A+ are the eigenvalues of the transfer matrix n (PUL—K) |8IVen by
Jp = e Pl cosh BK + \/e—zﬂh cosh? BK + 2sinh 28], . (7)

Note that 21 > A_. In the thermodynamic limit (N — 00), we have /lfi > N and the free energy can be well-
approximated by F ~ NHy — NkT In 1. The mean composition of layer i is

1 §F e*2ﬂ]L sinh BK
(i) = =2 o = — = cos2¢, ®)
N 9K \/1 + e—4PJL sinh® BK
where ¢ satisfies cot 2¢ = —e~2#/+ sinh BK. A mean composition of (o;) = 1 means that all the layers are of
type A while a mean composition of (o;) = —1 means that all the layers are of type B. To quantify the structure

or ordering of the layers, we compute the so-called two-point correlation function

2\ il
(0i0j) = cos” 2¢ + sin” 2¢ <T> , )
it
and the correlation of fluctuations
X 2\ il
(801807) = (0i07) — (o) (0) = sin 2¢>(7) , (10)
+

where §0; = 0; — (o) is a fluctuation of layer i from its mean composition. (0;0}) characterizes how correlated
the type of layer i is with that of layer j while {(80;80;) characterizes how correlated fluctuations about the mean
type of layer i is with those of layer j.

Since|A— /44| < 1, the correlation functions given by Eq. (10) decays exponentially as the distance between
two layers increases, which means that there is no long-range order in clay layer stacking. This suggests that we
should abandom the existing attempt to model clay layer stacking as a long-range ordering process. The exist-
ing classification of R1 and R3 layer stacking modes should not be treated as long-range ordering patterns, but
rather a local ordering phenonmenon.

It can be seen in Eq. (10) that the correlation of structural fluctuations is determined by parameters J; and K.
As shown in Fig. 3, J| controls the sign of A_ /1 and therefore the layer stacking mode. A positive J| resultsin a
negative ratio, leading to short-range alternating layer stacking, while a negative J| leads to short-range stacking
of like layers. At J| = 0, we have random layer stacking since the ratio is zero and there are no correlations. A
similar result was obtained by Zen®. J | also affects the magnitude of 2_ /A4 and therefore the correlation length
in layer stacking; in particular, a larger |J | generally enhances the length over which structural fluctuations are
correlated.

As mentioned earlier, K represents the influence of the solution chemistry on clay layer stacking. Let us first
consider the case when K = 0, that is, there is no influence from the external chemical potential. In this case,
the layer stacking is controlled only by structural fluctuations, and consequently the structural coherence length
is equivalent to the correlation length of the fluctuations. From Eq. (10), the probability of a given coherence
length of layer stacking exponentially decreases as the length increases. If we can consider this coherence length
as the clay particle thickness, the clay particle size along the c-direction should follow an exponential distribution.
Indeed, this exponential distribution of thickness or cluster sizes has been shown to be the case for Ising-like
models with no external field*. For K # 0, increasing |K| causes one component to be enriched over the other
in layer stacking, and as a result the particle size of the enriched component would increase. At the same time,
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Figure 3. Ratio of eigenvalues [Eq. (7)] A~ /A4, as a function of the interlayer interaction J| and external
chemical field K.

as shown in Fig. 3, the ratio of A_ /4 approaches zero and so does the fluctuation correlation length. This means
that a fluctuation of the type of one layer is not correlated with the fluctuations of the type of nearby layers. In
this case, clay layer stacking is equivalent to a uniform random fragmentation process, in which the depleted
component would randomly and uniformly insert into a sequence of layers of the enriched component. A uni-
form random fragmentation in a 1D system generates an exponential-like particle size distribution®. In all these
cases, the particle size distribution along the c-distribution is thus predicted to follow an exponential or nearly
exponential distribution. This is in qualitative agreement with actual measurements (Fig. 2)*° where it has been
observed that the particle size distributions have exponential tails for large thicknesses. The exponential decay
of correlation with length implies that the size of clay particles along the c-direction is finite. This is an inherent
property of the one-dimensional nature of layer stacking, for which there is no long-range order.

