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An imputation approach using 
subdistribution weights for deep 
survival analysis with competing 
events
Shekoufeh Gorgi Zadeh*, Charlotte Behning & Matthias Schmid

With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed 
DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution 
of survival times directly from the predictor variables without making strong assumptions on the 
underlying stochastic process. In survival analysis, it is common to observe several types of events, 
also called competing events. The occurrences of these competing events are usually not independent 
of one another and have to be incorporated in the modeling process in addition to censoring. In 
classical survival analysis, a popular method to incorporate competing events is the subdistribution 
hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only 
few architectures have been proposed to model the distribution of time to a specific event in a 
competing events situation. These architectures are characterized by a separate subnetwork/pathway 
per event, leading to large networks with huge amounts of parameters that may become difficult to 
train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates 
weights derived from a time-discrete version of the classical subdistribution hazard model. With this, 
it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our 
experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per 
event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.

In the recent years deep networks have become the state-of-the-art method in various applications, for instance in 
object detection 1, image captioning 2, image  classification3,4, speech recognition 5, and many other areas. One key 
advantage of deep neural networks is their capacity to learn specific intermediate representations/features of the 
data in a hierarchical  manner6 in order to create a mapping from the input predictor variables onto the outcome. 
In addition to other novel machine learning methods developed for survival  analysis7, recently, there has been 
a growing interest in using deep neural networks for this purpose, see for example, the works by Giunchiglia 
et al.8, Lee et al.9, Zafar Nezhad et al.10 and many  others11–16.

In survival analysis the outcome is usually defined by the time duration until one or more events  occur17. For 
instance in the medical field this event could be recurrence of a disease or patient’s death after an intervention. 
A multitude of examples can e.g. be found in the work by Lee et al.18. Since survival data (also called time-to-
event data) are collected over time, they are often subject to right censoring, which means that the event times of 
some instances are only known up to a minimum survival time. The real event times of these instances remain 
unknown as they are no longer observed beyond the time of censoring. Often, right censoring occurs when 
patients drop out of a study or when patients have not experienced any event before study end.

Many observational studies track more than one event. Often these so-called competing events do not occur 
independently, and therefore require to be analyzed together in order to avoid bias. For instance, in the CRASH-2 
 trial19, which is a large randomized study on hospital death in adult trauma patients, there are multiple recorded 
causes of death throughout the study. The causes include death due to bleeding, head injury, multi-organ failure 
and others. Obviously, the occurrences of these causes are not independent. More examples on competing risks 
data can be found in the works by Lau et al.20 and Austin et al.21.

For modeling the time span until a specific event of type j ∈ {1, . . . , J} occurs, multiple approaches have 
been proposed. For example, Prentice et al.22 model the cause-specific hazard functions of each event sepa-
rately as ξj(t|x) = lim�t−→0{P(t ≤ T < t +�t, ǫ = j |T ≥ t, x)/�t} , where x = (x1, . . . , xp)

T is the vector of 
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time-constant predictor variables and ǫ is a random variable indicating the type of the event that occurs at the 
first observed event time T. In their approach, a separate model is used for each ξj , treating the individuals that 
experience any of the respective competing events as censored. Another approach, on which the methods con-
sidered in this paper are based, is the subdistribution hazard model by Fine and  Gray23. This approach aims at 
modeling the cumulative incidence functions Fj(t|x) = P(T ≤ t, ǫ = j | x) . For any event j of interest, the model 
considers a subdistribution hazard function �j(t|x) = lim�t−→0{P(t ≤ ϑj < t +�t |ϑj ≥ t, x)/�t} , where ϑj 
is the “subdistribution time” defined by ϑj = T if ǫ = j and ϑj = ∞ otherwise. Thus, ϑj corresponds to the time 
to the occurrence of a type-j event, assuming that such an event can never be observed (i.e. ϑj = ∞ ) if a com-
peting event occurs first. It can be  shown23 that specifying a regression model for �j(t|x) allows for modeling 
cumulative incidences of type-j events without having to model the hazard functions of the other events. Thus, 
only one subdistribution hazard model is required if the interest is in the cumulative incidence function of the 
type-j event. This is unlike cause-specific hazards modeling, where all ξ1, . . . , ξJ need to be considered together 
to calculate cumulative incidence probabilities.

To analyze competing events data using deep neural networks, Lee et al.9 proposed the DeepHit network 
that directly learns the distribution of survival times for an event of interest while at the same time handling 
the competing events. In their architecture, a separate subnetwork is added for each competing event. Similarly, 
Gupta et al.11 use separate subnetworks per event. In another work, Nagpal et al.24 proposed a Deep Survival 
Machine (DSM) to learn a mixture of parametric distributions (e.g. Weibull or log-normal) for estimating the 
conditional survival function S(t|x) = P(T > t|x) . Again, in this model an additional set of parameters is added 
to describe the event distribution for each competing risk.

