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Techno‑economic analysis 
of rooftop solar power plant 
implementation and policy 
on mosques: an Indonesian case 
study
Suparwoko1* & Fadhil Ahmad Qamar2

Indonesia is pushing the implementation of renewable energy to meet its climate action target. Solar 
energy is abundant, and its utilization is prioritized, including rooftop solar power plant (RSPP). 
This research presents a techno-economic analysis of an RSPP installed in a mosque in Ngombol 
subdistrict, Purworejo district, Central Java, Indonesia. This article also introduces and explains the 
regulation of RSPP and electricity tariffs in Indonesia, which define the economics of RSPP. This 
study employs an operational and financial model to analyze RSPP in five scenarios. The RSPP design 
objective is to reduce the annual energy usage of the mosque and yield the highest Net Present 
Value (NPV). According to the result, RSPP at all configurations based on the type and number of 
panels yield negative NPVs at the current electricity tariff, costs of components, and regulations 
implemented concerning RSPP. Proposed policy adjustment modeled through different scenarios 
provide benefit to some extent, limited by other policies. Hence, a combination of different policy 
adjustments may be required to achieve the most optimal condition for RSPP implementation on the 
mosque rooftop. This study could help policymakers to understand the possible directions of policy 
design for faster PV implementation.

In terms of the potential for renewables, Indonesia has a total capacity of 417.6 GW from different sources such 
as tidal, geothermal, bio, wind, hydro, and solar energy1. 207.8 GW or about half of this capacity is from solar 
energy thanks to its geographical condition crossed by the equator2. This capacity potential is relatively more 
significant than the total electricity generation capacity in June 2020, only at 71 GW3. By the first September 
2021, solar energy implementation in Indonesia only accounts for 0.08% of its potential, with a capacity of 150 
MWp4. This utilization rate is relatively low as Indonesia’s energy sector is still dominated by fossil fuels. In 2020, 
fossil fuel supported 88.8% of the primary energy supply and 85.3% of the electricity generation capacity3,5. This 
condition results in high Green House Gas (GHG) emissions from the energy sector, comprising around 30–40% 
of the total GHG emission in Indonesia6. Renewable energy has been known as a low-carbon alternative energy 
source to replace fossil fuels. Tawalbeh et al. estimated the carbon footprint from solar power to be in the range 
of 14–73 g CO2-eq/kWh, which is only 2 to 10% of the carbon emitted in oil-fueled electricity generation for 
generating one kWh7. Therefore as a part of its climate action, Indonesia targets to increase the share of renew-
able energy in its primary energy supply mix to 23% by 20251.

To achieve this target, the Government of Indonesia (GOI) planned to increase the solar power plant (SPP) 
capacity to 3.6 GWp by 2025, comprising large-scale SPP, rooftop SPP (RSPP), and floating SPP8. The Institute 
for Essential Services Reform (IESR), a think-tank in energy and environment, suggested the possibilities of 
Indonesia achieving the energy transition goal by utilizing the distributed generation of solar power in the form 
of rooftop and off-grid SPP. IESR further estimated that a minimum potential of 2 GWp RSPP exists in Jakarta 
and Surabaya’s residential market9. This study implies a more significant potential when considering other cit-
ies and types of buildings. A growing interest in studies on RSPP design can also be seen in Indonesia, which 
analyzes RSPP on residential10,11, office12,13, educational14–16, and industrial buildings13. This paper will focus on 
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SPP on mosque rooftops due to its significance in the context of Indonesia, while this type of building has not 
received the same research attention as others.

Indonesia is one of the countries with the largest population of Muslims in the world. For that reason, the 
Ministry of Religious Affairs reported the existence of more than 600,000 mosques and prayer halls of different 
sizes to support their activities17. Muslims gather daily at mosques for congregations at five designated times 
(before dawn, midday, afternoon, sunset, and evening), with a higher volume of visits every Friday midday. The 
sheer number of mosques suggests a large cumulative rooftop area, while the recurrent use of mosques may 
result in significant electricity use, which justifies the potential for RSPP implementation. In 2017, the Vice 
President of Indonesia and the Indonesian Council of Clerics, Majelis Ulama Indonesia (MUI) launched the 
eco-mosque initiative that aims to increase the environmental awareness of communities through renewable 
energy use, energy efficiency, waste management, and water preservation in mosques18. The relatively large area 
of the mosque’s roof is suitable for RSPP installation. The RSPP can provide the mosque with clean electricity 
with relatively low operation and maintenance expenditure (OPEX), resulting in electricity bills and GHG emis-
sion reduction from the financial and environmental perspectives. Higher electricity tariffs and the technology’s 
decreasing capital expenditure (CAPEX) result in RSPP’s more attractive business case19. According to Ghazali 
et al., the use of clean energy in such buildings is also ethically and morally relevant since preserving nature and 
the environment is one of the teachings of Islam, as indirectly suggested by the religion’s holy book20.

In the broader context, the adoption of solar PV suits well for rural electrification through micro-grid. Due 
to its decentralized nature, the micro-grid is an economical option to enable electrification in remote areas than 
extending the centralized grid21,22. The micro-grid with the decentralized generation, such as SPP, yields several 
advantages such as energy loss reduction, a more reliable supply, and carbon emission reduction due to the higher 
share of renewable energy adoption23,24. Mosques ideally serve as places of worship and as community building 
centers for their surroundings25. Especially for rural areas, this purpose can be further enhanced by coupling 
mosques with decentralized generation and connecting them through micro-grid26,27.

There has been a significant number of researches on the implementation of rooftop solar PV for mosques, 
as will be briefly discussed in this paper. Rashid et al. showed RSPP’s ability to reduce the annual electricity bill 
by 47% in Malaysia28. The payback period for the system’s CAPEX was reached in 13 years. A similar study was 
also conducted in Kuwait by Almutairi to identify the financial feasibility of the RSPP at 1,400 mosques in 2018, 
and the exact payback period was recorded29. The PV systems were designed to supply the connected load and 
shave the peak load during the day. It is, however, essential to note that both studies did not consider the present 
value of future cash flow, which means that the benefit of the system is subject to overestimation with the actual 
payback period achieved at a later date.

In 2019, Elshurafa et al. conducted a more comprehensive pilot study of the mosque RSPP in Saudi Arabia19. 
The RSPP was connected to the grid for different scenarios, including no supporting policy and a net-metering 
mechanism enabling the compensation for the exported surplus generation to the grid. The results showed that 
the analyzed system was financially attractive for both scenarios. The study finds that the analyzed system is 
economically attractive for both scenarios. The implementation of net-metering reduced the cost incurred for 
fulfilling electricity needs by 22% lower than the RSPP with no support policy scenario.

The GOI has implemented regulation on the RSPP through the Ministerial Regulation of the Minister of 
Energy and Mineral Resources (MEMR) No. 49/2018 to support the implementation of this technology30. Among 
other points, this regulation includes a net-metering scheme for RSPP in Indonesia, enabling consumers with 
RSPP to export their excess produced energy to the grid owned by the State Electricity Company, Perusahaan 
Listrik Negara (PLN). The exported electricity will offset the imported electricity from PLN and be calculated 
each month. The amount of electricity a consumer can offset every month is 65% of the exported electricity. 
PLN argues that this arrangement is made to account for transmission and distribution expenses31. In the case of 
higher export, the export balance can be accumulated for three months before the balance is reset to zero. This 
regulation also set the maximum capacity of RSPP, which is 100% of the electricity capacity stated in the contract. 
However, reports suggest that despite the Government’s intention to accelerate the implementation of RSPP, this 
regulation fails to enable the financial benefits of installing RSPP. Based on the simulation done by the Institute 
for Energy Economics and Financial Analysis (IEEFA), consumers will face difficulties in estimating their size of 
SPP to maximize savings, which is also sensitive to the consumers’ daytime load profile31. Their result shows that 
the policy favors consumers with high daytime load profiles and minimal export to the grid, contrary to its aim, 
which encourages RSPP through the ability to export to the grid. This load profile is uncommon as the majority 
of the consumers, especially in the residential sector, have a higher load profile in the evening.