For smaller thicknesses, as shown in Fig. 2, there is a considerable deviation from an exponential distribu-
tion (e.g. the peak in the distribution). However, it turns out that the distribution in this regime can still be
described by a uniform random fragmentation process, but in a system with a dimension greater than one. In
other words, while we may be able to treat the clay stacking as a one-dimensional process for large thicknesses
along the c-direction, we may not be able to do so for smaller thicknesses. The distribution that arises from a
uniform random fragmentation process in arbitrary dimensions is known as the Weibull distribution. We will
revisit this point in more detail in the “Discussion” section.

Lateral dimension and the XY model. Now let us examine the stability of an individual phyllosilicate
layer using an XY-like model. We define v (r) as the structural orientation field (i.e. the local orientational order
of the crystalline lattice) in the tetrahedral and octahedral sheets. We here reproduce some key parts of the
calculation of the fluctuations in the orientational order of a 2D lattice?>?2. If the 2D lattice is ordered, the order
parameter will be constant over the entire lattice or ¥ (r) = 1. Due to environmental excitations, the lattice will
deform and the orientational order will vary with position. Assuming that the gradients in v (r) are small, we
can expand the Hamiltonian H[ (r)] to the second order in the gradient since Vi (r) — —V 1 (r) should leave
the energy unchanged, which gives

H[y ()] = % / eV (), (11)

where ]| is the interaction coefficient within a phyllosilicate layer. To make progress in computing the thermo-
dynamic properties of this model, it is useful to express ¥ (r) in Fourier space as

) = dk k ik-r 12
v(r —/(zﬂ)zllf( e, (12)
which gives us for the energy

Hiv =" [ o (13)

The partition function of the system can then be expressed as an integral over all realizations of field (k) given by
ZIy (k)] = / Dl (kye AV R = / Dy (kyle™ s/ FHY WD, (14)

where €(k) = ]”sz . Theﬁlal}{r%{c‘/ft(y)l]@)l correlation function is defined as
c(lr =r)) = (eVWe W)y = 72 , where the last step can be obtained by evaluating the average
(-) over realizations of field ¥ (r) with the probability distribution P[y(r)] = Z —Le=BFHIY (] The last average

< [1// r)—¢ (r/)} 2> can be computed as follows
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Figure 4. Molar fraction of layers of type A in a mixed-layer clay predicted as functions of parameters J| and K,
which control the manner of stacking and mean composition, respectively.

(v -val?) = [ AR (etor — eer') (& — o ) o)

(m)4
— d’kd’K ik-r ik-r’ ik'-r ik -r’ Sk + k/)
— ) eny (¢hr = et (e =€) Be (k)
_ d*k l—cos[(r—r/) -k] (15)
=) 2n? Be(k)

1 /i k1 |r—r/|
~ — —_—= In s
7B Lk wB] a

[r—r'

where a is the lattice constant. Therefore, the structural correlation goes as

c(r—r’)%( a )m. (16)

lr— 7]

This power-law dependence of the structural correlation on the distance between two points r and r’ indicates
that there is no true long-range order. In other words, over a large enough distance, the orientational order of
the 2D lattice will be broken. This means that the structural coherence of a phyllosilicate layer is limited and so is
the lateral dimension of the layer. For SrTiO3 nanolayers (1.2-3.1 nm thick), after the layers were released from
the growth substrate and freely suspended in water, the structural coherence length was estimated to be 4-40
nm?*.. Assuming that the bonding energy in a phyllosilicate layer is similar to that in an SrTiO3 nanolayer, and
considering that this energy can be further increased by the interactions between clay layers (see Section “Cor-
relation between layer extension and clay composition”), we estimate that the structural coherence length of a
clay layer could range from nanometers to micrometers, consistent with observations*.

The intralayer interaction can also be anisotropic depending on the lattice structure of a phyllosilicate layer.
For example, in sepiolite, the chemical bonding in one direction is stronger than that in another. This would result
in the structural coherence length to be longer along one direction, leading to the fibrous nature of the mineral.
Indeed, we can note from Eq. (16) that the distance §7* = |r — r’|* at which the structural correlation decays to
a threshold value c* satisfies In % ~ 2] In ci* ~ BJ|, which suggests that a small change in J} can induce a
large change in structural coherence and hence a strong structural anisotropy. In addition, Eq. (16) suggests that
the area of clay platelets should follow a power-law distribution, which yet needs to be confirmed experimentally.

