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Efficient prediction of a spatial 
transcriptomics profile better 
characterizes breast cancer 
tissue sections without costly 
experimentation
Taku Monjo1,4, Masaru Koido2,4*, Satoi Nagasawa1,3, Yutaka Suzuki1 & Yoichiro Kamatani1*

Spatial transcriptomics is an emerging technology requiring costly reagents and considerable 
skills, limiting the identification of transcriptional markers related to histology. Here, we show 
that predicted spatial gene-expression in unmeasured regions and tissues can enhance biologists’ 
histological interpretations. We developed the Deep learning model for Spatial gene Clusters and 
Expression, DeepSpaCE, and confirmed its performance using the spatial-transcriptome profiles and 
immunohistochemistry images of consecutive human breast cancer tissue sections. For example, 
the predicted expression patterns of SPARC​, an invasion marker, highlighted a small tumor-
invasion region difficult to identify using raw spatial transcriptome data alone because of a lack 
of measurements. We further developed semi-supervised DeepSpaCE using unlabeled histology 
images and increased the imputation accuracy of consecutive sections, enhancing applicability for 
a small sample size. Our method enables users to derive hidden histological characters via spatial 
transcriptome and gene annotations, leading to accelerated biological discoveries without additional 
experiments.

Spatial transcriptomics with in situ capturing is an emerging technology that maps gene-expression profiles 
with corresponding spatial information in a tissue section1–4. A highly resolved spatial-transcriptome profile 
is invaluable for revealing biological functions and molecular mechanisms5. Recently, many histological tran-
scriptome profiles, measured by in situ capturing platforms (numerous spots with barcoded oligonucleotides 
on a chip), were reported in the field of oncology6,7. These profiles have helped demonstrate the complexity and 
heterogeneity of cancer tissues. For example, histological transcriptome profiles were used to identify high-risk 
invasive populations in ductal carcinoma tissues using an in situ capturing method8,9. However, the experi-
mental cost of spatial transcriptomics, such as for designed chips, reagents, and sequencing, is currently high. 
It is also challenging to balance spatial resolution (i.e., the density of spots in a tissue slide) and RNA-detection 
efficiency with current spatial-transcriptome technology10. In addition, this technique requires practiced skills 
to obtain high-quality expression profiles for entire tissue slides, even when using a commercial kit such as the 
10x Genomics Visium platform.

The convolutional neural network (CNN), a deep-learning method, is frequently used to discover features 
from imaging datasets and can predict image categories of interest in an end-to-end manner. For example, in 
the biomedical field, the CNN method has successfully been used to classify lung cancer subtypes from tissue-
section images without prior knowledge11. Based on these recent advances, we hypothesized that applying the 
CNN method to spatial-transcriptome profiles would enable expression-level predictions from hematoxylin and 
eosin (H&E)-stained section images, potentially leading to an increased number of pixels by predicting spatial 
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gene-expression gaps among spots measured by spatial-transcriptome techniques (super-resolution which was 
inspired by the recent super-resolution technique12) or imputing spatial-transcriptomic patterns which are miss-
ing among the consecutive sections (tissue section imputation).

Here, we developed the Deep learning model for Spatial gene Clusters and Expression (DeepSpaCE), which 
predicts spatial-transcriptome profiles from H&E-stained images using CNNs. First, we verified the accuracy 
of DeepSpaCE with independent training and testing datasets in a tissue section. We split spot-level expression 
levels into two sets with corresponding image data. One is for training a prediction model and the other is for 
validating the accuracy of predicted expression with its real expression profiles. We trained a prediction model 
using training datasets and verified the prediction accuracy of the model by comparing expression profiles from 
testing datasets in the fivefold cross-validation. Furthermore, we verified protein-expression patterns in adjacent 
sections using immunohistochemistry experiments. Based on these verifications, we applied DeepSpaCE for 
super-resolution of spatial gene-expression levels and imputation of spatial gene-expression levels in other tis-
sue sections using human breast cancer datasets. We did not consider batch effects regarding spatial expressions 
because we used the Visium dataset developed in the same institute and conditions. Regarding the images, image 
augmentation was used in the training process to reduce batch effects, if any. It is difficult to obtain many samples 
in a typical laboratory since Visium experiments are expensive. Therefore, we aimed at maximizing accuracy 
and utilization with a small sample size.

Results
Overview of DeepSpaCE.  DeepSpaCE is composed of two parts: the training and gene-prediction parts 
(Fig. 1). The CNN (VGG16 architecture13) is trained with pairs of cropped tissue section images for each spot 
(spot image) and its gene-expression profiles. Next, the trained model predicts gene-expression levels for at least 
one transcript (or transcriptomic cluster type) from spot images. We conducted two types of practical applica-
tions of DeepSpaCE using the in situ capturing spatial transcriptome dataset: (a) super-resolution and (b) tissue 
section imputation.