Setyawati examines the perception towards the current regulation on RSPP in Indonesia through interviews 
and online surveys32. The survey results indicate that both consumer and institutional barriers constrain the 
RSPP implementation under the current policy. 71% of 987 PLN customers who participated in the surveys are 
interested in installing RSPP but prefer to wait for other options, which implies the less attractiveness of the 
current policy. The consumer is concerned about the high capital cost, long-term return on investment, and 
lack of information. Through the interviews with the Government, private sector, and energy experts, Setyawati 
identified that the low export rate for electricity is a substantial hurdle to attracting prospective users.

The initial investment in CAPEX and electricity bill savings, which is a function of the electricity tariff, define 
the return on investment of SPP in general, including RSPP. In Indonesia, the MEMR determines the electricity 
tariff provided by the PLN through the Ministerial Regulation, which is kept updated from time to time33–36. 
There are 37 electricity tariffs grouped by the consumer sector (Residential, Social, Industrial, Business, and 
Governmental) and the size of electricity capacity, expressed in VA37. Among the 37 tariff groups, 25 of them are 
subsidized, including the electricity tariff for all consumers in social. Compared to the basic production costs 
of electricity generation, Biaya Pokok Produksi (BPP), determined through the MEMR Ministerial Decree, the 
electricity tariff for the social sector is around 35% lower38. Hence, the subsidized electricity tariff for social 
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sector consumers may hamper the ability of RSPP on the mosque in Indonesia to recover its initial investment 
due to the lower bill savings. The regulation on electricity tariff also administers a minimum monthly usage of 
40 h which prevents consumers from entirely avoiding electricity bills despite the sufficient RSPP production 
to offset the imports. Referring to the analysis of IEEFA, consumers in the social sector will find it even more 
challenging to determine the size of RSPP to maximize electricity bill savings.

There are various methods for sizing SPP. Several SPP design and analysis studies adopt commercially avail-
able software, such as Homer12,19,39, PVsyst10,11,16,29, SOLARGIS pvPlanner10,14, RETSreen10, and System Advisory 
Model (SAM)13. Šimić et al. proposed a method for sizing an economically optimal SPP based on Croatian 
policy40. The price of the electricity produced by the SPP depends on the ratio of export and import. The policy 
imposes lower electricity prices generated by the SPP and reduced income at a higher export ratio. Thus, oversiz-
ing the SPP has a detrimental effect on the financial feasibility of the SPP.

This study aimed to conduct a similar analysis with those previously mentioned in related research, which 
involves exploring the design and feasibility of a mosque RSPP based on a location and the regulation in effect 
on RSPP in Indonesia as the case study. As mentioned above, the current policies revolving around the imple-
mentation of RSPP in Indonesia are somewhat unsupportive. Thus, four different policy scenarios are proposed 
in the simulations to realize RSPP implementation’s financial benefit better. To that end, we present a detailed 
techno-economic analysis of mosque RSPP in Indonesia for the first time, and the findings are expected to 
serve two purposes. The first is to define the implementation of RSPP on a mosque in Indonesia. The second is 
to provide insights to policymakers on the effectiveness of the current supporting policy for implementing the 
system for a specific end-user.

This paper is structured into four chapters. Chapter 1 covers the introduction and literature reviews of related 
studies. In chapter 2, the methods and the assumptions adopted in this paper are elaborated. Chapter 3 presents 
the result of the design. Chapter 4 presents the discussion and the conclusion of this paper.

Methods and assumptions
This chapter describes the assumptions based on the case study, followed by the methods employed, consisting 
of three main activities: data acquisition, RSPP design, and design result analysis. The analyses in each activity 
are done using codes written in MATLAB.

Case study.  The Ontowiryo Mosque is located at 109.96° Longitude, −7.85° Latitude, in Wonosari village, 
Ngombol subdistrict, at the south side of Purworejo district, Central Java. The configuration of the roof, azi-
muth, tilt, and area, is presented in Fig. 1 and Table 1. The mosque is connected to the grid with a maximum 
electricity capacity of 5,500 VA. As a community center, installing RSPP on the mosque further enhances its 
purpose, such as providing street lighting to its surroundings, given the lack of such service in the neighborhood 
of the case study. This purpose is of interest for further studies as the RSPP analyzed in this paper is limited to 
supplying the energy use in the mosque, described in the following section.

Data acquisition.  The data acquisition process prepares the required data for the RSPP design process, 
including site condition data and hourly electricity load profile data. The site condition data are obtained from 
Solcast, which provides a comprehensive set of hourly site condition data44. This data includes air temperature, 
cloud opacity, Diffuse Horizontal Irradiance (DHI), Direct Normal Irradiance (DNI), Global Horizontal Irradi-
ance (GHI), sun azimuth angle, sun altitude angle, wind speed, relative humidity, and precipitable water. Site 
condition data are available for the chosen location for 12 years (2008–2019) or 4,383 days, containing 105,192 
hourly data.

Figure 2a shows the average daily GHI across 12 years of data with a relatively constant value with an average 
of 5.4 kW/m2 per day. The slight fluctuation is due to the seasonal difference between years, where one year may 
have a longer dry/wet season and vice versa. The dry season in Indonesia spans in the middle of the year, while 
the rest is the wet season. Figure 2b presents the variation of irradiances throughout the year. GHI is relatively 
constant, while higher DHI values are observed at the end and beginning of the year. This condition is due to 
the wet season with more frequent rain and cloudy skies. Due to the relatively constant irradiance value across 
years, the site condition data used in the design and simulation can be represented by the data from one of the 
available years, with its average daily GHI being closest to the average. Thus, 2008, with an average daily GHI at 
5.41 W/m2, is used for the design and simulation. Since 2008 is a leap year, only data from 365 days is used to 
simulate a year of operation.

The hourly load profile data is ideally generated from historical data by taking a sample of electricity con-
sumption in one day. This method is unavailable for the considered case study as the mosque is currently under 
construction. Therefore, the load profile of the mosque is estimated by calculating the lighting and electronic 
equipment that is possibly used for specific activities and at certain times, presented in Tables 2 and 3. The list of 
lighting used in each room is obtained from the mosque’s Detailed Engineering Design. Electrical appliances used 
for the mosque operation include a sound system, desktop, router, refrigerator, vacuum cleaner, and water pump.

The final load profile of the mosque is presented in Fig. 3. The electricity use of the mosque is 16.89 kWh/day 
and 6,166.49 kWh/year. To conclude, this research work with 8,760 hourly data simulates a full year operation 
of RSPP.

RSPP design and analysis.  The solar irradiance received by the rooftop area arrives in three forms: direct 
irradiance ( Gdir

M  ), diffused irradiance ( Gdif
M  ), and irradiance reflected by the ground ( Gground

M )45. The solar irra-
diance data obtained in the previous activity (DNI, DHI, and GHI) are used to calculate each value of these 
forms. Equation (1) defines the direct irradiance where γ is the angle of incidence (AOI), the angle between the 
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PV module surface normal, and the incident direction of the sunlight. Given the sun’s position that constantly 
changes, AOI is a function of panel azimuth angle AM , panel height angle aM , sun azimuth angle AS and the sun 
elevation angle aS . Equation (2) define the cosγ.

Equation (3) defines the diffused irradiance, a function of the Sky View Factor (SVF). SVF is the fraction of 
the sky from which the module can receive diffused irradiance expressed in Eq. (4). Equation (5) defines the 
irradiance reflected by the ground where α is the albedo of the ground which determine the reflectivity coefficient 
of the ground. The total irradiance received by the module ( GM) is obtained by summing the three components 
of irradiance to determine the irradiance received by the rooftop and, hence, the estimated yield of solar energy 
on the mosque roof.

(1)Gdir
M = DNI · cosγ

(2)cosγ = cosaMcosaScos(AM − AS)+ sinaMsinaS

N

LOCATION

110.92°
290

.92
°

N

21°

W E

(a)

(b) (c)

Figure 1.   (a) Indoesia Map showing the location of the Ontowiryo Mosque, modoified from FreeVectorFlags.
com with CorelDRAW 201841,42, (b) Google maps image showing the mosque that is facing south-west. The 
mosque roof has two sides, west (W) and east (E). Image is modified with CorelDRAW 201842, (c) The South 
Façade adapted from the mosque’s Detailed Engineering Design43.

