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Comfort evaluation of ZnO 
coated fabrics by artificial neural 
network assisted with golden eagle 
optimizer model
Nesrine Amor1*, Muhammad Tayyab Noman1, Michal Petru1 & Neethu Sebastian2

This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles 
(ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) 
and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are 
state-of-the-art machine learning models used for optimal state prediction of complex problems. 
Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy 
of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their 
intelligence for hunting by tuning their speed according to spiral trajectory. From application point of 
view, this study is a very first attempt where GEO is applied along with ANN to improve the training 
process of ANN for any textiles and composites application. Furthermore, the proposed algorithm 
ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal 
results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables 
and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO 
model provides high performance accuracy than standard ANN model, ANN models trained with 
latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and 
conventional multiple linear regression.

Zinc oxide (ZnO) is an inorganic compound used in various products and applications including food supple-
ments, cosmetics, plastics, textiles, ceramics, paints, batteries and many more. ZnO in nanoforms is available in 
different dimensions and morphologies including nanoparticles, nanowires, nanosheets and nanoflowers. ZnO 
nanoparticles (ZnO NPs) are widely used in photocatalysis, self-cleaning and antimicrobial applications1–3. The 
use of ZnO for thermophysiological and sensorial comfort is also significant from different aspects. Thermo-
physiological properties are influential parameters that play important role in the evaluation of fabric comfort4. 
In a recent study, Noman et al. synthesized and coated ZnO NPs on woven textiles by sonication and practically 
evaluated thermal resistance, heat flow, thermal diffusivity, accumulative One-way transport index and wetting 
time5. In this extended study, a prediction model is designed based on the application of a latest machine learn-
ing algorithm (GEO) and its synchronization with ANN in order to improve the training process of ANN. The 
benefit of using ANN in this work, is the adaptation of existing relationship without any physical mechanism. 
The resulted ANN-GEO model works in three ways i.e., correlates the actual response with the process variables, 
analyses the predicted response of each variable and indicates the better approach.

ANN is an efficient machine learning tool suitable for the prediction of output response when input condi-
tions are not defined6–8. Khude et al. used ANN with adaptive network-based fuzzy inference system (ANFIS) for 
antimicrobial evaluation of knitted fabrics. The results reveal that ANFIS performed better under small number 
of data sets9. Knanat et al. applied standard ANN for the evaluation of thermal resistance of knitted fabrics. Two 
different models of ANN were developed based on input conditions. The results of both models showed excellent 
prediction of thermal resistance10. Lu et al. combined ANN with multiple linear regression (MLR) for tensile 
strength of wool fibers. A high correlation was observed between actual and predicted values. However, ANN 
showed higher accuracy and lower error than MLR11. In a study, Malik et al. applied ANN for comfort evaluation 
of woven fabrics. ANN was trained with feedforward back propagation composed of Bayesian regularization and 
Levenberg-Marquardt functions. The results showed that ANN adjusts the data sets with lower mean absolute 
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error (MAE)12. In another work, Malik et al. used ANN for loom parameters and fabric properties including 
porosity, pore size and air permeability. The obtained results showed that ANN is an excellent prediction tool 
with minimum error13. Wong et al. combined ANN with fuzzy logic (FL) for clothing comfort and results reveal 
better correlation of input and out conditions14. Mishra applied ANN to predict yarn strength. Selected variables 
were yarn count, yarn crimps and yarn strengths in both longitudinal and transverse directions. The results reveal 
a percentage increase in both directions15.

In an experimental study, El-Geiheini et al. investigated yarn types and applied ANN for yarn tenacity and 
elongation. The results showed ANN is suitable for the evaluation of various properties with minimum error16. 
In another study, Erbil et al. applied ANN and regression for tensile strength of rotor yarns. ANN was trained 
with Levenberg-Marquardt backpropagation. In addition, a comparison of ANN and regression was performed 
for prediction efficiency. The results demonstrated that ANN gives better prediction output than regression17. 
Breuer et al. applied ANN for short fiber composites under representative volume element database. The elastic 
properties of short fiber reinforced plastics were evaluated and results showed that ANN predicts the stiffness in 
good manner18. Wang et al. used ANN to predict the tensile strength of ultrafine glass fiber felts. The results are 
modelled with mean diameter, bulk density and resin content. ANN simulation showed high prediction accuracy 
with low mean relative errors19. Farook et al. used ANN for cotton fibre maturity. The results showed low error 
for ANN20. Unal et al. used ANN and regression for single jersey knitted fabrics to predict air permeability and 
bursting strength of knit structures. Simulation results showed that both methods were good for prediction21. 
Farooq et al. applied ANN for shade change prediction of dyed knitted fabrics. The observed results showed that 
ANN provides high prediction accuracy for shade change22. Recently, Amor et al. applied ANN and MLR on 
functional properties of nano TiO2 coated composites. Simulation results showed that for prediction accuracy, 
ANN outperformed MLR23. In another study, Amor et al. used deep neural network (DNN) for the prediction 
of methylene blue removal. DNN model showed better results than MLR24. The literature discussed above reveal 
that multilayer perceptron (MLP) is a popular class of feedforward ANN model, and extensively used ANN 
algorithm in textiles and composites industries25.