In this work, instead of extending a network’s architecture by multiple subnetworks to handle competing 
events, we follow the approach by Fine and Gray and propose to employ deep network architectures for a single 
event of  interest8,25–27. To incorporate competing events, our method works on input data that have been pre-
processed using an imputation strategy based on subdistribution weights (see Methods section for details). As 
will be demonstrated, this strategy allows analysts to benefit from the advantages of existing single-event imple-
mentations for time-to-event data (particularly, from much simpler architectures with smaller sets of parameters) 
while being able to avoid a possible bias caused by ignoring competing events. In our experiments on simulated 
and real-world datasets, we show that approximately the same performance can be gained without the need for 
specifying a complex network architecture with multiple event-specific parameter sets.

The key contributions of this work are: (1) We propose a novel preprocessing strategy for deep survival net-
works that enables a valid analysis of competing-risks data, even if the respective network architecture was origi-
nally designed to handle one event only. (2) We demonstrate the feasibility of our approach by comparing two 
variants of the DeepHit architecture. Specifically, we compare a DeepHit model with two subnetworks (designed 
to analyze the original input data with two competing events) to a DeepHit model with only one subnetwork 
(designed to analyze one event of interest and based on a modified input data set that was preprocessed using 
our imputation method). (3) Using simulations, we analyze the behavior of deep survival architectures that are 
designed to analyze one event of interest. Specifically, we demonstrate that these architectures perform better (in 
terms of both calibration and discrimination) when the proposed preprocessing strategy is applied than when 
the original input data (treating observations with a competing event as censored) are used.

Methods
Notations and definitions. To be able to use single-event DNN architectures like  DeepSurv25, 
 SurvivalNet26, RNN-Surv8 and  DRSA27, continuous survival and censoring times have to be grouped. To this 
end, we define time intervals [0, a1), [a1, a2), ..., [ak−1,∞) , where k is a natural number. Further denote by 
Ti ∈ {1, ..., k} and Ci ∈ {1, ..., k} the resulting discrete event and censoring times, respectively, of an individual 
contained in an i.i.d. sample of size n, i = 1, . . . , n . In this definition, Ti = t means that the event has happened 
in time interval [at−1, at) . It is assumed that Ti and Ci are independent random variables (“random censoring”). 
Furthermore, it is assumed that the censoring time does not depend on the parameters used to model the event 
time, i.e. the censoring mechanism is “non-informative” for Ti

22,28. For right-censored data, the observed time 
is defined by T̃i = min(Ti ,Ci) , i.e. T̃i corresponds to true event time if Ti ≤ Ci , and to the censoring time other-
wise. The random variable �i := I(Ti ≤ Ci) indicates whether T̃i is right-censored (�i = 0) or not (�i = 1) . In 
addition to the event of interest (defined without loss of generality by j = 1 ), we assume that each individual can 
experience one out of J − 1 competing events, j ∈ {2, . . . , J} . The type of event that the i-th individual experi-
ences at Ti is represented by the random variable ǫi ∈ {1, ..., J}29. The values of the predictor variables of the i-th 
individual are denoted by xi = (xi1, . . . , xip)

T . Analogous to the works by Fine and  Gray23 and Berger et al.30, 
we are interested in modeling the cumulative incidence function F1(t|x) = P(T ≤ t, ǫ = 1 | x) of a type-1 event 
using the subdistribution hazard approach described above. To fit their proposed models, both Fine & Gray 
and Berger et al. considered the optimization of weighted versions of the underlying partial and binomial log-
likelihood functions. While these techniques turn out to be highly effective when fitting parametric models to 
sets of lower-dimensional data, it is challenging to adapt them to learning tasks involving deep survival models. 
Specifically, the method by Fine & Gray relies on a continuous time scale and does not apply directly to the dis-
crete (grouped) event times specified above. On the other hand, the method by Berger et al., which extends the 
Fine & Gray method to discrete event times, requires the input data to be “augmented” to up to n · k instances, 
implying a potentially huge increase in dimension. Clearly, this approach is not feasible for deep learning tasks, 
which typically rely on large values of n. We propose to address the aforementioned challenges by specifying a 
preprocessing strategy that operates directly on the discrete event times, while at the same time preserving the 
dimension of the input data.
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Imputation strategy. In this section we describe the imputation strategy to preprocess the time-discrete 
input data. The aim is to modify the data such that it is possible to obtain valid estimates of the cumulative inci-
dence function F1(t|x) by training a single-event DNN. As outlined in the Introduction section, training could 
be based on the specification of a subdistribution time ϑ ≡ ϑ1 , which could be subsequently used to learn a 
single-event DNN with input data (min(ϑi ,Ci), I(ϑi ≤ Ci), x

⊤
i ) , i = 1, . . . , n . A problem of this strategy is that 

it cannot be readily applied in practice, as the aforementioned input data are partly unknown. We therefore pro-
pose to apply additional preprocessing steps to the available input data. The details are as follows:

First, consider those individuals i with �iǫi ∈ {0, 1} . Clearly, it is not necessary to preprocess the input data 
of these individuals, since both min(ϑi ,Ci) = T̃i and I(ϑi ≤ Ci) = �i are known in these cases. Next, consider 
those individuals who experience a competing event first, i.e. �iǫi > 1 . For these individuals ϑi = ∞ , so that 
I(ϑi ≤ Ci) = 0 is known. However, min(ϑi ,Ci) = min(∞,Ci) = Ci is unknown in these cases due to the fact 
that the value of the censoring time Ci is unobserved.