Compositional variation of an interstratified clay. One challenge in modeling a mixed-layer clay is
that such a mineral does not have a fixed stoichiometry in terms of chemical composition?, that is, the per-
centage makeup of the types of layers can vary from sample to sample. A common approach is to choose the
appropriate layer types with fixed percentages and then use a solid solution model for layer mixing®-**, which
is mostly empirical with many model parameters to be constrained. The benefit of our model is that it does not
require any additional assumptions about the mixing and contains fewer parameters that can be directly related
to the physics of the system. From Eq. (8), we can easily calculate the average molar fraction of component A,
X4, in an interstratified clay in equilibrium with a porewater as

1+ (o;) 1 e 2P/L sinh BK
Xa=—

5~ : 17
2 2\/ 1+ e~4P11 sinh?® BK (17)

This is plotted in Fig. 4. The composition of a mixed layer clay is thus determined by just two parameters: the
interlayer interaction J; and the external chemical field K. Note that we can rewrite K as K = K¢ + K,,, where
K¢ = (€éaa —€gp)/2and K, = (uup — p4)/2. By varying the solution chemistry (i.e. the chemical potentials 114
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Figure 5. Layer areas in illite-smectite mixed layers from two different geological environments as a function of
the percentage of illite. The solid lines are fits based on Egs. (20) and (21). Data are taken from*.

and p ) and measuring the layer composition [(Eq. (17)] and correlations [(Egs. (9), (10)], one can easily deter-
mine the parameters J| and K,. Once these two parameters are determined, the composition of the mineral can
then be predicted for a whole range of solution chemistries. In this approach, we do not assume any long-range
ordering in the clay minerals; instead, we treat a local clay particle aggregate as a single thermodynamic ensemble
with short-range interactions and ordering. Such an approach may significantly simplify the way mixed-layer
clays are modeled in water-rock interactions and allow for an easy prediction of various thermodynamic proper-
ties such as composition, Gibbs’ free energy, and mineral structure.

Dimension disparity. As mentioned earlier, the a-b dimension of clay crystallites ranges from a few
nanometers to micrometers?, while the ¢ dimension ranges from ~ 1to ~ 100 nm*°. This dimension disparity
between the two directions can be up to 200 times'. This may be attributed to the way how the structural cor-
relation decays along the two directions. As indicated in Eqgs. (10) and (16), the two-point structural correlation
decays exponentially along the ¢ direction while only follows a power law along an a-b direction. Since the for-
mer decays much faster than the latter, the dimension of clay crystallites along the a-b direction would be larger
than that along the ¢ direction.

Correlation between layer extension and clay composition. Our model provides a reasonable
explanation for the observed correlation between the lateral extension of clay platelets and the composition in
mixed-layer samples*. As shown in Fig. 5, the area of illite layers in illite/smectite mixed layers strongly correlates
with the percentage of illite in the samples from a hydrothermal/sandstone system. However, there is no such
correlation at all in the samples from bentonite. To explain this difference, let us choose illite as component A.
We argue that there should be some coupling between the interlayer interaction J; and the intralayer interaction
Jj- For example, the interaction with neighboring layers would reduce the freedom for layer structural fluctua-
tions, which equivalently increases the interaction within the layers. Writing J; = f(J) and expanding about
J1 = 0, we have

1
Ji =T +f O]+ Ef”(o)]i-i--'- , (18)

where ] o is the interaction within a clay layer when there is a very weak interlayer interaction. As discussed
earlier, the sign of J| determines whether like or unlike layers stack together. The influence of a neighboring
layer on the intralayer interaction Jj of a given layer is expected to be independent of the type of the neighbor-
ing layer as long as the strength of interlazer interaction |J | is the same. Therefore, we expect J to be an even
function of J and so Jj = Jj0 + %f”(O)]J_. As shown in Fig. 4, we can approximate Xjjjite as a linear function
of J| for a fixed K or

303 .
Xillite > i gﬂ(h_ -77)s (19)

where J| = zi In sinh BK. Furthermore, by choosing the threshold value c* for the structural correlation given by
Eq. (16), we can define the characteristic correlation length of a clay platelet 87* and area A ~ §r*. From Eq. (16),
we have that In §r* ~ B], and thusIn A ~ In §r* ~ J}. Using the quadratic relation between Jjand J |, we find

InA = yJ? +1n Ao, (20)

where y and Ag are constants. The key result is that the area of the clay platelets is dependent on the interlayer
interaction J; and not on the external chemical field K. If K is held fixed, we can invert Eq. (19) to find an
approximate linear relation between /| and Xjpje, which gives

2
In Alfixed = ¥/ (Xitite — X™)” + In Ao. (21)
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Figure 6. Schematic of the structural transition from a 2D system to a 3D system. As the interlayer interaction
J1 increases, the structural correlation length grows and at a certain point the clay system begins to behave as

a 3D system instead of a 1D stack of 2D layers. Muscovite has stronger interlayer interactions than smectite or
illite and is often observed to have much larger crystal sizes.