The application of metaheuristic algorithms (particle swarm optimizer, genetic algorithm, crow search opti-
mizer) for accuracy improvement of ANN has gained considerable attention. Genetic algorithm (GA) was 
used with ANN to improve pilling performance26, yarn tenacity27, ultraviolet protection factor (UPF)28. Grey 
wolf optimizer (GWO) was combined with ANN to detect and predict the coating thickness by hyperspectral 
images29. ANN trained with particle swarm optimization (PSO) used for thermal properties30 and trained with 
crow search algorithm (CSA) used for the prediction of functional properties of nanocomposites31. Recently, a 
novel nature-inspired metaheuristic algorithm known as GEO, has been introduced to solve global optimization. 
GEO is inspired by the intelligence of golden eagles for hunting by tuning their speed according to the spiral 
trajectory. GEO is distinguishable from GA, PSO, CSA and dragonfly algorithm (DA) by its setting parameters 
that make the process more intuitive and effective in solving complex problems32. In addition, the application 
of GEO in real-world applications showed its potential and suggested its use in other fields especially textiles 
and polymer composites.

This study provides the following benefits: (1) Proposing the use of GEO to train MLP. (2) Investigating 
the accuracy of propose ANN-GEO for the prediction of comfort properties of ZnO coated fabrics by creating 
a relationship between ZnO, comfort properties and ultrasonic irradiations. The amount of ZnO NPs, fabric 
mass and fabric thickness were selected as input variables and comfort properties i.e., thermal diffusivity, ther-
mal resistance, heat flow, accumulative One-way transport index and wetting time were considered as output 
responses. (3) Comparing the performance of ANN-GEO with standard ANN, standard MLR and ANN trained 
by PSO, CSA and GA algorithms.

Material and methods
Materials.  Two types of plain weave woven fabric ( 100% cotton and polyester) were used for samples prepa-
ration. Chemicals i.e., sodium hydroxide, zinc chloride and ethanol were received from sigma aldrich. The varia-
bles selected for this study were ZnO NPs coated amount, fabric mass measured as gram per square meter (GSM) 
and fabric thickness before and after treatment. The combination of these variables is described in Table 1.

Conditioning.  Before any treatment, all the samples were conditioned at temperature i.e., 23± 2 ◦C and 
relative humidity i.e., 65± 2 for one day according to ASTM standard D 1776-16. After that, fabric mass was 
calculated by ASTM D 3776. ASTM D 1777-96 (2019) standard was used to measure fabric thickness before and 
after the application of ZnO NPs.

Application of ZnO NPs.  Synthesis and coating of ZnO NPs were performed on all the samples according 
to the procedure as reported in our previous studies33,34. Fabric samples were individually immersed in water 
and then different amount of ZnCl2 was added. Later on, NaOH in granular form was added. In order to com-
plete the reaction, sonication was applied for 1 h. After sonication, samples were squeezed on padder and dried 
in an oven. ZnO NPs were characterised for their morphology and topography. Ultrahigh resolution scanning 
electron microscopy (UHR-SEM) was used to characterise the morphological and topographical changes. ZnO 
NPs coated amount was calculated by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Artificial neural network.  Prediction of thermophysiological properties of ZnO NPs coated samples is 
a challenging task due to the complex relationship between applied chemicals and obtained results. ANN has 
achieved important milestones in the field of artificial intelligence (AI)35. ANN models are inspired by biologi-
cal neural networks that allow them to capture linear or nonlinear complex relationships between dependent 
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and independent variables36. It includes large groups of neurons connected by axons. The artificial neuron has 
multiple inputs that are weighted, summed up and followed by an activation function or transfer function. Every 
neuron receives input from various sources and applies activation function to provide the desired results. The 
advantages of ANN are exploration, creation and derivation of new data through training process37.