The main idea of our approach is, therefore, to impute the missing values of Ci by sampling a censoring time 
for any individual i who experiences a competing event first. Our strategy is as follows:

(i) Following Berger et al.30, we first define the set of discrete subdistribution weightsuit = I(t ≤ min(ϑi ,Ci)) , 
i = 1, . . . , n , t = 1, . . . , k − 1 , indicating whether individual i is at risk of a type-1 event at time point t ( uit = 1 ) or 
not ( uit = 0 ). We further denote by r(t) the risk set of individuals who have neither experienced a type-1 event nor 
have been censored before t. As outlined above, r(t) is not fully known for individuals who experience a compet-
ing event first. These individuals remain at risk beyond T̃i until eventually they experience the censoring event.

(ii) In line with Fine &  Gray23 and Berger et al.30, we specify an estimate of the subdistribution weights that 
can be computed from the available data. Denoting this estimate by wit , i = 1, . . . , n , t = 1, . . . , k − 1 , we set 
wit = 1 if t ≤ T̃i , knowing that individuals remain at risk (i.e. belong to r(t)) until T̃i . For t > T̃i and �iǫi > 1 , 
we estimate uit by the conditional probability of individual i being part of r(t), given knowledge that it is part of 
r(T̃i) . This conditional probability can in turn be estimated by

where Ĝ(t) is an estimate of the censoring survival function G(t) = P(Ci > t) . For the experiments in this paper, 
we used the R package discSurv31, which implements a nonparametric life table estimator to obtain estimates 
of G(t).

(iii) In the final step, we use wit to sample estimates of the censoring times of individuals who experience 
a competing event first. For this, we generate random numbers Ĉi from discrete distributions with supports 
(T̃i + 1, . . . , k − 1) that are defined by P(Ĉi = t) = �wit , where �wit = wit−1 − wit . The so-obtained numbers 
are subsequently used to impute the unobserved values min(ϑi ,Ci) . A visualization of the proposed imputation 
strategy is presented in Fig. 1.

Note that our method bears some similarities to the work by Ruan and  Gray32, who suggested a multiple 
imputation approach to model continuous-time survival data in a non-DNN context. The preprocessing strat-
egy proposed here differs from Ruan and  Gray32 in three aspects: First, Ruan and Gray considered models in 
continuous time, whereas the DNN architectures considered here operate on a discrete time scale. Accordingly, 
Ruan and Gray used a conditional Kaplan-Meier estimator to estimate the censoring distribution, implying that 
the resulting weight differences �wit occur at random time points (whereas we consider fixed [user-specified] 
interval borders a1 < a2 < . . . < ak−1 to define �wit ). Second, Ruan and Gray proposed to estimate their quanti-
ties of interest (e.g. the parameters of a proportional subdistribution hazard model and/or cumulative incidence 
functions at selected time points) by applying a multiple imputation strategy. Accordingly, the authors proposed 
to generate multiple imputed data sets and to average estimates from the respective (multiple) analyses based on 
the imputed data. This is in contrast to our approach, which assumes that DNN architectures are able to capture 
the relevant aspects of the data-generating process using a single imputation only. Third, Ruan and Gray mostly 
focus on semiparametric survival models in a non-machine-learning context (“allowing standard software to be 
used for the analysis”), whereas the focus of this work is on the nonparametric estimation of cumulative incidence 
functions using DNN architectures with potentially higher-dimensional predictor spaces.

In the next section we demonstrate that without loss of accuracy, the use of the imputed data simplifies the 
analysis of competing-risks data by training single-event DNNs.

Experimental analysis
DeepHit network. To investigate the effectiveness of the proposed method, we used the DeepHit architec-
ture by Lee et al.9. DeepHit is a DNN that allows to have a learnable survival function that maps the predictor 
variables vector xi into a probability distribution vector yi =

[

y1,1, . . . , y1,k , . . . , yJ ,1, . . . , yJ ,k
]

 . In this vector, ele-
ment yǫ,t is the estimated probability that instance i with predictor variables xi will experience the ǫ th event at 
time point t. Through non-linear activation functions, DNNs, and in particular DeepHit can learn potentially 
non-linear, even non-proportional, relationships between the predictor variables and the  events9. A fully con-
nected layer consists of neurons connected to all neurons in the adjacent layer. Each neuron works as a simple 
linear classifier ( h = f

(
∑

vmxm
)