Therefore, if the interlayer interaction ], is varied with the external chemical field K held fixed, there should be
a strong correlation between the area A of illite layers and the mineralogical composition Xjpje of the clay. On
the other hand, if the external chemical field K is varied with the interlayer interaction J | held fixed, the area of
illite layers should be independent of the mineralogical composition. This is exactly what is observed in Fig. 5.

Changes in the interlayer interaction J | are mainly driven by variations of temperature and pressure'?. Increas-
ing the temperature would reduce the number of water layers in the clay interlayer, the basal spacing of the clay,
and therefore the layer interaction energy of the clay'®>*%, Such environments are often observed in hydrother-
mal or sandstone systems and, as shown in Fig. 5, there is indeed a strong correlation between the layer area and
the mineralogical composition. On the other hand, in low temperature environments such as surface weathering
systems, the formation of clay is mainly driven by the chemical affinity of a contacted solution or changes in K
while ]| remains unchanged®. Bentonite is such a system, which, as shown in Fig. 5, exhibits almost no cor-
relation between the layer area and the mineralogical composition. Thus, through simple scaling and symmetry
arguments, we obtain a reasonable explanation for the correlations between the layer area and the mineralogi-
cal composition observed in various clay systems. In the more general context of 2D crystalline systems, the
observed correlations between the interlayer interaction and the area of the layers may provide useful insight
into the formation of thin materials with large lateral extensions.

Discussion

The effect of structural fluctuations in different dimensions has been illustrated in*®. In a 1D lattice of particles
with short range interactions, the relative fluctuations between the ends of a chain of N particles grows as v'N
since fluctuations add up independently. This means that there cannot be any periodic structure over large
distances in 1D at finite temperatures. In a 2D lattice, the fluctuations grow logarithmically with distance [e.g.
Eq. (15)] while in a 3D lattice, they are finite over any distance. Therefore, for dimensions less than three, struc-
tural order cannot persist over large distances. This change in structural order as one transitions from a 2D to
a 3D system should generally be observable in layered materials. At one end of the spectrum are clays, which
have relatively weak interlayer interactions. As a result, each individual phyllosilicate layer can be treated as a
2D system and the lateral extension of the layer is then limited by the lack of long-range order. However, as the
interlayer interaction increases, such as in muscovite!®**, a layered mineral may approach a 3D crystal system
with a long-range order, resulting in the formation of large crystals. As formulated in Section “Correlation
between layer extension and clay composition’, the intralayer interaction Jj should increase quadratically with
the interlayer interaction J | . Consequently, the correlation length should increase with the interlayer interaction.
This is schematically illustrated in Fig. 6. This concept provides a plausible explanation for the observed great
size disparity between illite and muscovite, both with a similar mineral structure, which cannot be explained
based only on a mineral structure argument. Two major factors control the interlayer interaction of clay miner-
als: the layer charge and the temperature. The interlayer interaction is expected to increase with increasing the
layer charge. The layer charge per cell unit of O20(OH)4 increases from smectite (0.5-1.2) to illite (1.4-2.0) and
ultimately to muscovite (2.0)”, and so does the interlayer interaction. Furthermore, muscovite tends to occur
in a high temperature environment. An elevated temperature would reduce the basal spacing of a clay mineral
(i.e. the number of water layers)*® and the interlayer hydration through reducing the water dielectric constant™.
All these effects combined would result in a strong interlayer interaction for muscovite. Given a strong (more
than exponential!) dependence of the lateral extension of a clay layer on the interlayer interaction as predicted
by Equation (20), it is reasonable to expect that the lateral extension of muscovite would be much larger than
that of illite. The trend illustrated in Fig. 6 is consistent with the observed transition from smectite to illite and
ultimately to muscovite in the prograde transition of mudstone to slate’. It is interesting to note that relatively
large smectite crystals have been synthesized at high pressure and temperature*.
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Up to this point, we have treated clay layer stacking as a 1D process. We have shown that the correlation of
layer fluctuations along the c-direction for an enriched mineral [Eq. (10)] implies a uniform random fragmenta-
tion process in 1D and that the resulting particle size distribution should be exponential. Indeed, the distributions
have exponential tails for large particle sizes (Fig. 2, inset). As noted, however, there is a considerable deviation
from an exponential distribution for smaller particle sizes. One possible explanation for this deviation is that
for smaller particle sizes or stacks of layers, a clay system may no longer be treated as a one-dimensional stack
of layers but rather somewhere between one and two dimensions (a single layer is of course two-dimensional).
Tenchov and Yanev?’ generalized the 1D fragmentation result to higher dimensional systems. They showed that
the particle size distribution generated from a uniform random fragmentation process in arbitrary dimensions