Table 1.   Ontowiryo Mosque roof configuration.

unit West East

Roof azimuth (°, North = 0°) 291 111

Roof tilt (m2) 30 60

Roof area (°) 145.6 108.4
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(3)G
dif
M = DHI · SVF

(4)SVF =
1

2
(1+ cosθM)

(5)G
ground
M = GHI · α · (1− SVF)
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Figure 2.   (a) average daily GHI at each year between 2008–2019. (b) Average daily irradiance (DHI, DNI, and 
GHI) for each month in 2008.

Table 2.   Lightings number, power, location, and operational period.

Room

Lighting

Operational periodpoints Power (W) Total (W)

Mosque

Main hall
7 72 504

Congregation time and 17.00—21.00 (8 h/day)
2 18 36

Porch 11 18 198 17.00–08.00 (15 h/day)

Office 2 18 36 08.00–18.00 (10 h/day)

Bedroom 2 18 36 17.00–08.00 (15 h/day)

Kitchen 3 18 54 Meal time (6 h/day)

Toilet (M)
4 18 72

Congregation time and 17.00—21.00 (8 h/day)1 23 23

Toilet (F) 5 18 90

Ablution (M)
1 18 18

Congregation time (5 h/day)
1 23 23

Ablution (F)
1 18 18

1 23 23

Table 3.   Electrical appliances power and operational period.

Electrical devices Brand Power (W) Operational period

Vacuum cleaner Electrolux Z931 1,600 1 h/day

Water pump Shimizu ZPS20-12-180 500 1 h/day

Desktop (-) 150 08.00—18.00 (10 h/day)

Router/modem TL-MR3420 12 24 h/day

Refrigerator Aqua AQR-D190-DS 80 24 h/day

Speaker column MAP-403SC “MAXX AUDIO PRO” 80

Congregation time (2.5 h/day)
Speaker horn TOA – ZH 5025 BM 50

Power amplifier TOA Mixer Amplifier ZA-2120 120

Sound Mixer MG10XUF 23
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This paper studied a grid-connected RSPP modeled in Fig. 4. The system is modeled in the hourly time step for 
one year, containing 8760 data steps, and repeated for 25 years (2021–2045) of the RSPP assumed lifetime46. RSPP 
generation in one hour is calculated as a product of the area of the module, module number ( nM ), irradiance 
received by the module ( GM) , inverter efficiency ( ηinv ), module degradation rate ( ηdeg ), and module efficiency 
( ηM ), presented in Eq. (7). Module efficiency is a function of the module’s irradiance level and temperature ( TM) 
as presented in Eq. (8) until 1245.

(6)GM = Gdir
M + G

dif
M + G

ground
M

Figure 3.   The hourly load demand profile of Ontowiryo Mosque.

Figure 4.   RSPP operational model.
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η(25◦C,GM) , Voc(25
◦C,GM) , and Isc(25◦C,GM) are the module efficiency, open-circuit voltage, and short 

circuit current as a function of irradiance level. Data obtained from the module’s datasheet are temperature coef-
ficient ( κ ), open-circuit voltage (Voc), short circuit current (Isc), area of the module, and module’s degradation 
rate. The values for Boltzmann constant (kb), elementary charge (q), and quality factor (n) are obtained from47. 
FF is the Fill Factor, the ratio between power generated at maximum power point and the product of Voc with Isc. 
GSTC and TSTC are the standard conditions for irradiance and temperature when the PV modules were tested, at 
1000 Wm−2 and 25 °C. The module’s temperature ( TM) is determined through the fluid-dynamic model which 
considers heat sources from sun irradiance, convective and radiative heat exchange from the front and rear side 
of the module. Equations (13–25) present the calculation for TM,

(7)ERSPP(t) = ηM(TM ,GM) · ηinv · ηdeg · areaM · nM · GM

(8)ηM(TM ,GM) = ηM
(

25◦C,GM

)

· [1+ κ(TM − TSTC)]

(9)ηM
(

25◦C,GM

)

=
FF · Voc(25

◦C,GM) · Isc(25
◦C,GM)

GM · areaM

(10)Voc

(

25◦C,GM

)

= Voc(STC)+
nkBTSTC

q
ln

(

GM

GSTC

)

(11)Isc
(

25◦C,GM

)

= Isc(STC)

(

GM

GSTC

)

(12)FF =
Impp · Vmpp

Isc · Voc

(13)TM(t) =
αMGM + hcTa + hr,skyTsky + hr,grTgr

hc + hr,sky + hr,gr

(14)hc = hTc + hBc

(15)hTc = 3

√

h3forced + h3free

(16)hforced = w0.8

(17)hfree =
0.21 · k(Gr · Pr)0.32

Dh

(18)Gr =
g(TM − Ta)D

3
h

v2

(19)Dh =
2LW

L+W

(20)hBc = R · hTc

(21)R =

αMG − hTc (TINOCT − Ta)− ǫtopσ

(

T4
INOCT − T4

sky

)

hTc (TINOCT − Ta)+ ǫtopσ

(

T4
INOCT − T4

sky

)

(22)αM = (1− R)(1− ηM(STC))

(23)TINOCT = TNOCT + 18

(24)hr,gr = ǫbackσ

(

T2
M + T2

gr

)

(

TM + Tgr

)
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where αM is the absorptivity of the module, Ta is the ambient temperature, hc is the convective heat transfer 
coefficient of the module, hr,sky and hr,gr are the radiative heat transfer to the sky and the ground, or roof in case 
of RSPP, and Tsky and Tgr are the sky and ground temperature. The process of finding the module’s temperature is 
an iterative process as the hr,sky and hr,gr are functions of TM . Gr is Grashof number, Pr is Prandtl number which 
equals to 0.71 for air, σ Stefan-Boltzmann constant, Dh is the hydraulic diameter of a rectangle with width W 
and length L , k is the air thermal conductivity and v is the air viscosity. TINOCT is the installed nominal operating 
cell temperature which for direct mount equals to Eq. (23). ǫback and ǫtop are the emissivity of the back and front 
surface of the module, which equals to 0.89 and 0.84 respectively.

The algorithm of the model compares the load and generated energy from RSPP every hour. When the load 
exceeds the RSPP generation, generated energy will be consumed while importing energy from the grid to sup-
ply the deficit. Vice versa, when the RSPP generation is higher than the load, the excess of the generated energy 
will be exported to the grid. Equations (26 and 27) present the import and export mechanism of the model. 
According to the regulation, the imports and exports are accumulated each month to determine the monthly 
electricity bill. PLN compensates 65% of the exported energy to offset the imported energy. The offset amount is 
limited that the reduced imported energy can not be lower than the monthly minimum load, equal to 40 h usage 
of the maximum electricity capacity, which results in 220 kWh monthly minimum load or 2640 kWh annual 
minimum load ( Eminload ). If this limit is reached, the export excess will be deposited in the grid and offset up 
to the following three months’ imports before being reset to zero. Due to the limitation of the model, the offset 
balance reset mechanism is not modeled, and the model accumulated the imports and exports annually. Hence, 
the model may not account for the lost export deposits due to the reset mechanism. The net load, the reduced 
load due to the utilization of the RSPP, can be obtained by offsetting the imports with the compensated exports, 
expressed in Eq. (28). This value will be used in calculating the annual revenue of the RSPP, as further explained 
in the financial model in Fig. 5.

The RSPP gains its revenue from the annual electricity bill saving, calculated by subtracting the initial load 
with the final load after the utilization of RSPP multiplied with the electricity tariff ( Cel ). In each year, the 
financial model compares the net load with the minimum load set by the regulation for 25 years of the RSPP 
assumed life span. The net load is a year function due to the module’s degradation rate, while the minimum 
load is a constant. If the net load is higher than the minimum load, the bill equals the net load. Vice versa, when 
the net load is below the minimum load, the bill equals the net load, and the excess is deposited in the grid. In 
practice, this excess can offset future imports when the RSPP generation is low. However, this model only uses 
one-year irradiance data and repeats them for the assumed life span of the RSPP. Hence, RSPP generation output 
is relatively constant, which RSPP with a relatively large capacity may result in unutilized deposited exports. 