 , where h is the output, vm is the network weight, xm the input from the mth 
neuron in the previous layer, and f is the activation function) that receives input from the neurons in the previ-
ous layer and sends output to every neuron in the next layer. DeepHit consists of a “shared sub-network” that 
has two fully connected layers. (Note that in the work by Lee et al.9, the authors use one fully connected layer 
for their experiments. However, empirically we found that using two fully connected layers improves the overall 
accuracy.) The shared sub-network creates an intermediate representation that is further combined with the 

(1)wit :=
Ĝ(t − 1)

Ĝ(T̃i − 1)
, T̃i < t ≤ k − 1,
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Figure 1.  Illustration of the imputation strategy. The left panel presents the subdistribution times of eight 
randomly sampled individuals. Individuals 1 and 5 experienced the competing event first, implying that 
their censoring times are unobserved (as illustrated by the time span for i = 1 in the right panel). For these 
individuals, censoring times are estimated by first calculating estimated subdistribution hazard weights wi,t (see 
upper right diagram). From that, the weight differences �wi,t are calculated and used to sample censoring times 
Ci , which are in turn used to impute the unobserved values of Ci = min(Ci ,ϑi) . Note that the bars in the lower 
right panel correspond to the heights of the steps in the upper right panel.

Figure 2.  Visualization of the DeepHit1 and DeepHit2 architectures used in the experiments.
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input features and passed on to J “cause-specific sub-networks”. As recommended by Lee et al.9, we used two fully 
connected layers in each sub-network. The output of each cause-specific sub-network is a vector that estimates 
the probability of the first hitting time of a specific cause j at each time point t (see Fig. 2). For training DeepHit, 
the authors use the log-likelihood of the joint distribution of the first hitting time as well as another loss term 
to incorporate a mixture of cause-specific ranking loss functions. They also modified the loss to handle right-
censored data. In our experiments, we use the same loss term that was used to optimize  DeepHit9.

To assess the performance of our proposed method we compared three different setups: (1) New approach 
using single-event DNN with preprocessed input data: We trained the DeepHit network with only one subnetwork 
(see Fig. 2, DeepHit1 ). Instead of the original input data, we used the modified version of the input data (with 
Ti replaced by ϑi ), in which the censoring times corresponding to individuals with observed competing events 
were imputed using the subdistribution weights. (2) Original DeepHit approach with J subnetworks: We trained 
the DeepHit network with a separate cause-specific subnetwork per event (see Fig. 2, DeepHit2 ) (3) Single-
event DNN that ignores competing events: Similar to the first setup, we train the DeepHit network with only one 
subnetwork. Instead of replacing Ti by ϑi , we ignored the competing events and treated all individuals with an 
observed competing event as censored (i.e., we treated the observed time to the occurrence of the competing 
event as the censoring time).

Each experiment was repeated 10 times per dataset in order to reduce the effect of random sampling and 
random initialization on the results.

DRSA network. To assess the effectiveness of the imputation strategy on a deep neural network designed 
for time-to-event data analysis without competing events, we used the deep recurrent survival analysis (DRSA) 
architecture by Ren et al.27. We picked this architecture because a) it is primarily designed for a single-event 
discrete-time survival analysis setting and b) because DRSA differs structurally from the DeepHit architecture, 
therefore, allowing us to assess the effectiveness of the proposed approach with different types of deep neural 
networks. In contrast to DeepHit that consists of consecutive fully connected layers, DRSA consists of a layer 
of Long Short-Term Memory (LSTM)33 units in addition to fully connected layers. In other words, the DRSA 
network consists of an initial layer that embeds the input features xi into a set of vectors. Then through a fully 
connected layer, the embedded vectors are turned into a middle-representation of the input. The output of this 
layer is concatenated with the observed time points (t) and is fed into the recurrent layer, consisting of a series 
of LSTM units. In the end, a fully connected layer is used with the Sigmoid activation function to estimate the 
hazard rates at each time point t. For better-calibrated prediction rules and improved discriminatory power, 
instead of the cross-entropy loss that was used in the original DRSA network, we used the loss function derived 
from the negative log-likelihood of the discrete time-to-event  model16. The loss function that was considered 
for the optimization consisted of two terms Ll and Lz , i.e., argminθ (1− α)Ll(θ)+ αLz(θ) , where θ denotes the 
set of network parameters, α denotes the tuning parameter balancing the two loss terms, Ll denotes the negative 
log-likelihood loss and Lz denotes a part of the negative log-likelihood that was only computed for the set of 
uncensored instances in the training  data16.

To assess the performance of our proposed method with DRSA, we compared two different setups: (1) New 
approach using DRSA with preprocessed input data: Similar to the experiments with DeepHit, instead of the 
original input data, we used the modified version of the input data (with Ti replaced by ϑi ), in which the censor-
ing times corresponding to individuals with observed competing events were imputed using the subdistribution 
weights. (2) DRSA that ignores competing events by treating them as censored: Similar to the first setup, instead 
of replacing Ti by ϑi , we ignored the competing events by treating all individuals with an observed competing 
event as censored.

Again, each experiment was repeated 10 times per dataset in order to reduce the effect of random sampling 
and random initialization on the results.