Super-resolution is used to predict transcript levels at inter-spot space and unmeasured spots in the same 
image (e.g., images among spots whose expression profiles were measured using the in situ capturing platform 
or images on spots with potential section-permeabilization errors). Tissue section imputation is performed to 
predict spatial expression profiles of a section from a series of directly measured consecutive sections. These 
two applications help reduce experimental costs and elucidate biological functions at higher resolution and in 
three dimensions. Because substantially fewer data points are available than general deep CNN datasets, we 
implemented the semi-supervised technique in DeepSpaCE to increase prediction accuracy, as described below. 
All DeepSpaCE codes for Visium, a standardized, commercially available platform for spatial transcriptome, is 
available on the GitHub repository (https://​github.​com/​tmonjo/​DeepS​paCE).

Preprocessing of spatial expression data.  We preprocessed the spatial expression data from three 
human breast cancer tissue sections (sections A–C) and their consecutive sections (sections D1–D3) (Sup-
plementary Fig. S1). We excluded spots containing few expressed (or measured) genes to filter out spots with 
potential permeabilization errors and normalized the spatial expression data to improve the training efficiency 
by reducing noise. Particularly, the filtering step was critical because spatial expression profiling requires very 
practiced skills for handling tissue slides and treating reagents homogeneously, and few expressed genes may 
reveal potential permeabilization errors in the spots. Indeed, in our spatial transcriptome datasets of human 
breast cancer tissues, the right bottom regions in sections D1 and D3, as well as the right upper region in section 
D2, showed undetected unique molecular identifiers (UMIs), indicating that potential section-permeabilization 
errors occurred in these regions (Supplementary Fig. S2a,b). Similarly, such undetected regions were observed 
in the 10x Genomics Visium demo data of human heart tissue (Supplementary Fig. S2c). The Visium user guide 
shows such an issue as a partially permeabilized tissue14. We used these undetected spots to evaluate the perfor-
mance of section imputation by DeepSpaCE, as shown below.

Prediction and experimental validation of spatial gene‑expression profiles.  We trained the 
DeepSpaCE models of three breast cancer-marker genes, estrogen receptor 1 (ESR1), erb-b2 receptor tyrosine 
kinase 2 (ERBB2), and marker of proliferation Ki-67 (MKI67)15,16. We performed the fivefold cross-validation 
using randomly selected 80% spots of section D2 as training datasets and the remaining 20% spots of section 
D2 as testing datasets. The Pearson’s correlation coefficients between the measured and predicted values were 
0.588 (standard deviation [SD] = 0.025; ESR1), 0.424 (SD = 0.050; ERBB2), and 0.219 (SD = 0.041; MKI67) (Sup-
plementary Table S1, Supplementary Fig. S3). Notably, comparison of ESR1 levels with H&E staining highlighted 
undetected highly expressed spots in the upper right region of section D2, possibly because of a potential per-
meabilization error in the Visium experiment (Fig. 2a). This observation was further confirmed by determin-
ing the protein-expression pattern observed by immunohistochemical staining of the adjacent section using an 
ESR1 antibody (Fig. 2b). We quantified the immunohistochemistry image, and the predicted ESR1 levels and 
estimated protein levels were well correlated (Pearson’s correlation coefficient: 0.600 (95% CI: 0.572–0.626)), as 
expected (Supplementary Fig. S4). Therefore, we concluded that the prediction of ESR1 expression by Deep-
SpaCE was validated by immunohistochemistry, suggesting the applicability of our DeepSpaCE method for 
section imputation.

We performed multi-task learning of all genes (18,542 genes) in section C (Supplementary Fig. S5). The 
prediction accuracy of single-task and multi-task (21 genes/3 genes) were almost the same (Supplementary 
Table S2). The multi-task of all genes worked since the mean Pearson’s correlation coefficient was 0.129. However, 
the prediction accuracy of multi-task (all genes) was lower than that of multi-tasks (21 genes/3 genes). Multi-task 
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learning effectively reduces training time, although the number of genes that we can include in multi-task learn-
ing of DeepSpaCE is limited.

We performed gene set enrichment analysis (GSEA)17 to characterize highly predictable genes. We used 18,451 
genes expressed in section C, and tested the enrichment of hallmark gene sets in MSigDB18 (version 7.5) in the 
genes with higher Pearson’s correlation coefficients between measured and predicted expression values. The most 
enriched hallmark gene set was “EPITHELIAL MESENCHYMAL TRANSITION” (EMT), whose description 
in MSigDB is “genes defining epithelial-mesenchymal transition, as in wound healing, fibrosis and metastasis” 
(Supplementary Table S3). SPARC​, a gene well predicted by DeepSpaCE as shown below, was actually one of the 
leading-edge subsets (i.e., SPARC​ contributed the enrichment.) within the EMT gene set. Conversely, genes with 
low correlation coefficients did not show enrichment for any gene sets.

In addition, we applied DeepSpaCE for the other breast cancer tissues (Section E and F) obtained from a 
different patient from sections A–C and D1–D3 (Supplementary Fig. S6). Although the DeepSpaCE model was 
trained using section C, the model predicted the expression in sections E and F such as Pearson’s correlation coef-
ficients of ESR1 were 0.357 (SD = 0.014; section E) and 0.318 (SD = 0.009; section F) (Supplementary Table S4).