MLP is a feedforward ANN model in which one direction processes the information from input to output 
neurons under multiple hidden layers. MLP deals with non-linear models by decreasing the targeted error by 
tailoring weight and biases38. In MLP, training process is implemented in four steps: 1) Initialization: assum-
ing that there is no prior information available and initializing the weights and thresholds values. 2) Forward 
propagation: the inputs of ANN model are the experimental data and their effects propagate at different stages 
by moving forward the network layer by layer which creates the network output. 3) Error computation: the error 
vector is calculated by actual and predicted output difference. 4) Backward propagation: the calculated error 
vector propagates backwards and synaptic weights are adjusted.

Generally, ANN is used to predict the output variables y = [y1, · · · , ym] for a given set of input variables 
x = [x1, · · · , xk] from their training values. The results depend on weights w = [w1, · · · ,wk] . The relationship 
between input and output of ANN model is presented in the following equation39,40:

where, y represents the desired output. xi represents the selected ith input. wi represents the ith weight and b is the 
bias. ϕ represents the activation function. More theoretical detail of ANN models with their training algorithms 
is provided by various researchers41–45. In the ANN model, by increasing the number of network layers, the 
results will be significantly more accurate. However, this increase will make the training process more difficult 
to fit and will lead to a time-consuming process. We, therefore, adopted the classical structure of feedforward 
ANN (MLP model) in the present work. The classical structure of feedforward ANN consists of three layers (one 
input layer, one output layer and one hidden layer). Figure 1 illustrates the schematic ANN model for this study.

The recommended quantity to train the network, is from 60% up to 90% of the samples46. The datasets of 
Table 1 were divided into three parts (training, validation and testing) for the proposed ANN model, where 60% 
of total data was used to train the network, 15% was used for validation and remaining 25% was used for test-
ing. Once the training process is completed, the developed model is validated for unseen data during training. 
Random sub-sampling cross-validation method was applied to evaluate the topology and training of proposed 
model. The training inputs vectors are shown in Table 1. The output vectors include thermal resistance, thermal 
diffusivity, heat flow, accumulative One-way transport index and wetting time. The selected number of input 
and output nodes were 3 and 5 respectively.

ANN optimized with golden eagle optimizer. 

•	 Golden eagle optimizer

GEO is a new metaheuristic method that was introduced very recently to solve global optimization problems. 
GEO algorithm is inspired and mathematically modeled by the intelligence of the golden eagles based on control-
ling the speed of their spiral track. Golden eagle is a special kind of swarm that has a greater propensity to cruise 
around and search for prey at the start of hunt. By controlling these two components, i.e., cruise propensity and 
attack propensity, GEO is quickly able to hunt the best available prey in the feasible area.

The golden eagle in cruising and hunting has a unique feature i.e., occurs in a spiral trajectory which means 
that prey is generally on one side of the eagle. This enables them to control target prey carefully and boulders 

(1)y = ϕ

(

∑

i

wi ∗ xi + b

)

Table 1.   The input variables for experimental design.

Sample ZnO NPs coated amount [ppm] GSM [gm2] Thickness [mm]

1 – 110 0.25

2 581 115 0.31

3 1090 118 0.38

4 – 224 0.66

5 598 229 0.72

6 1110 233 0.77

7 – 118 0.32

8 493 124 0.36

9 1032 128 0.41

10 – 230 0.66

11 583 234 0.78

12 1096 238 0.84
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to find a suitable angle of attack. At the same time, they check other areas for better food. The hunting method 
of golden eagles mainly depend on the following feature: they have an intelligent memory that allows them to 
memorize the propensity for both cruise and attack during the flight.

The mathematical formulations of golden eagles to mimic the movements for searching the prey are mainly 
described by:

–	 The spiral movement of golden eagles: In GEO, every golden eagle keeps in its memory the best visited 
position so far. The eagle has an attraction towards the cruise and towards attacking the prey simultaneously 
to search for better food. Figure 2 depicts the cruise and attack vectors in 2D space. At every iteration, every 
golden eagle j can randomly chooses a prey that has been caught by another golden eagle l and circles around 
the best position visited by golden eagle l so far. The golden eagle j also has the feature of selection to circle 
its own memory; thus, we have l ∈ {1, 2, · · · ,NGE} , where NGE represents the number of golden eagles.