Data description. In this subsection, we describe the datasets that were used in the experiments. To show 
the effectiveness of the imputation strategy, we created three sets of simulated competing risks data. Addition-
ally, to test our method in real-world scenarios, we used two datasets from clinical and epidemiological research: 
The first one was collected for the CRASH-2 clinical  trial19 mentioned above; the second one was the 2013 breast 
cancer dataset from the Surveillance, Epidemiology, and End Results (SEER)  program34.

Simulated data. For generating simulated data, we used the discrete model by Berger et al.35. Their data genera-
tion approach was adopted from Fine and  Gray23 and Beyersmann et al.36, and allowed to create datasets from a 
discretized subdistribution hazard model with two competing events ǫi ∈ {1, 2}.

More specifically, Berger et al.35 defined their discretized subdistribution hazard model based on the continu-
ous subdistribution hazard model

where Tcont,i ∈ R
+ denotes a continuous time variable and γ 1 is a set of regression coefficients for individual i, 

with predictor variables xi . We used the parameter q to tune the probability of having the event ǫi = 1 (defined 
by P(ǫi = 1|xi) = 1− (1− q)exp (x

⊺

i γ i) ) and the probability of having the competing event ǫi = 2 (defined by 
P(ǫi = 2|xi) = 1− P(ǫi = 1|xi) = (1− q)exp (x

⊺

i γ i) ). Further, the continuous times for the second event were 
drawn from an exponential model Tcont,i|ǫi = 2 ∼ Exp(ξ2 = exp (x

⊺

i γ 2)) , with rate ξ2 and regression param-
eters γ 2 for the predictor variables xi . To obtain grouped data, we discretized the continuous event times into 
k = 20 time-intervals using empirical quantiles. Analogous to Berger et al.30, discrete censoring times were 

(2)F1(t|xi) = P(Tcont,i ≤ t, ǫi = 1 | xi) = 1− (1− q+ q · exp(−t))exp (x
⊺

i γ 1),



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3815  | https://doi.org/10.1038/s41598-022-07828-7

www.nature.com/scientificreports/

drawn from the probability distribution P(Ci = t) = b(k+1−t)/
∑k

i=1 b
i , where the parameter b ∈ R

+ affected 
the overall censoring rate. Furthermore, we generated four predictor variables: two of them were normally dis-
tributed, x1, x2 ∼ N(0, 1) , and the other two followed a binomial distribution each, x3, x4,∼ Binomial(1, 0.5) . 
The regression coefficients were the same as in the work by Berger et al.35, with γ1 = c(0.4,−0.4, 0.2,−0.2)⊺ 
and γ2 = c(−0.4, 0.4,−0.2, 0.2)⊺ . We simulated datasets of size n = 30, 000 with different type-1 event rates 
q ∈ {0.2, 0.4, 0.8} and a medium censoring rate of b = 1 . In the simulated datasets the empirical censoring rates 
corresponding to b = 1 were {47.4%, 47.6%, 48.0%} , the proportion of type-1 event rates corresponding to values 
of q were {11.5%, 21.8%, 38.6%} , and consequently type-2 event rates were {41.1%, 30.6%, 13.4%}.

CRASH-2 data. The first real-world dataset used in our experiments was collected for the randomized 
CRASH-2 (Clinical Randomisation of an Antifibrinolyticin Significant Haemorrhage 2) trial, which was con-
ducted in 274 hospitals in 40 countries between 2005 and  201019. The data provide information on hospital death 
in adult trauma patients with or at risk of significant haemorrhage. Death was recorded during hospitalization of 
the patients for up to 28 days after randomization. Up to this date, patients had either died, been discharged alive, 
transferred to another hospital, or were still alive in hospital. For our analysis we used the publicly available ver-
sion of the study database at https:// hbios tat. org/ data/. Based on Table 1 in 19, we selected eight variables for anal-
ysis: Categorical variables included the sex of the patient (male/female) and type of injury (blunt/penetrating/
blunt and penetrating). Continuous and ordinal variables included total Glasgow Coma Score (range 3 to 15, 
median = 15), the estimated age of the patient (mean = 34.6 years, sd = 14.3 years), number of hours since injury 
(mean = 2.8, sd = 2.4), systolic blood pressure in mmHg (mean = 97.5, sd = 27.4), respiratory rate per minute 
(mean = 23.1, sd = 6.7), and heart rate per minute (mean = 104.5, sd = 21.0). After discarding patients with 
missing values, we analyzed this dataset in two ways: 1) We specified death due to bleeding as the event of inter-
est for analysis ( ǫ = 1 ) and considered discharge from the hospital or death due to other causes as the competing 
event ( ǫ = 2 ). In this scenario, the censoring rate is 16.8% , the type-1 event rate was 4.9% and the type-2 event 
rate was 78.3% . 2) We specified death from any cause as the event for interest for analysis ( ǫ = 1 ) and considered 
discharged from the hospital as the competing event ( ǫ = 2 ). In this scenario, the censoring rate was 16.8, the 
type-1 event rate was 14.9% and the type-2 event rate was 68.3% . Table 1 summarizes the percentage of patients 
experiencing each event first. These analyses enabled us to investigate the performance of different methods for 
varying event rates while censoring remained the same.