(25)hr,sky = ǫtopσ

(

T2
M + T2

sky

)

(

TM + Tsky

)

Figure 5.   RSPP financial model.
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The annual revenue of the RSPP ( R(Y) ), which accounts for the total cash inflow each year, is obtained from 
subtracting OPEX from the annual electricity bill saving. Darghouth et al. estimated that the CAPEX and OPEX 
for SPP in Indonesia is 1365.76 US$ and 24.38 US$/kW per year48. The annual revenues and the CAPEX of the 
RSPP are then used to calculate the system’s Net Present Value (NPV). Based on a market study in 2017, a typical 
proportion of RSPP CAPEX in Indonesia is consisting of 47% PV modules cost, 13% inverter cost and 40% other 
complementary components as well as installation cost49.The cost for PV modules and inverter in this paper 
are taken from a renewable energy technology distributor website since the estimate from Dargouth et al. lacks 
technical specification details needed for the simulation50. Just as other renewable energy technologies, RSPP 
is capital intensive. Therefore, the PV module with the lowest price/kW is employed to keep the CAPEX down 
and this study employs Suntech STP375S 375 W. Each module was modeled in the simulation at various RSPP 
capacities with the maximum electricity capacity as the upper limit or at 5.5 kWp. This study also employs 9 
inverter types from Growatt of different sizes by matching the power output requirement of each simulation.The 
CAPEX includes PV modules ( CPV ), inverter ( Cinv ) and other components and installation ( Cother ) as presented 
in Eq. (31). Table 4 presents the price/kW of the PV module, inverter and other costs used in the calculation. The 
technical specifications of the PV modules and inverters can be found as Supplementary Table S1 and S2 online.

The MEMR Ministerial Regulation regulates the electricity tariff in Indonesia. For social sector consumers 
with 5500 VA electricity capacity, the tariff has been 6.27 US¢/kWh for the last eight years. This tariff is subsi-
dized as it only accounts for 65% of the BPP on average. The statistics report of PLN presents The BPP values 
from 2011–202,048,49, while the PLN’s Electricity Supply Business Plan (RUPTL) presents the projection of BPP 
values from 2021 to 203050. The BPP values beyond 2030 are estimated using a second-order polynomial regres-
sion function generated from the known values of BPP from 2015–2030. The BPP drop in 2015 was due to the 
increase in power system efficiency51. The BPP spike in 2025 is due to the significant increase in renewable energy 
adoption to achieve the Paris Agreement in that particular year. It is estimated that the BPP will rise at a slower 
rate due to the coal PP phase-out starting in 2030 and the decreasing cost of renewable energy technologies52. 
Thus, the projected electricity tariff from 2022 onwards is set at 65% of the BPP presented in Fig. 6. The currency 
exchange rate used in this paper is 1 USD = 14,351 IDR and 1 GBP = 1.33 USD.

(26)Eimport(t) =

{

Eload(t)− ERSPP(t),Eload(t) > ERSPP(t)
0,Eload(t) ≤ ERSPP(t)

Table 4.   CAPEX components price per capacity.

Capacity (kWp) CPV(USD/kWp) Cinv(USD/kWp) Cother(USD/kWp)

 < 1.05
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336.76
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Figure 6.   BPP and electricity tariff for case study.
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The financial model economic analysis employs the Net Present Value method, which estimates the project 
outcome economic value: positive or negative. The NPV integrates the initial investment and the expected 
incomes and costs that occur during the operation of the RSPP into a series of cash flows adapted to the time 
value of money and risk. Equation (32) presents the calculation for NPV for the 25 years of the RSPP operational 
life span53. The discount rate ( r ) is determined from the weighted average capital cost (WACC). IRENA assumes 
a real WACC of 7.5% in OECD countries and China and 10% elsewhere globally for all types of technology54. 
The IEA assumes a WACC of 8% in developed countries and 7% in developing countries55. Steffen estimated 
that the WACC for PV system development projects in and outside the OECD countries was 5.4% and 7.4%56. 
This paper employs a WACC level of 7% for the discount rate.

RSPP design scenarios.  As mentioned in the introduction, the current ecosystem may not be optimal for 
implementing RSPP on a mosque. Hence, several design scenarios are employed in the operational and financial 
model to explore the financial feasibility options.

•	 The business as usual (BAU) scenario models the RSPPs with two objectives: to have the highest NPV and 
to meet the load that is not covered with the minimum load limit.

•	 The second scenario, the carbon pricing (CP) scenario, models the RSPPs with additional income from the 
monetized carbon emission reduction. Climate Transparency estimated that approximately 761 g of carbon 
dioxide are emitted into the air when generating 1 kWh of electricity in Indonesia57. The Environmental 
Protection Agency (EPA) uses three sets of social cost estimates of carbon emissions (SCC) with different 
discount levels, as can be seen in Table 5 SCC58 is the discounted monetary value of the future climate change 
damages due to additional metric tons of carbon dioxide (CO2) emissions59,60. The money collected from 
the carbon pricing can also fund the energy transition and subsidize renewable energy implementation. This 
paper uses the SCC at 5% discount factor, closest to the discount factor used in the financial model.

•	 The third scenario is the elimination of the minimum load limit (MLL). The minimum load limit prevents the 
RSPP from entirely supplying the load. This scenario entails removing the minimum imports requirement. 
Such support policy was temporarily implemented in August 2020 through a MEMR Ministerial Decree to 
deal with the impact of COVID-1961.

•	 The fourth scenario is the rework of the Net-Metering Scheme (NMS). In this scenario, the NMS is reworked 
to compensate 100% of the exported energy. The GOI has planned this adjustment by revising Ministerial 
Regulation No. 49/2018 on RSPP in 202162.

•	 The fifth scenario entails the enforcement of a non-subsidized electricity tariff (NST). The higher electricity 
tariff may drive customers to switch their means to meet their energy needs while enabling RSPP to gain 
more income. In this scenario, the BPP values will be used as the electricity tariff.

(27)Eexport(t) =

{

ERSPP(t)− Eload(t),ERSPP(t) > Eload(t)
0,ERSPP(t) ≤ Eload(t)

(28)Enetload(Y) =

8760
∑

t=1

(Eimport(t)− 0.65 · Eexport(t))

(29)R(Y) =

{

Enetload(Y) · Cel(Y)− OPEX,Enetload(Y) > Eminload

Eminload(Y) · Cel(Y)− OPEX,Enetload(Y) ≤ Eminload

(30)OPEX = 24.38
(

Impp · Vmpp · nM
)

/1000

(31)CAPEX = CPV + Cinv + Cmount + Cwork

(32)NPV = −CAPEX +

25
∑

Y=0

R(Y)

(1+ r)Y

Table 5.   SCC in US$/ton of carbon emission at different discount factors.

Discount Factor

Year

2020 2025 2030 2035 2040 2045

5.00% 12 14 16 18 21 23

3.00% 42 46 50 55 60 64

2.50% 62 68 73 78 84 89
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Result
This section presents the results on the irradiance potential on the mosque roof and the case studies in which 
the RSPP operational and financial model is applied to a mosque in several modeling scenarios. The RSPPs are 
modeled with capacities between 0.75 and 5.25 kWp, which employs 2–14 modules respectively. The CAPEX 
for these systems ranges between 1000.7 and 1233.8 US$/kWp.