–	 Prey selection: At every iteration, every golden eagle should select a prey to carry out the cruise and attack 
operations. In addition, each golden eagle chooses the desired prey from the memory of the whole flock. 
Therefore, the cruise and attack vectors are computed according to the selected prey. After that, it checks its 
memory If the new location is better than the previous location, then the memory is updated with the new 
finding.

–	 Attack: The attack can be described using a vector starting from the actual position of golden eagle j and 
ending in the position of the prey in the eagle’s memory, as follows: 

(2)−→
Aj =

−→
X∗
l −

−→
Xj ,

GSM

ZnO NPs 

Coated Amount

Thickness
Wetting Time

Thermal Resistance

Thermal Diffusivity

Heat Flow 

Input Layer Output LayerHidden Layers

Accumulative One-way 

Transport Index

Figure 1.   ANN model for the prediction of comfort properties of ZnO coated fabrics.

Attack

Cruise

Figure 2.   Spiral movement of golden eagles32.
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 where −→Aj represents the attack vector of golden eagle j, 
−→
X∗
l  represents the best position visited by eagle l so 

far, and −→Xj represents the current position of eagle j.
–	 Cruise: The cruise vector is a perpendicular vector to the attack vector and tangent to the circle. It is also 

known as linear speed of golden eagle to attack the prey. The destination point on the cruise vector is given 
below: 

 where, d represents the hyperplane equation in n-dimensional space, aj , af ∈
−→
Aj , where −→Aj = [a1, a2, · · · , an} 

is the attack vector.
–	 Moving to new positions: Moving to new positions of the golden eagles are mainly depends on the attack 

and cruise vectors. Therefore, the step vector of golden eagle j in iteration t is presented by the following 
equation: 

 where pta represents the attack coefficient at iteration t and ptc represents the cruise coefficient at iteration t 
and control how the golden eagles are affected by cruise and attack. −→r1  and −→r2  are a random vectors.

	   The new position of the golden eagle is then given by: 

 If the fitness function j provides better than the previous positions, then its memory will be updated with 
the new position.

–	 Transition from exploration to exploitation: GEO algorithm uses the attack coefficient pa and the cruise 
coefficient pc to switch from the state of exploration to the state of exploitation. pa and pc can be computed 
using the following linear expressions: 

 where p0a and p0c are, respectively, the initial values for propensity to attack pa and for propensity to cruise 
pc , t represents the current iteration, T is the maximum number of iterations, pTa  and pTa  are, respectively, 
the final values for propensity to attack pa and for propensity to cruise pc.
–	 Optimized ANN model with golden eagle optimizer

	    The main inconvenient of ANN algorithm is that it can get stuck in local minimums easy and has a slow 
convergence rate. In recent years, researchers have shown that incorporating metaheuristics methods like 
GA47 and PSO48–50 in ANN, improves the performance of training process and the convergence rate signifi-
cantly. However, GEO algorithm has been never used and investigated in training ANN. Training process 
involves identifying the corresponding set of influences that reduce the training error. Therefore, we proposed 
a new combined model that integrates GEO algorithm in the training of ANN to improve the prediction 
efficiency of ZnO NPs coated fabrics for thermophysiological properties. In this framework, ANN model is 
optimized by GEO algorithm in order to optimize the threshold and the weight, that significantly improves 
the prediction accuracy of the desired output. The flowchart of the proposed ANN-GEO model for comfort 
evaluation is presented in Fig. 3.

In ANN-GEO algorithm, at each iteration t, the golden eagle position xj,t+1 is considered as the collection of 
weights. The MSE between the actual and predicted outputs is considered as the fitness function of ANN-GEO 
algorithm, where GEO seeks to minimize it during the ANN training process. Therefore, the fitness function is 
described by the following expression:

where, M is the the number of training samples and N is the number of output nodes.
The proposed ANN-GEO algorithm is mainly based on the following steps: 

1.	 Initialization of the parameters of ANN-GEO algorithm: Golden eagle includes all weights and thresholds 
of ANN network i.e., connection weight for input and hidden layers, threshold for hidden layer, connection 
weight for hidden output layers, and threshold of output layer.