SEER breast cancer data. The second real-world dataset used in our experiments was the 2013 breast cancer 
data from the Surveillance, Epidemiology, and End Results (SEER)  program34. Here our focus was on female 
patients with breast cancer, aged 18-75 years at the time of diagnosis. We specified patient’s death due to breast 
cancer as event of interest ( ǫ = 1 ) and considered death due to other causes as the competing event ( ǫ = 2 ). 
The predictor variables included TNM stage (twelve T stage and four N stage categories), tumor grade (I - IV), 
estrogen and progesterone receptor statuses (positive/negative), primary tumor site (nine categories), surgery of 
primary site (yes/no), type of radiation therapy and sequence (seven and six categories, respectively), laterality 
(right/left), ethnicity (white, black, American Indian/Alaska Native, Asian or Pacific Islander, unknown), Span-
ish origin (nine categories), and marital status at diagnosis (single, married, separated, divorced, widowed). In 
addition to these categorical variables, we selected the following continuous and ordinal features; patient’s age at 
diagnosis (recorded in years, mean age = 55.6 years, standard deviation (sd) = 10.8 years), the number of positive 
and examined lymph nodes (0-84 and 1, 2, . . . , 89,  90 , respectively), the number of primaries (1-6), and tumor 
size ( 0, 1, . . . , 988,  989 mm). After discarding patients with missing values, 121, 798 patients remained. For this 
dataset the censoring rate was 88.4% , the type-1 event rate was 6.9% and the type-2 event rate was 4.7% . For a 
detailed explanation of the features, see the SEER text data file description at http:// seer. cancer. gov.

Table 1.  Characteristics of the datasets used in the experiments. The three leftmost columns represent the 
censoring, type-1 ( ǫ = 1 ), and type-2 ( ǫ = 2 ) rates in the training/validation/test datasets. The three rightmost 
columns represent the respective numbers of instances in the simulated, CRASH-2, and SEER breast cancer 
data. For CRASH-2, ǫ = 1 indicates either death due to bleeding event (upper row) and death due to any 
recorded cause (lower row).

Censoring rate Type-1 rate Type-2 rate Training Validation Test

Simulated data

47.4% 11.5% 41.1% 15,000 5000 10,000

47.6% 21.8% 30.6% 15,000 5000 10,000

48.0% 38.6% 13.4% 15,000 5000 10,000

CRASH-2 data

16.8% 4.9% 78.3% 9729 3256 6851

16.8% 14.9% 68.3% 9729 3256 6851

SEER breast cancer data

88.4% 6.9% 4.7% 60,898 24,361 36,539

https://hbiostat.org/data/
http://seer.cancer.gov
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Training setup. Simulated data. For our experiments we split the 30,000 instances of each set of simulated 
data into training ( Dtrain ) , test ( Dtest ) and validation ( Dvalidation ) sets randomly, making sure that the event and 
censoring rates were the same across the three datasets. The sizes of the train, test and validation datasets were 
15,000, 10,000 and 5000 respectively. Table 1 briefly summarizes the size of the datasets used in each experi-
ment. Since in our method the censoring times for individuals with an observed competing event are randomly 
imputed, we repeated the experiments 10 times and report the average performance. For each repetition, all of 
the individuals in training, test, and validation sets remained unchanged, except for the censoring times that 
were re-imputed.

CRASH-2 data. For this dataset, we used the same training setup as for the simulated data. We randomly split 
the 19, 836 instances into the training, test, and validation sets, using a stratified sampling approach that ensured 
all had approximately the same censoring and competing event rates (see Table 1). The sizes of the training, test 
and validation datasets were 9, 729, 6, 851 and 3, 256 respectively.

SEER data. We used the same training setup as for the other datasets. We randomly split the 121, 798 instances 
into the training, test, and validation sets, making sure all had 88.4% , 6.9% , and 4.7% , of censoring, event of 
interest and competing event rates respectively (see Table 1). The sizes of the training, test and validation datasets 
were 60, 898, 36, 539 and 24, 361 respectively.

Evaluation metrics. Calibration plots based on the cumulative incidence function (CIF). To assess the cali-
bration of the fitted models, we performed graphical comparisons of the estimated (model-based) CIF for type-1 
events and a respective nonparametric estimate obtained from the Aalen-Johansen  method37.

Specifically, for input predictor variables xi from Dtest , the model-based CIF at timepoint t for the event of 
interest was estimated by

where the probability estimates P̂(·) in (3) were taken from the output of the DeepHit network (for details, see 
Lee et al.9). Details on the Aalen-Johansen estimator, which is a covariate-free estimator of the CIF, have been 
given in the book by Klein et al.37. In our experiments, we considered a fitted DNN model to be well calibrated 
if the model-based and covariate-free CIF estimates agreed closely.