Roof irradiance potential.  The site condition analysis shows that the solar irradiance potential in the 
case study location is at 1,971 kWh/year.m2 or equals to 5.4 daily Equivalent Sun Hours (ESH). This potential is 
achieved with an optimal solar panel tilt angle and azimuth configuration at 10° and 6°. The potential for each 
side of the roof is presented in Table 6. The west side roof has a higher irradiance potential due to its azimuth 
and tilt angle proximity to the optimal. Hence, RSPP designs in the following sections will use the west side roof 
parameters. The result also shows that the energy yield for this particular roof configuration 1374.7 kWh/kWp, 
Since mosque, including the case study, are typically built in a particular direction for religious activity purposes, 
this energy yield may represent the estimate for RSPP on mosque rooftop.

BAU scenario.  The result shows negative values for all PV modules numbers and types in the BAU scenario. 
RSPP with a capacity of 0.75 kWp reach the highestNPV of −382 US$, shown in Fig. 7. Annual revenue is maxed 
at 138.8 US$ with a 3.375 kWp RSPP. RSPP with this capacity will result a net load of 2600.68 kWh, which then 
capped by the minimum load limit of 2,640 kWh as presented in Fig. 8. At higher modules number, RSPPs suffer 
from annual revenue reduction due to the bill saving capped by the minimum load limit while the OPEX keeps 
increasing. This condition further decreases the NPV at a higher rate. A negative NPV denotes the inability of 
the annual bill saving from RSPP utilization to return the CAPEX.

CP scenario.  The enactment of carbon pricing in this scenario serves as an additional income when calculat-
ing the annual revenue of the RSPP. The increase of NPV values is visible in Fig. 9, but all PV modules numbers 
and types still have negative NPV values. In this scenario, RSPP with a capacity of 0.75 kWp yield the highest 
NPV of –257 US$, which can save cumulatively 17.9 tons of CO2e over its operational lifetime. The net load is 
not affected, and revenue reduction is also occurring at RSPP with higher capacities. The increasing gap between 
BAU and CP explain the increased revenue and NPV due to the carbon pricing policy. This condition implies 
that higher RSPP capacity will benefit more from carbon pricing scheme. However, when the minimum load 
limit is reached, higher capacity RSPP yield no additional amount of carbon emission reduction. Thus, that the 
gap between BAU and CP become parallel.

Table 6.   Irradiance potential on Ontowiryo mosque rooftop.

unit West East

Roof azimuth °, North = 0° 291 111

Roof tilt ° 30 60

Roof area m2 145.6 108.4

Irradiance
kWh/m2 per year 1,808 1,302

ESH 4.9 3.5

Total potential MWh per year 263.24 141.7
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Figure 7.   NPV and annual revenue of RSPP employing different numbers of PV modules in BAU scenario.
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MLL scenario.  The BAU scenario modeling found that the current regulation on the minimum load limit 
incurs a detrimental effect on the RSPPs’ financial attractiveness at higher capacities. Therefore, in this scenario, 
the limit is removed. This policy adjustment allows the owner of RSPP to meet their entire electricity need from 
the RSPP directly and from the compensation of exports. The revenue of RSPP in this scenario continues to 
increase with the increase of RSPP capacity, as shown in Fig. 10. However, the NPV for all PV modules configu-
rations remains negative and RSPP with the highest NPV is the same as the BAU case. As presented in Fig. 11, 
RSPP with the highest capacity of 5.25 kWp supplies 84.4% of the mosque load with NPV of −2,485 US$. In the 
BAU scenario, this configuration would yield a much lower NPV at −3573 US$.

NMS scenario.  In this analysis, the net metering scheme is reworked to compensate 100% of the exported 
energy from the PV system to the grid. Higher export compensation allows more load reduction from RSPPs 
with the same number of PV modules, shown in Fig. 12. This impact is more significant at a lower net load level, 
such as an RSPP with 11 PV modules under the NMS scenario can reduce the load as much as an RSPP with 
14 modules under the BAU scenario. However, with the minimum load limit still in place, this scenario causes 
RSPP to exceed the limit at a lower RSPP capacity than in the BAU scenario. Thus, the additional load reduction 
is not applicable for RSPP when the load limit is exceeded, shown in Fig. 13. This scenario also results in higher 
annual revenue and NPV. RSPP with the highest NPV is the same as the BAU case with a slight increase of NPV, 
which is at −313 US$.

NST scenario.  In this analysis, the electricity tariff is non-subsidized and taken from the BPP. This scenario 
only affects the revenue of different RSPP capacities, while the net load remains the same as BAU. In this scenario 
the revenue and NPV is increased, as presented in Fig. 14. Due to the higher electricity tariff, the utilization of 
RSPP results in higher bill saving. RSPP capacities lower than or equal to 3.375 kWp also achieve positive NPVs. 
RSPP with a capacity of 1.875 kWp yield the highest NPV of 144.44 US$.
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Figure 8.   Net load of RSPP employing different numbers of PV modules in BAU scenario.
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Figure 9.   NPV and annual revenue of RSPP with different number of PV modules in BAU and CP scenario.
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Figure 10.   NPV and annual revenue of RSPP with different number of PV modules in BAU and MLL scenario.
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Figure 11.   Net load of RSPP with different number of PV modules in MLL scenario.
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Figure 12.   Net load of RSPP with different number of PV modules in BAU and NMS scenario.
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At some RSPP capacities, this scenario may also reduce the annual electricity bill, lower than the subsidized 
tariff scheme. Over the RSPP operational life span, the subsidized electricity tariff ranges between 6.27 and 7.87 
US¢/kWh. Without any RSPP utilization, annual electricity bill of the mosque during this period ranges between 
386.55 and 485.11 US$. Meanwhile the unsubsidized tariff ranges between 9.64 and 12.10 US¢/kWh. Hence, 
the annual electricity bill for different RSPP capacities under the NST scenario can be seen in Fig. 15. Despite 
the increased electricity tariff, the annual electricity bill of mosque with 3 kWp and 3.375 kWp RSPP are 355.86 
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Figure 13.   NPV and annual revenue of RSPP with different number of PV modules in BAU and NMS scenario.
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Figure 14.   NPV and annual revenue of RSPP with different number of PV modules in BAU and NST scenario.
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and 319.52 US$, lower than those of in the subsidized tariff scheme. Higher capacities RSPP also result in lower 
annual bill but these systems have negative NPVs.

It is important to note that the NPV of the RSPPs in this scenario can not be directly compared with the 
NPV of RSPPs in BAU scenario presented in Fig. 7. Zero NPV may denote that the RSPP is able to return the 
investment. It also implies that investing in such RSPP would result in the same cost as meeting the load fully by 
importing electricity from the grid. Therefore, due to the tariff difference, the mosque will spend more money 
in NST scenario than in BAU in meeting the load. When incorporated, the present value of additional bill for 
25 years of usage due to the increased electricity tariff is 2,834.23 US$. Thus, when compared to the current 
subsidized tariff condition, overall cost on meeting the load is higher in NST scenario. presents that RSPP can 
help reduce this cost slightly, as can be seen from the slight NPV increase for system with capacity lower and 
equal to 3.375 kWp. The highest NPV for the NST scenario in this analysis is −2,689.8 US$, which is reached 
with a 1.875 kWp RSPP as shown in Fig. 16.

Discussion and conclusion
In this paper, we have assessed the design of RSPP on a mosque and its economic implications. Despite the car-
bon reduction benefit, at the current electricity tariff and capital costs of the components, and the implemented 
regulations around the adoption of RSPP, it is financially unfeasible to install a rooftop PV system on a mosque 
indicated by the negative NPV. The highest NPV of −382 US$ is achieved with a 0.75 kWp RSPP. The subsidized 
tariff of electricity caused lower annual revenue for RSPP to recover its CAPEX. The partial export compensation 
forces users to increase the RSPP capacity to get the same energy from an RSPP in a full export scenario. However, 
the minimum load limit regulation prevents users from installing high-capacity RSPP due to the capped revenue 
and the increasing OPEX that is a function of RSPP capacity. The results of this study reflect well with the study 
by Darghouth et al. that the low electricity tariff and minimum load limit hampers the financial attractiveness 
of RSPP in Indonesia. This study also broadens scope of the previous study by including analysis on customers 
in social sectors as well as different scenarios. The Indonesia’s less supportive regulatory structure on RSPP may 
result in the differing conclusions to existing studies on SPP integration on mosques in other countries where 
positive results were documented.