2.	 Initialization of memory, position, propensity to attack pa as well as propensity to cruise pc for every golden 
eagle: ANN-GEO initiates with random initialization of golden eagle positions where every golden eagle 
moves into the weighted search space.

(3)
−→
Cj =

d −
∑

f ,f �=j af

aj
,

(4)�xj =
−→r1 pa

−→
Aj

∥

∥
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∥
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∥

∥

∥
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∥
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∥

∥
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(6)pa =p0a +
t

T
|pTa − p0a|,

(7)pc =p0c +
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1
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2} where j = 1, · · · ,M and i = 1, · · · ,N .
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3.	 Measurement of fitness function: Here, initial weights and bias are used to estimate initial training error.
4.	 Compute the attack vectors: Update the pa and pc values, and randomly select a prey. Then, computes attack 

vectors using Eq. (2).
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Figure 3.   ANN-GEO model for the prediction of thermophysiological comfort properties of ZnO NPs coated 
fabrics.
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5.	 Calculate the cruise and step vectors using Eqs. (3) and (4), respectively.
6.	 Compute the new position of the golden eagle using Eq. (5).
7.	 Estimate fitness function for new position, update pa and pc using Eqs. (6) and (7), respectively, and update 

memories of all golden eagles with best positions, and so on until the end of iterations.

Robustness and sensitivity analysis.  Prediction performance of thermophysiological comfort proper-
ties of ZnO NPs coated fabrics using ANN-GEO was estimated using statistical methods e.g., mean squared 
error (MSE), mean absolute error (MAE), root mean squared error (RMSE) and correlation coefficient (R), 
which are defined below.

where yj and ŷ are, respectively, the actual and predicted thermophysiological comfort properties. m represents 
the number of samples. ȳ is the computed average of the actual properties and ¯̂y represents the computed aver-
age of the predicted properties.

The proposed model ANN-GEO was statistically tested using one-way ANOVA to evaluate its efficacy 
and durability comparing to others methods for the prediction of the thermophysiological comfort proper-
ties. ANOVA is an independent statistical approach to verify the statistical significance between inputs and 
outputs51–53. ANOVA uses F ratio to check the existence of any significant difference between the outputs.

Results and discussion
SEM and ICP‑AES analysis.  UHR-SEM was used for surface topography and morphology evaluation of 
treated and untreated samples as illustrated in Fig. 4. UHR-SEM images were taken at magnification 5k x and 
50k x for cotton and at 250 x and 10k x for polyester respectively. A clean and smooth surface of untreated cotton 
and polyester can be observed in Fig. 4a,d respectively. A quasi spherical shape with homogeneous distribution 
of ZnO NPs was observed for both type of fabrics. In addition, ICP-AES analysis confirmed the presence of ZnO 
NPs on both fabrics. However, no traces were detected on untreated samples.

Comfort properties of ZnO NPs coated fabrics were determined through ANN under golden eagle optimizer 
(ANN-GEO). The obtained simulation results of ANN-GEO model were compared with standard ANN model, 
optimized ANN model with particle swarm optimization (ANN-PSO), optimized ANN model with genetic 
algorithm (ANN-GA) and optimized ANN model with crow search algorithm (ANN-CSA).

Parameters setting of the optimized ANN models with metaheuristics algorithms The proposed ANN 
model has three-layers i.e., an input layer, a hidden layer, and an output layer. After several trials, we found that 
the network provides highly accurate results with 9 hidden layer nodes, thus we considered that the number of 
hidden layer nodes for all proposed algorithms to be 9. The settings of training parameters of ANN, optimized 
models with GEO, PSO, CSA, and GA are introduced in Table 2.

Comparison of ANN-GEO with currently used ANN-metaheuristics The predicted values of comfort prop-
erties of ZnO NPs coated fabrics under standard ANN, ANN-GEO, ANN-PSO, ANN-GA and ANN-CSA are 
presented in Fig. 5, where predicted results for thermal resistance, thermal diffusivity, heat flow, wetting time and 
accumulative One-way transport index are presented from first row to fifth row respectively. We performed sev-
eral trials with different number of populations (i.e., number of crows, number of swarm, etc) in each proposed 
algorithm in order to confirm a fair comparison between all applied algorithms. Then, we selected the best results 
with higher accuracy and lower errors for the prediction of comfort properties of ZnO NPs coated fabrics in 
each algorithm. For the stochastic nature of ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN models, the 
prediction procedure of every property is repeated 1000 times and an average of 1000 times prediction is taken.