Concordance index (C-index38,39). To evaluate the discriminatory power of each method for the event of inter-
est we used the C-index as defined by Wolbers et al.40. For a pair of independent individuals i and j in the Dtest , 
this measure compares the ranking of a risk marker M(t, xi) at timepoint t with the ranking of the survival times 
of the event of interest. More specifically, summarizing all competing events by ǫ = 2 , the C-index is defined by

In our experiments we defined M(t, x) by the cumulative incidence function (Equation 3). Ideally, the C-index 
takes value 1 if the rankings of the risk marker and the type-1 survival times are in perfect disagreement (i.e., 
larger marker values are associated with smaller survival times). For our experiments, we used the inverse-
probability-weighted estimator by Wolbers et al.40 (Equation 4) that is implemented in the R package pec.

Results
The calibration plots for the various model fits are presented in Fig. 3. It is seen that despite the smaller learning 
capacity of the imputation-based DeepHit1 approach, this network resulted in similarly well-calibrated models 
as the DeepHit2 with two sub-networks. Note that in all cases, using the sub-distribution weights for imputing 
the censoring times led to a better calibration compared to the single-event DeepHit architecture that treated 
individuals with an observed competing event as censored (thus ignoring the competing events).

Generally, the calibration of the overall average CIF estimate improved with our method when the rate type-1 
events became larger. This is seen from the last row of Fig. 3. For the same censoring rates and predictor variables 
(for CRASH-2), DeepHit2 resulted in an underestimation of the CIF when the rate of type-1 events was high. 
This is also evident in the results from our experiments on simulated data. On the other hand, our proposed 
method showed an overall less sensitivity to the type-1 event rate. This effect could possibly be due overfitting 
issues, as adding an additional sub-network for each competing event to the architecture increases the learning 
capacity of the network without providing enough data to train each pathway.

The calibration plots for training with DRSA are presented in Fig. 4. It is seen that despite the single-event 
structure of the DRSA, this network resulted in a well-calibrated model when the type-1 event rate was small. In 
all cases, using the sub-distribution weights for imputing the censoring times led to a better calibration compared 
to the experiments that treated individuals with an observed competing event as censored (thus ignoring the 
competing events). For the same censoring rates and predictive variables, DRSA resulted in an underestimation 
of the CIF when the rate of type-1 events was high. On the other hand, again our proposed method showed an 
overall less sensitivity to the type-1 event rate compared to when the competing event was ignored.

Analogous to the results from the calibration plots, the C-indices obtained from our imputation-based method 
showed a discriminatory power that was similar to the respective performance of the other methods (see Table 2). 
In a number of settings, the discriminatory power even improved when using our method. For instance, in 
the experiments with the simulated data, the estimated mean C-index was highest for the DeepHit1 method 
with imputed censoring times. For CRASH-2 with a type-1 event rate of 4.9% the observed difference ( 0.01% ) 

(3)F̂1(t|xi) = P̂(T ≤ t, j = 1|xi) =

t
∑

s=1

P̂(T = s, j = 1|xi) ,

(4)C1(t) := P
(

M(t, xi) > M(t, xj) | ǫi = 1 and Ti ≤ t and (Ti < Tj or ǫj = 2)
)

.
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between imputation-based DeepHit1 and DeepHit2 was small. For the type-1 event rate of 14.9% our proposed 
method performed slightly better. For the SEER breast cancer data, however, DeepHit1 without imputation had 
the best average performance with regard to the C-index. This could be due to the fact that the rate of observed 
competing events was low to the degree that treating the respective event times as censoring times might not 
have substantially affected the censoring survival function.

Analogous to the experiments with DeepHit, for DRSA, the C-indices obtained from our imputation-based 
method showed an improved discriminatory power compared to the scenario when competing event time was 
used as censoring (see Table 3). It can be observed that the gap between the performance of our imputation 
method and ignoring the competing events became smaller with the decrease of type-2 event rate. The reason 
could be that by the decrease of the observed competing events rate, treating the respective event times as cen-
soring times might not have substantially affected the censoring survival function. Overall, compared to DRSA, 
DeepHit showed better discriminatory power on the simulated data. Note, however, that systematic performance 
comparisons of different deep survival architectures are beyond the scope of this work.

Figure 3.  Calibration plots obtained from the test data in Table 1, using the DeepHit architecture. Each plot 
presents the averaged type-1 cumulative incidence functions as obtained from (i) training the DeepHit1 with 
the preprocessed data (cyan), (ii) training DeepHit1 treating individuals with observed competing events as 
censored (orange), and (iii) training DeepHit2 for both the event of interest and the competing event (gray). Red 
curves refer to the nonparametric Aalen-Johansen reference curves.
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In terms of execution time, we observed that the average time needed for training the deep networks reduced 
by 21% for the simulated data, 10% for the SEER, and 37% for the CRASH-2 dataset using our method. This time 
reduction is possibly due to the reduced number of parameters involved in the training of DeepHit1 compared 
to DeepHit2 (see Table 4). Consequently, in applications with more than one competing event, where three or 
more subnetworks are added to the architecture, the decrease in computation time when using our algorithm is 
expected to be even greater. The average number of iterations, however, was on the same order of magnitude for 
both DeepHit1 and DeepHit2 . For all datasets on average DeepHit1 took 15, 022 iterations and DeepHit2 15, 277. 
Note that the stopping criterion for all of the networks was the performance on the validation data.