The result of this paper should serve policymakers as a reflection of the prevailing regulation on the adop-
tion of PV in the power sector. This paper provides an insight that the plan to increase the share of renewable 
sources to 23% in the power generation by 2025 can be hampered by the prevailing regulation. Several policy 
adjustments were proposed and modeled to explore their implications on the financial attractiveness of RSPP:

1.	 Carbon pricing, export compensation rework and non-subsidized tariffs increase revenue and NPV as a 
function of the RSPP capacity until the minimum load limit is reached. The adjustment on minimum load 
limit should be prioritized to maximize the implementation of other supporting regulation.

2.	 The result shows that in the scope of the project, the enactment of non-subsidized tariff can increase the 
financial feasibility of RSPP indicated by the positive NPV and low annual electricity bill. However, the 
significant increase of electricity tariff shifts the present value down. Since the main hurdle of RSPP is the 
CAPEX, it is suggested to relocate the subsidy from electricity tariff to fund the deployment of RSPP. For 
the case study analyzed, the discounted amount of subsidy given by the government for 25 years of usage 
is around 2,834.23 US$. The same amount of money can fund a 2.8 kWp RSPP. According to the analysis, 
RSPP with this capacity can reduce the annual bill of the studied mosque to a level that is equal to or lower 
than the annual bill in the subsidized tariff scheme. In addition to that, RSPP also provide an opportunity 
for carbon emission reduction. Overall, such approach can increase the effectiveness of government’s fund 
spending in supporting the electrification program while pursuing the target of renewable energy integration.
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Figure 16.   NPV of NST scenario compared to BAU scenario.
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The need for further exploration is also supported by the large diversity of worship facilities in different areas 
in Indonesia that are not yet electrified. Expanding the study scope utilization of the mosques as a community 
center and distributed generation for renewable energy is also of further interest.

Data availability
The datasets supporting the conclusions of this article are available in the Solcast Toolkit repository, [https://​doi.​
org/​10.​25911/​5c073​e713e​5dd, https://​solca​st.​com].

Received: 11 August 2021; Accepted: 14 March 2022

References
	 1.	 Directorate General of New Renewable Energy and Energy Conservation. New and Renewable Energy Development Strategy 

Towards 23% Target. https://​www.​esdm.​go.​id/​id/​media-​center/​arsip-​berita/​pemer​intah-​kemba​li-​beri-​kerin​ganan-​tagih​an-​listr​
ik (2020).

	 2.	 Directorate General of New Renewable Energy and Energy Conservation. Rooftop Solar Power Plant: Rich in Potential, Secure 
Investment, Key to Energy Mix . https://​ebtke.​esdm.​go.​id/​post/​2021/​04/​15/​2840/​plts.​atap.​kaya.​poten​si%​20.​amank​an.​inves​tasi.​
kunci.​bauran.​energi?​lang=​en (2021).

	 3.	 Ministry of Energy and Mineral Resources. Until June 2020, Power Generation Capacity in Indonesia is 71 GW . https://​www.​
esdm.​go.​id/​id/​media-​center/​arsip-​berita/​hingga-​juni-​2020-​kapas​itas-​pemba​ngkit-​di-​indon​esia-​71-​gw (2020).

	 4.	 Directorate General of New Renewable Energy and Energy Conservation. A Look at the Largest Solar Panel Farm in Indonesia. 
https://​ebtke.​esdm.​go.​id/​post/​2020/​03/​13/​2508/​menen​gok.​ladang.​panel.​surya.​terbe​sar.​di.​indon​esia (2020).

	 5.	 Directorate General of New Renewable Energy and Energy Conservation. National Energy Council Public Relations Forum: 
Towards the 2025 National Energy Mix. vol. 2021 https://​ebtke.​esdm.​go.​id/​post/​2021/​04/​09/​2838/​forum.​kehum​asan.​dewan.​energi.​
nasio​nal.​menuju.​bauran.​energi.​nasio​nal.​tahun.​2025?​lang=​en (2021).

	 6.	 Ministry of Environment and Forestry, Directorate General of Climate Change Control & Directorate of GHG Inventory and 
Monitoring, R. V. 2020 GHG Inventory Report. http://​ditje​nppi.​menlhk.​go.​id/​reddp​lus/​images/​admin​ppi/​dokum​en/​igrk/​LAP_​
igrk2​020.​pdf (2021).

	 7.	 Tawalbeh, M. et al. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. 
Sci. Tot. Environ. 759, 1 (2021).

	 8.	 Directorate General of New Renewable Energy and Energy Conservation. Aim for the Installed Capacity of 3.6 GW, These are a 
Series of Advantages of Rooftop PLTS Development. https://​ebtke.​esdm.​go.​id/​post/​2021/​08/​26/​2945/​bidik.​kapas​itas.​terpa​sang.​
36.​gw.​ini.​seder​et.​keunt​ungan.​penge​mbang​an.​plts.​atap (2021).

	 9.	 Praditya, A. et al. Indonesia Clean Energy Outlook Tracking Progress and Review of Clean Energy Development in Indonesia. https://​
iesr.​or.​id/​wp-​conte​nt/​uploa​ds/​2019/​12/​Indon​esia-​Clean-​Energy-​Outlo​ok-​2020-​Report.​pdf (2019).

	10.	 Tarigan, E. Technical, economic and environmental analysis of residential scale of the rooftop PV system in Surabaya, Indonesia. 
In IOP Conference Series: Earth and Environmental Science vol. 551 (IOP Publishing Ltd, 2020).

	11.	 Hasbiyalloh et al. Design and Application of PV Rooftop for Grid Feed in Residential House South Lampung. In IOP Conference 
Series: Earth and Environmental Science vol. 830 (IOP Publishing Ltd, 2021).

	12.	 Saskara, P. E., Nyoman, I., Kumara, S. & Sukerayasa, W. Comparison of PV Rooftop Energy Production at Denpasar City Office 
Building. In 2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS) 150 (IEEE, 
2018).

	13.	 Sukarso, P. & Adimas. Decarbonizing Electricity in Indonesia: Opportunity in the Implementation of Rooftop Solar PV. In IOP 
Conference Series: Materials Science and Engineering vol. 1096 012098 (IOP Publishing, 2021).

	14.	 Tarigan, E. Simulation and feasibility studies of rooftop PV system for University Campus Buildings in Surabaya, Indonesia. Int. 
J. Renewable Energy Res. 8, 895–908 (2018).

	15.	 Syafii, S., Zaini, Z., Juliandri, D. & Wati, W. Design and economic analysis of grid- connected photovoltaic on electrical engineering 
building in Universitas Andalas. International Journal of Engineering and Technology 10, 1093–1101 (2018).

	16.	 Bimantoro, H., Ardita, I. M., Jufri, F. H. & Husnayain, F. Optimization of Rooftop Area on Building K Faculty of Engineering 
Universitas Indonesia for Grid-Connected PV. in IOP Conference Series: Earth and Environmental Science vol. 353 (Institute of 
Physics Publishing, 2019).