The values of prediction errors MAE, MSE, RMSE as well as the coefficient of correlation R between predicted 
and actual values for all evaluated comfort properties using ANN-GEO, ANN-GA, ANN-PSO, ANN-CSA and 
ANN are shown in Fig. 6 for thermal resistance, Fig. 7 for thermal diffusivity, Fig. 8 for heat flow, Fig. 9 for wet-
ting time and Fig. 10 for accumulative One-way transport index respectively. We observed that ANN-GEO has 
lower prediction errors and higher prediction accuracy according to the coefficient of correlation ( R ≈ 1 ) for all 
evaluated outputs. The proposed ANN-GEO model significantly outperformed ANN-GA, ANN-PSO, ANN-CSA 
and standard ANN in both training and testing processes. Another observation found that ANN-PSO provides 
very good prediction accuracy than ANN-CSA, ANN-GA and standard ANN for comfort properties. However, 
ANN-CSA prediction results have the lower accuracy with higher prediction error.

The average time of each run for thermal resistance in GEO algorithm is 0.232 s, in PSO is 0.316 s, in GA is 
0.322 s and in CSA is 0.689 s. The average time of each run for thermal diffusivity in GEO algorithm is 0.187 

(9)MAE =
1

m
�m

j=1|(yj − ŷj)|,

(10)MSE =
1

m
�m

j=1(yj − ŷj)
2,
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√
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m
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s, in PSO is 0.247 s, in GA is 0.352 s and in CSA is 0.478 s. The average time of each run for heat flow in GEO 
algorithm is 0.278 s, in PSO is 0.388 s, in GA is 0.421 s and in CSA is 0.762 s. The average time of each run for 
wetting time in GEO algorithm is 0.178 s, in PSO is 0.265 s, in GA is 0.369 s and in CSA is 0.698 s. The average 
time of each run for accumulative One-way transport index in GEO algorithm is 0.262 s, in PSO is 0.371 s, in GA 
is 0.578 s and in CSA is 0.829 s. It is clearly shown that convergence time with GEO is faster than other methods 
for all predicted properties, that strengthen the accuracy and effectiveness of the proposed ANN-GEO model.

In addition, we applied the conventional MLR method for performance evaluation of ANN-GEO model. 
The results obtained by MLR are as follows: for thermal resistance MAE=0.7595, MSE=0.739, RMSE=0.8597 
and R=0.9676; for thermal diffusivity MAE=0.0075, MSE=0.93787, RMSE=0.0097 and R=0.8007; for heat 
flow MAE=0.0235, MSE=0.0912, RMSE=0.0302 and R=0.9621; for wetting time MAE=5.6642, MSE=56.3745, 
RMSE=7.5083 and R=0.8261; and for accumulative One-way transport index MAE=69.1001, MSE=6.23e+03, 
RMSE=78.9613 and R=0.9447. We observed that the results obtained by ANN-GEO model outperformed MLR 
for all outputs. The accuracy and the effectiveness of proposed ANN-GEO model is revealed by the obtained 
results.

For all used optimized models, the performance MSE convergence characteristics have been shown in Fig. 11, 
where ANN-GEO is in blue, ANN-PSO is in red, ANN-CSA is in red, and ANN-GA is in mauve. We observed 
that the proposed MLP-GEO model provided the best results with lower MSE values as compared to ANN-PSO, 
ANN-CSA and ANN-GA for all thermophysiological properties.

Robustness assessment One-way ANOVA was performed to evaluate the effectiveness of predicted results 
using ANN-GEO, ANN-PSO, ANN-GA, ANN-CSA, ANN, MLR and experiment data. ANOVA is a statistical 
method aims to determine the correlation between variables and predicted results of ZnO coated fabrics. The 
results of each comfort property obtained by ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA, ANN, MLR and 
experimental are illustrated in Table 3. It is observed that ANN-GEO model was more significant as compared 
to other models as it provide minimum p−value.

5 um 5 um 5 um

100 um 100 um 2 um

5.0k x 5.0k x 50.0k x

250 x 250 x 10.0k x

(a) (b) (c)

(d) (e) (f)

Figure 4.   SEM images of (a) untreated cotton fabric, (b) ZnO coated cotton fabric, (c) ZnO coated cotton 
fabric with higher magnification, (d) untreated polyester fabric, (e) ZnO coated polyester fabric, (f) ZnO coated 
polyester fabric with higher magnification.
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Table 2.   Parameters on ANN training network, optimized models with GEO, CSA, PSO, and GA.