Figure 4.  Calibration plots obtained from the simulated test data in Table 1 using the DRSA architecture. 
Each plot presents the averaged type-1 cumulative incidence functions as obtained from (i) training the DRSA 
network with the preprocessed training data (cyan) and (ii) training DRSA treating individuals with observed 
competing events as censored (orange). Red curves refer to the nonparametric Aalen-Johansen reference curves.

Table 2.  Mean estimated C-indices (averaged over time) with estimated standard deviations, as obtained 
from training the DeepHit architecture on the simulated, CRASH-2, and SEER breast cancer data. DeepHit1 
= DeepHit architecture with one sub-network trained with the preprocessed input data; DeepHit2 = DeepHit 
architecture with two subnetworks; DeepHit1 , no imp. = DeepHit architecture with one sub-network trained 
on the original input data (treating individuals with observed competing events as censored individuals). 
Best-performing methods are marked bold. Note that the C-indices must be compared within each row, 
as the datasets used for training were different in terms of size, censoring, and event rates across the rows. 
For CRASH-2, in the upper and the lower rows ǫ = 1 indicates death due to bleeding and death due to any 
recorded cause, respectively. The numbers in this table are obtained from the test datasets.

Data Type-1-rate Type-2-rate DeepHit1 DeepHit1 , no imp. DeepHit2

CRASH-2 4.9% 78.3% 78.17 ± 1.04 76.80 ± 4.96 78.18 ± 0.94

CRASH-2 14.9% 68.3% 80.14 ± 1.77 79.88 ± 2.01 80.05 ± 4.23

SEER 6.9% 4.7% 81.75 ± 3.46 81.80 ± 3.49 81.73 ± 3.34

Simulated 11.5% 41.1% 64.13 ± 0.75 62.58 ± 2.17 63.71 ± 0.96

Simulated 21.8% 30.6% 65.90 ± 0.69 64.59 ± 2.25 65.20 ± 3.26

Simulated 38.6% 13.4% 66.05 ± 0.47 64.97 ± 2.51 64.39 ± 6.26

Table 3.  Mean estimated C-indices (averaged over time) with estimated standard deviations, as obtained 
from training the DRSA architecture on the simulated data. The first column on the right-hand side contains 
results from DRSA architecture trained with the preprocessed input data; The second column shows the results 
from the DRSA architecture, trained on the original input data (treating individuals with observed competing 
events as censored individuals). Best-performing methods are marked bold. Note that the C-indices must be 
compared within each row, as the datasets used for training are different in terms of censoring and event rates 
across the rows. The numbers in this table are obtained from the test datasets.

Data Type-1-rate Type-2-rate DRSA, subdist.-based imp. DRSA, no imp.

Simulated 11.5% 41.1% 58.04 ± 0.88 55.62 ± 0.86

Simulated 21.8% 30.6% 60.10 ± 0.95 57.60 ± 0.93

Simulated 38.6% 13.4% 64.29 ± 0.93 63.41 ± 1.00
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Discussion
Even though deep neural networks are increasingly used for survival analysis, it is still relatively complicated 
to adapt the available methodology to situations with competing events. This is in contrast to the classical sta-
tistical literature, in which a wide variety of methods are  available20–23,41, and in which it is widely agreed that 
competing-risks analyses are often necessary to avoid biased estimation results and/or  predictions36. Although 
several adaptations to DNN architectures have been proposed  recently9,11,24, these adaptions rely on a huge 
number of parameters, making network training and regularization a challenging task. In this work, we showed 
that an imputation strategy based on subdistribution weights could convert the competing risks survival data 
into a dataset that is specifically tailored to analyzing the event of interest only. This conversion enables the use 
of any of the much simpler deep survival network architectures that are designed to handle a single event of 
interest in the presence of right censoring. Our experiments on simulated and real-world datasets illustrated 
that this preprocessing step not only simplifies the training in terms of number of parameters and running time 
but also preservers the accuracy in terms of discriminatory power and calibration. The method could be further 
stabilized by implementing a multiple imputation approach (analogous to the continuous-time method by Ruan 
and  Gray32); however, such an approach would dramatically increase the run time and would be infeasible in 
the context of training DNN architectures. Further, in our experiments we observed that multiple imputations 
did not have a major effect on predictive performance in our datasets containing several thousands of instances 
with event rates larger than ∼ 5% . Our codes for simulated data generation, censoring time imputation, and the 
experiments are available at https:// github. com/ sheko ufeh/ Deep- Survi val- Analy sis- With- Compe ting- Events.
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