	17.	 Ministry of Religious Affair. Mosque Information System . https://​simas.​kemen​ag.​go.​id/.
	18.	 AsiaNews. Indonesia plans to build a thousand eco-friendly mosques. https://​www.​asian​ews.​it/​news-​en/​Indon​esia-​plans-​to-​build-

a-​thous​and-​eco-​frien​dly-​mosqu​es-​42351.​html (2017).
	19.	 Elshurafa, A. M., Alsubaie, A. M., Alabduljabbar, A. A. & Al-Hsaien, S. A. Solar PV on mosque rooftops: Results from a pilot study 

in Saudi Arabia. J. Build. Eng. 25, 1 (2019).
	20.	 Ghazali, Abd. M. et al. Renewable energy fiqh: Islamic views and responses to solar power plants (SPP). (LAKPESDAM-PBNU 

Lembaga Kajian dan Pengembangan Sumber Daya Manusia Pengurus Besar Nahdlatul Ulama, 2017).
	21.	 Hubble, A. & Ustun, T. Composition, placement, and economics of rural microgrids for ensuring sustainable development. Sus-

tainable Energy, Grids and Networks 1–18 (2018).
	22.	 Global Infrastructure Hub. Low-cost electricity metering rural micro-grids for developing countries. www.​gihub.​org https://​www.​

gihub.​org/​resou​rces/​showc​ase-​proje​cts/​low-​cost-​elect​ricity-​meter​ing-​rural-​micro-​grids-​for-​devel​oping-​count​ries/ (2020).
	23.	 Theo, W., Lim, J., Ho, W., Hashim, H. & Lee, C. Review of distributed generation (DG) system planning and optimisation tech-

niques: Comparison of numerical and mathematical modelling methods. Renewable Sustain. Energy Rev. 1, 531–573 (2017).
	24.	 IRENA. Renewable Power Generation Costs in 2019. (2020).
	25.	 Anwaar, A. Masjid: a place of worship or more? www.​islam​icfin​der.​org https://​www.​islam​icfin​der.​org/​news/​masjid-​a-​place-​of-​

worsh​ip-​or-​more/ (2017).
	26.	 Ceurstemont, S. UNTOLD WORLD: The mosque that powers a villag. www.​bbc.​com https://​www.​bbc.​com/​future/​artic​le/​20170​

927-​can-a-​place-​of-​worsh​ip-​power-a-​villa​ge (2017).
	27.	 Mairang, R. L. Optimization of DC microgrid for renewable energy integration. ADBU J. Electr. Electron. Eng. (AJEEE) 1, 8–13 

(2017).
	28.	 Rashid, E. E., Rafidah, S., Alwi, W. & Manan, Z. A. Evaluation of photovoltaic system installation for a mosque in Universiti 

Teknologi Malaysia. Perintis E-J. 1, 1 (2011).
	29.	 Almutairi, Y. B. Peak shaving using grid-connected solar panels case study: Ministry of Islamic Affairs Mosque. J. Eng. Res. Appl. 

4, 158–166 (2014).
	30.	 Ministry of Energy and Mineral Resources. Ministerial Regulation of Minister of Energy and Mineral Resources Number 49/2018 

on the Use of Rooftop Solar Power Generation Systems by Consumers of PT Perusahaan Listrik Negara (Persero). (2018).

https://doi.org/10.25911/5c073e713e5dd
https://doi.org/10.25911/5c073e713e5dd
https://solcast.com
https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-kembali-beri-keringanan-tagihan-listrik
https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-kembali-beri-keringanan-tagihan-listrik
https://ebtke.esdm.go.id/post/2021/04/15/2840/plts.atap.kaya.potensi%20.amankan.investasi.kunci.bauran.energi?lang=en
https://ebtke.esdm.go.id/post/2021/04/15/2840/plts.atap.kaya.potensi%20.amankan.investasi.kunci.bauran.energi?lang=en
https://www.esdm.go.id/id/media-center/arsip-berita/hingga-juni-2020-kapasitas-pembangkit-di-indonesia-71-gw
https://www.esdm.go.id/id/media-center/arsip-berita/hingga-juni-2020-kapasitas-pembangkit-di-indonesia-71-gw
https://ebtke.esdm.go.id/post/2020/03/13/2508/menengok.ladang.panel.surya.terbesar.di.indonesia
https://ebtke.esdm.go.id/post/2021/04/09/2838/forum.kehumasan.dewan.energi.nasional.menuju.bauran.energi.nasional.tahun.2025?lang=en
https://ebtke.esdm.go.id/post/2021/04/09/2838/forum.kehumasan.dewan.energi.nasional.menuju.bauran.energi.nasional.tahun.2025?lang=en
http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/igrk/LAP_igrk2020.pdf
http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/igrk/LAP_igrk2020.pdf
https://ebtke.esdm.go.id/post/2021/08/26/2945/bidik.kapasitas.terpasang.36.gw.ini.sederet.keuntungan.pengembangan.plts.atap
https://ebtke.esdm.go.id/post/2021/08/26/2945/bidik.kapasitas.terpasang.36.gw.ini.sederet.keuntungan.pengembangan.plts.atap
https://iesr.or.id/wp-content/uploads/2019/12/Indonesia-Clean-Energy-Outlook-2020-Report.pdf
https://iesr.or.id/wp-content/uploads/2019/12/Indonesia-Clean-Energy-Outlook-2020-Report.pdf
https://simas.kemenag.go.id/
https://www.asianews.it/news-en/Indonesia-plans-to-build-a-thousand-eco-friendly-mosques-42351.html
https://www.asianews.it/news-en/Indonesia-plans-to-build-a-thousand-eco-friendly-mosques-42351.html
http://www.gihub.org
https://www.gihub.org/resources/showcase-projects/low-cost-electricity-metering-rural-micro-grids-for-developing-countries/
https://www.gihub.org/resources/showcase-projects/low-cost-electricity-metering-rural-micro-grids-for-developing-countries/
http://www.islamicfinder.org
https://www.islamicfinder.org/news/masjid-a-place-of-worship-or-more/
https://www.islamicfinder.org/news/masjid-a-place-of-worship-or-more/
http://www.bbc.com
https://www.bbc.com/future/article/20170927-can-a-place-of-worship-power-a-village
https://www.bbc.com/future/article/20170927-can-a-place-of-worship-power-a-village


17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4823  | https://doi.org/10.1038/s41598-022-08968-6

www.nature.com/scientificreports/

	31.	 Hamdi, E. Indonesia’s Solar Policies Designed to Fail? https://​ieefa.​org/​ieefa-​report-​indon​esias-​solar-​polic​ies-​desig​ned-​to-​fail/ 
(2019).

	32.	 Setyawati, D. Analysis of perceptions towards the rooftop photovoltaic solar system policy in Indonesia. Energy Policy 144, 1 (2020).
	33.	 Ministry of Energy and Mineral Resources. Ministerial Regulation of Minister of Energy and Mineral Resources Number 07/2010 

on Electricity Tariffs Provided by (Persero) PT Perusahaan Listrik Negara. (2010).
	34.	 Ministry of Energy and Mineral Resources. Ministerial Regulation of Minister of Energy and Mineral Resources Number 30/2012 

on Electricity Tariffs Provided by (Persero) PT Perusahaan Listrik Negara. (2012).
	35.	 Ministry of Energy and Mineral Resources. Ministerial Regulation of Minister of Energy and Mineral Resources Number 31/2014 

on Electricity Tariffs Provided by (Persero) PT Perusahaan Listrik Negara. (2014).
	36.	 Ministry of Energy and Mineral Resources. Ministerial Regulation of Minister of Energy and Mineral Resources Number 28/2016 

on Electricity Tariffs Provided by (Persero) PT Perusahaan Listrik Negara. (2016).
	37.	 PLN. Electricity Tariff Q&A . https://​web.​pln.​co.​id/​pelan​ggan/​qa-​tarif-​listr​ik (2014).
	38.	 Ministry of Energy and Mineral Resources. Ministerial Decree of Minister of Energy and Mineral Resources Number 55/2019 on 

basic production cost of generation by (Persero) PT Perusahaan Listrik Negara. (2019).
	39.	 Mustafa, A. et al. Techno-Economic Analysis of Renewable Power System for a Remote Mosque in Libya. in Recent advances in 

energy, environment and development : proceedings of the 9th international confernce on energy and environment 126 (2014).
	40.	 Šimić, Z., Topić, D., Crnogorac, I. & Knežević, G. Method for sizing of a PV system for family home using economic indicators. 