Methods Parameters Settings

ANN

Training function Trainlm

Transfer function of hidden layer Tansig

Transfer function of output layer Purelin

Hidden node 9

Input node 3

Output node 5

Performance goal 0.00001

Learning rate 0.02

GEO

Population size 50

Initial and final attack propensity [0.5 2]

Initial and final cruise propensity [1 0.5]

Lower and upper bound [−0.7 0.7]

Number of iterations 1000

PSO

Population size 50

Inertia weight 1

Cognitive factor C1 1.5

Social factor C2 2

Random values: r1, r2 [0,1]

Number of iterations 1000

GA

Population size 50

Crossover probability 0.4

Variation probability 0.5

Crossover method Float

Selection method Roulette method

Mutation method Float

Number of iterations 1000

CSA

Population size 50

Awareness probability 0.1

Flight length 2

Number of iterations 1000
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Results of thermal resistance
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Results of accumulative One-way transport index
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Figure 5.   Simulation results for the prediction of thermophysiological comfort properties NPs coated fabrics, 
where thermal resistance (first row), thermal diffusivity (second row), heat flow (third row), wetting time 
(fourth row), and accumulative One-way transport index (last row) using ANN-GEO, ANN-CSA, ANN-PSO, 
ANN-GA and ANN.
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Figure 6.   MAE, MSE, RMSE errors, and coefficient of correlation R between predicted and actual values of the 
thermal resistance using ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN.
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Figure 7.   MAE, MSE, RMSE errors, and coefficient of correlation R between predicted and actual values of the 
thermal diffusivity using ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN.
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Figure 8.   MAE, MSE, RMSE errors, and coefficient of correlation R between predicted and actual values of the 
heat flow using ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN.
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Figure 9.   MAE, MSE, RMSE errors, and coefficient of correlation R between predicted and actual values of the 
wetting time using ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN.
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Figure 10.   MAE, MSE, RMSE errors, and coefficient of correlation R between predicted and actual values of 
the accumulative One-way transport index using ANN-GEO, ANN-CSA, ANN-PSO, ANN-GA and ANN.
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Conclusions
In this work, ANN-GEO is introduced as a novel model to enhance the prediction accuracy. ANN-GEO model is 
a combination of metaheuristics algorithms where GEO is employed for the first time to ameliorate the training 
process of ANN. ANN-GEO is used for the prediction of thermophysiological comfort of ZnO coated fabrics. 
The obtained results demonstrated that ANN-GEO model exhibits an efficient prediction accuracy ( R > 99% ) 
over standard ANN, ANN-PSO, ANN-CSA, ANN-GA and conventional MLR. Moreover, ANN-GEO showed 
lower error in terms of MAE, MSE and RMSE. ANN-GEO showed more statistical significant ( p < 0.01147 ) 
than other models. The findings of this study reveal that ANN-GEO can efficaciously be used for prediction as 
well as for classification of nanocomposites.
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	35.	 Amor, N., Noman, M. T. & Petrů , M. Classification of textile polymer composites: Recent trends and challenges. Polymershttps://​
doi.​org/​10.​3390/​polym​13162​592 (2021).

	36.	 Pishro, A. A. et al. Application of artificial neural networks and multiple linear regression on local bond stress equation of uhpc 
and reinforcing steel bars. Sci. Rep.11 (2021).

	37.	 Wang, Z., Di Massimo, C., Tham, M. T. & Julian Morris, A. A procedure for determining the topology of multilayer feedforward 
neural networks. Neural Netw. 7, 291–300. https://​doi.​org/​10.​1016/​0893-​6080(94)​90023-X (1994).

	38.	 Kalantary, S., Jahani, A. & Jahani, R. Mlr and ann approaches for prediction of synthetic/natural nanofibers diameter in the envi-
ronmental and medical applications. Sci. Rep.10 (2020).

	39.	 Jeon, J. H., Yang, S. S. & Kang, Y. J. Estimation of sound absorption coefficient of layered fibrous material using artificial neural 
networks. Appl. Acoust. 169, 107476. https://​doi.​org/​10.​1016/j.​apaco​ust.​2020.​107476 (2020).

	40.	 Doran, E. C. & Sahin, C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and 
support vector machines. Text. Res. J. 90, 1558–1580. https://​doi.​org/​10.​1177/​00405​17519​896761 (2020).