is given by the Weibull distribution
5 d §—1 (d 8
P(d) = 7<7) () , (22)
n\n

where 7 is the characteristic particle size (or the thickness of a structurally coherent clay crystallite along the
c-direction) and § is a constant characterizing the dimensionality of the fragmentation process. For § = 1, Eq.
(22) reduces to an exponential distribution. For smaller particle sizes, we expect the dimensionality of the frag-
mentation process to have an effective dimensionality 1 < § < 2. For § > 1, the distribution becomes peaked
towards smaller particle sizes, which is exactly what is observed in measurements of clay thickness distributions
shown in Fig. 2. Fitting the distributions gives us dimensionalities § ranging from 1.5 to 1.8 and characteristic
thicknesses 7 ranging from 4.5 to 27.7 nm.

Traditionally, the peak shift in the particle size distribution of minerals is attributed to Ostwald ripening. One
problem with the existing theory is that a size distribution generated from Ostwald ripening should be highly
skewed towards larger sizes (e.g.*!), which apparently contradicts actual measurements (Fig. 2) showing that the
peak is skewed towards smaller sizes. In addition, Ostwald ripening is an irreversible process in which larger
crystals grow at the expense of smaller ones, ultimately leading to a sharply peaked distribution around a single
particle size. To our knowledge, however, a sharply peaked distribution has never been observed for clay particles.
In contrary, data show that the size distribution broadens with increasing metamorphic grade of clay samples
(Fig. 2). In addition, it is often assumed that the Ostwald ripening of clay could take place over a geological time
of millions of years®. It is difficult to imagine that a clay-water reaction would not reach equilibrium over such a
long time scale, given the fact that clays have relatively fast reaction rates due to their high reactive surface areas
and are usually modeled as secondary mineral phases in equilibrium with a contacted geofluid (e.g.*®). All these
arguments point to a possibility that Ostwald ripening may not be a relevant underlying mechanism for describ-
ing the particle size distribution of clays. Interestingly, our model provides a reasonably consistent explanation
for all of the observed features. As shown in Fig. 2, the skew of the particle size distributions towards smaller
sizes is a natural outcome of a random fragmentation process, which we inferred from our analysis of fluctua-
tions in Section “Layer stacking and the Ising model”. In contrast with Ostwald ripening, our model implies that
a clay aggregate with a broad particle size distribution can be a thermodynamically stable ensemble which can
be preserved over a geological time scale as long as the environment for mineral formation remains relatively
unchanged. As prograde metamorphosis progresses, we expect a progressive peak shift and a peak broadening
of the clay particle size distribution (Fig. 2) because an elevated temperature and pressure should strengthen clay
interlayer interactions (Section “Correlation between layer extension and clay composition”).

In summary, the commonly observed small clay particles can be related to the lack of long-range order in
low-dimensional systems. Because of its weak interlayer interacion, a clay mineral can be treated as two separate
low-dimensional systems: a 2D system for the individual layers and a quasi-1D system for the layer stacking.
The layer stacking in a mixed-layer clay can be described by a 1D Ising model while the limited 2D extension
of an individual phyllosilicate layer can be described by an XY-like model. This simple yet powerful treatment
allows for a systematic prediction and explanation of the limited dimension of clay particles, the origin of the
particle size distribution, the compositional variation of an interstratified clay, and the transition from small illite
crystallites to large muscovite crystals. Clay minerals thus provide a useful model system for studying transitions
between 1D, 2D, and 3D systems in crystal growth.
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