Energies 14, (2021).
	41.	 Vector Flag of Indonesia with Provinces - Multicolor. https://​freev​ector​maps.​com/​indon​esia/​ID-​EPS-​02-​0003?​ref=​atr.
	42.	 Corel Corporation. CorelDRAW X8.
	43.	 Suparwoko. Detail Engineering Design of the Ontowiryo Mosque Purworejo, Central Java. (2018).
	44.	 Solcast. The Solcast API Toolkit. https://​toolk​it.​solca​st.​com.​au/​live-​forec​ast.
	45.	 Smets, A., Jäger, K., Isabella, O., van Swaaij, R. & Zeman, M. Solar energy: the physics and engineering of photovoltaic conversion, 

technologies and systems. (UIT Cambridge, 2016).
	46.	 Wind & Sun. Wind & Sun Home page. http://​www.​winda​ndsun.​co.​uk/.
	47.	 Smets, A., Jager, K., Isabella, O., Swaaij, R. & Zeman, M. Solar Energy: The physics and engineering of photovoltaic conversion, 

technologies and systems. (UIT Cambridge Ltd., 2016).
	48.	 Darghouth, N., Mccall, J., Keyser, D. & Aznar, A. A product of the USAID-NREL partnership DISTRIBUTED PHOTOVOLTAIC 

ECONOMIC IMPACT ANALYSIS IN INDONESIA. www.​nrel.​gov/​publi​catio​ns. (2020).
	49.	 Indonesia Clean Energy Development II. Panduan Perencanaan dan Pemanfaatan PLTS ATAP DI INDONESIA_final. https://​drive.​

esdm.​go.​id/​wl/?​id=​XOegh​8pXO9​FMjeb​l4x0j​oDD6h​IZe94​Fm (2020).
	50.	 ZEROHOMEBILLS.COM. https://​www.​zeroh​omebi​lls.​com/ (2014).
	51.	 PT PLN (Persero). PLN Statistics 2015. https://​web.​pln.​co.​id/​stake​holder/​lapor​an-​stati​stik (2016).
	52.	 PLN Statistics 2015. PLN Statistics 2020. https://​web.​pln.​co.​id/​stake​holder/​lapor​an-​stati​stik (2021).
	53.	 Ministry of Energy and Mineral Resources. Electricity Supply Business Plan PT PLN (Persero) 2021–2030. (2021).
	54.	 Panggabean, G. A. Reducing Cost of Production for Cheap Electricity. Bisnis.com https://​ekono​mi.​bisnis.​com/​read/​20170​704/​44/​

668343/​penur​unan-​biaya-​pokok-​produ​ksi-​untuk-​listr​ik-​murah (2017).
	55.	 Ministry of Energy and Mineral Resources. Speaking at COP26, Energy Minister Gives Indonesia’s Commitment to Net Zero 

Emission. https://​www.​esdm.​go.​id/​en/​media-​center/​news-​archi​ves/​speak​ing-​at-​cop26-​energy-​minis​ter-​gives-​indon​esias-​commi​
tment-​to-​net-​zero-​emiss​ion (2021).

	56.	 Narbel, P. A., Hansen, J. P. & Lien, J. R. Energy Technologies and Economics.
	57.	 International Renewable Energy Agency. Renewable power generation costs in 2019. www.​irena.​org (2020).
	58.	 International Energy Agency. World Energy Investment 2020. www.​iea.​org/​t&c/ (2020).
	59.	 Steffen, B. Estimating the cost of capital for renewable energy projects. Energy Econ. 88, 1 (2020).
	60.	 Climate Transparency. Brown to green The G20 transition towards a net-zero emission economy. http://​www.​clima​te-​trans​paren​cy.​

org/​g20-​clima​te-​perfo​rmance/​g20re​port2​019 (2019).
	61.	 EPA. Social cost of carbon. https://​www.​white​house.​gov/​omb/​oira/​social-​cost-​of-​carbon. (2016).
	62.	 Griffiths, C. et al. Chapter 4. The Social Cost of Carbon: Valuing Carbon Reductions in Policy Analysis. in Fiscal Policy to Mitigate 

Climate Change:A Guide for Policymakers (eds. Mooij, R. A. de, Keen, Mr. M. & Parry, I. W. H.) 69–87 (International Monetary 
Fund, 2012).

	63.	 Rennert, K. & Kingdon, C. Social Cost of Carbon 101: A review of the social cost of carbon, from a basic definition to the history 
of its use in policy analysis. https://​www.​rff.​org/​publi​catio​ns/​expla​iners/​social-​cost-​carbon-​101/ (2019).

	64.	 Ministry of Energy and Mineral Resources. The Government Again Gives Subsidies for Electricity Bills. https://​www.​esdm.​go.​id/​
id/​media-​center/​arsip-​berita/​pemer​intah-​kemba​li-​beri-​kerin​ganan-​tagih​an-​listr​ik (2020).

	65.	 Ministry of Energy and Mineral Resources. Changes to the Rules of Rooftop Solar Power Plant: Stimulus for Clean Energy Develop-
ment and Increasing Economic Value . https://​www.​esdm.​go.​id/​id/​media-​center/​arsip-​berit​a/-​perub​ahan-​aturan-​plts-​atap-​stimu​
lus-​penge​mbang​an-​energi-​bersih-​dan-​penin​gkatan-​nilai-​keeko​nomian- (2021).

Acknowledgements
The authors would like to thank Dr. Desti Alkano and Grace Peranginangin from Energy Academy Indonesia 
for their feedback.

Author contributions
F.A.Q. and S. wrote the main manuscript text, S. prepared Figs. 1 and F.A.Q. prepared Figs. 2–14. Both authors 
reviewed and approved the manuscript.

Funding
This research was done with the funding of the researchers.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​08968-6.

Correspondence and requests for materials should be addressed to S.

https://ieefa.org/ieefa-report-indonesias-solar-policies-designed-to-fail/
https://web.pln.co.id/pelanggan/qa-tarif-listrik
https://freevectormaps.com/indonesia/ID-EPS-02-0003?ref=atr
https://toolkit.solcast.com.au/live-forecast
http://www.windandsun.co.uk/
http://www.nrel.gov/publications
https://drive.esdm.go.id/wl/?id=XOegh8pXO9FMjebl4x0joDD6hIZe94Fm
https://drive.esdm.go.id/wl/?id=XOegh8pXO9FMjebl4x0joDD6hIZe94Fm
https://www.zerohomebills.com/
https://web.pln.co.id/stakeholder/laporan-statistik
https://web.pln.co.id/stakeholder/laporan-statistik
https://ekonomi.bisnis.com/read/20170704/44/668343/penurunan-biaya-pokok-produksi-untuk-listrik-murah
https://ekonomi.bisnis.com/read/20170704/44/668343/penurunan-biaya-pokok-produksi-untuk-listrik-murah
https://www.esdm.go.id/en/media-center/news-archives/speaking-at-cop26-energy-minister-gives-indonesias-commitment-to-net-zero-emission
https://www.esdm.go.id/en/media-center/news-archives/speaking-at-cop26-energy-minister-gives-indonesias-commitment-to-net-zero-emission
http://www.irena.org
http://www.iea.org/t&c/
http://www.climate-transparency.org/g20-climate-performance/g20report2019
http://www.climate-transparency.org/g20-climate-performance/g20report2019
https://www.whitehouse.gov/omb/oira/social-cost-of-carbon
https://www.rff.org/publications/explainers/social-cost-carbon-101/
https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-kembali-beri-keringanan-tagihan-listrik
https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-kembali-beri-keringanan-tagihan-listrik
https://www.esdm.go.id/id/media-center/arsip-berita/-perubahan-aturan-plts-atap-stimulus-pengembangan-energi-bersih-dan-peningkatan-nilai-keekonomian
https://www.esdm.go.id/id/media-center/arsip-berita/-perubahan-aturan-plts-atap-stimulus-pengembangan-energi-bersih-dan-peningkatan-nilai-keekonomian
https://doi.org/10.1038/s41598-022-08968-6
https://doi.org/10.1038/s41598-022-08968-6


18

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4823  | https://doi.org/10.1038/s41598-022-08968-6

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Techno-economic analysis of rooftop solar power plant implementation and policy on mosques: an Indonesian case study
	Methods and assumptions
	Case study. 
	Data acquisition. 
	RSPP design and analysis. 
	RSPP design scenarios. 

	Result
	Roof irradiance potential. 
	BAU scenario. 
	CP scenario. 
	MLL scenario. 
	NMS scenario. 
	NST scenario. 

	Discussion and conclusion
	References
	Acknowledgements