	41.	 Daniel, G. G. Artificial Neural Network, 143–143 (Springer, Netherlands, Dordrecht, 2013).
	42.	 Briot, J.-P. From artificial neural networks to deep learning for music generation: history, concepts and trends. Neural Comput. 

Appl. 33, 39–65. https://​doi.​org/​10.​1007/​s00521-​020-​05399-0 (2021).
	43.	 Ayres, L., Gomez, F., Linton, J., Silva, M. & Garcia, C. Taking the leap between analytical chemistry and artificial intelligence: A 

tutorial review. Anal. Chim. Actahttps://​doi.​org/​10.​1016/j.​aca.​2021.​338403 (2021).
	44.	 Jain, A. K., Jianchang, Mao & Mohiuddin, K. M. Artificial neural networks: a tutorial. Computer 29, 31–44. https://​doi.​org/​10.​

1109/2.​485891 (1996).

https://doi.org/10.1038/s41598-020-78305-2
https://doi.org/10.1080/15440478.2020.1870621
https://doi.org/10.3390/polym14050937
https://doi.org/10.1016/j.eti.2020.101169
https://doi.org/10.3390/ma13010014
https://doi.org/10.1080/00405000.2017.1423003
https://doi.org/10.1177/0040517520948200
https://doi.org/10.1177/004051750407400103
https://doi.org/10.1016/j.aej.2020.07.049
https://doi.org/10.1080/00405000.2017.1361164
https://doi.org/10.3390/fib9020008
https://doi.org/10.1080/00405000.2020.1779167
https://doi.org/10.2478/aut-2020-0019
https://doi.org/10.1038/s41598-021-91733-y
https://doi.org/10.3390/polym13183104
https://doi.org/10.1177/1558925019900152
https://doi.org/10.22044/jadm.2014.187
https://doi.org/10.1007/s00521-015-2025-6
https://doi.org/10.1007/s00521-015-2025-6
https://doi.org/10.1016/j.mcm.2012.01.003
https://doi.org/10.1016/j.mcm.2012.01.003
https://doi.org/10.1038/s41598-021-93108-9
https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1016/j.ultras.2017.06.012
https://doi.org/10.1016/j.ultsonch.2017.06.026
https://doi.org/10.3390/polym13162592
https://doi.org/10.3390/polym13162592
https://doi.org/10.1016/0893-6080(94)90023-X
https://doi.org/10.1016/j.apacoust.2020.107476
https://doi.org/10.1177/0040517519896761
https://doi.org/10.1007/s00521-020-05399-0
https://doi.org/10.1016/j.aca.2021.338403
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891


16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6350  | https://doi.org/10.1038/s41598-022-10406-6

www.nature.com/scientificreports/

	45.	 Golnaraghi, S., Zangenehmadar, Z., Moselhi, O. & Alkass, S. Application of artificial neural network(s) in predicting formwork 
labour productivity. Adv. Civ. Eng. 2019, 1–11 (2019).

	46.	 Rezaee, M. J., Jozmaleki, M. & Valipour, M. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural 
network to online prediction performance of companies in stock exchange. Phys. A Stat. Mech. Appl.https://​doi.​org/​10.​1016/j.​
physa.​2017.​07.​017 (2018).

	47.	 Das, S., Ghosh, A., Majumdar, A. & Banerjee, D. Yarn engineering using hybrid artificial neural network-genetic algorithm model. 
Fibers Polym. 14, 1220–1226 (2013).

	48.	 Ecer, F., Ardabili, S., Band, S. S. & Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimiza-
tion for modeling stock price index prediction. Entropyhttps://​doi.​org/​10.​3390/​e2211​1239 (2020).

	49.	 Ansari, A., Ahmad, I. S., Bakar, A. A. & Yaakub, M. R. A hybrid metaheuristic method in training artificial neural network for 
bankruptcy prediction. IEEE Access 8, 176640–176650. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30265​29 (2020).

	50.	 Ram Jethmalani, C. H., Simon, S. P., Sundareswaran, K., Nayak, P. S. R. & Padhy, N. P. Auxiliary hybrid PSO-BPNN-based trans-
mission system loss estimation in generation scheduling. IEEE Trans. Ind. Inf. 13, 1692–1703. https://​doi.​org/​10.​1109/​TII.​2016.​
26146​59 (2017).
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