Prediction and experimental validation of spatial transcriptomic cluster types.  Based on 
the fivefold cross-validation in section D2, we assessed the prediction accuracy of transcriptomic cluster type 

Figure 1.   Overview of DeepSpaCE. Deep learning model for Spatial gene Clusters and Expression 
(DeepSpaCE) is a method for predicting gene-expression levels and transcriptomic cluster types from tissue 
spot images. DeepSpaCE is composed of two parts: the model training and gene-prediction parts. In the case of 
using semi-supervised learning as an option, unlabeled images are used to improve the prediction accuracy with 
predicted proxy labels. As practical applications of DeepSpaCE, we conducted super-resolution of spatial gene 
expression and tissue section imputation. (a) Super-resolution was used for predictions with unmeasured spot 
images (e.g., images among spots whose expression profiles were measured using the in situ capturing platform 
or images on spots with technical errors). Left spatial expression pattern shows that some spots lack expression 
value because of a technical problem such as potential permeabilization error (dotted circle). Right image shows 
an additional spatial expression pattern imputed by DeepSpaCE, and its highly expressed region in the center of 
the section (dotted line). It is challenging to infer a functional boundary such as cancer infiltration from spatial 
expression profiles of sparse spots (left). Spatial expression profiles of dense spots imputed by DeepSpaCE and 
their gene annotations enable delineating a functional boundary. (b) Tissue section imputation was used to 
predict gene-expression levels in one of the tissue sections within consecutive sections. By using DeepSpaCE, 
the unmeasured spatial expression profiles of the slide (red frame) can be imputed by at least one adjacent slide 
(black frame) whose expression profiles were measured using the in situ capturing platform.
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derived from Space Ranger software. By comparing the clusters from Space Ranger with the predicted clusters, 
we first calculated the recall value (see “Methods”) of the clusters, which ranged from 35% (cluster 4) to 80% 
(cluster 7) (Fig. 2c). Although, there were mis-predictions when comparing non-cancerous regions (e.g., clusters 
1 and 4), the cluster types between cancer sites and non-cancer sites were clearly distinguishable (e.g., clusters 1 
and 3). We also calculated micro/macro-precision, recall, f1-score, and area under the curve (AUC) values (Sup-
plementary Table S5). We concluded the prediction performance of DeepSpaCE was enough since macro-AUC 
was 0.937. Importantly, similar to the findings described in the previous section, the cluster type was predicted 
in the unmeasured upper right region of section D2, which showed a potential permeabilization error (Fig. 2d). 
The predicted clusters in this region were plausible based on the spatial transcriptome and DeepSpaCE analysis 
using the adjacent sections D1 and D3, which could measure the right upper region (Supplementary Fig. S7). We 
considered that each cluster of the right upper region were similar (Cluster 3 in section D1, Cluster 3 in section 
D2, and Cluster 6 in section D3) since the pathway analysis indicated that the Cluster 3 in section D1, Cluster 
3 in section D2, and Cluster 6 in section D3 have the very similar components (e.g., estrogen-responsive cells) 
(Supplementary Table S6).

We performed pathway analysis of each cluster to clarify the relationship between cluster similarity and 
prediction error of DeepSpaCE in section D2. We showed the top 5 pathways of each cluster (Supplementary 
Table S7). Briefly, clusters 1, 2, 4, and 7 are well characterized as cells under epithelial-mesenchymal transition, 
clusters 3 and 6 are estrogen-responsive cells, and cluster 5 might be heterogeneous because the epithelial-mes-
enchymal transition is both upregulated and downregulated. These similarities based on pathways can explain 
the prediction errors. For example, the misprediction of Cluster 4 as Cluster 1 was relatively large (53%) (Fig. 2c). 
Cluster 4 and Cluster 1 were adjacent and similar tissue (microenvironment) in a section, and both clusters 
activated the same pathways (Epithelial-Mesenchymal Transition and UV Response Dn). The misprediction 

Figure 2.   DeepSpaCE predicts spatial gene expression and cluster types. (a) Left image shows section D2 
after hematoxylin and eosin (H&E) staining. Middle image shows a heatmap of normalized ESR1 expression 
in section D2, measured using the 10x Genomics Visium platform. ESR1 expression in the upper right region 
(black arrow) of section D2 could not be measured because of potential permeabilization errors. Right image 
shows the heatmap of ESR1 expression in section D2, predicted by DeepSpaCE. The blank areas represent spots 
excluded because of a small amount of information. (b) Image showing immunohistochemical staining of ESR1 
protein in the adjacent section of section D2. (c) Heatmap shows the confusion matrix of the measured and 
predicted cluster types. The number in each box is the number of labels, and the number inside each pair of 
parentheses is the recall value. (d) Left image shows a heatmap of transcriptomic cluster types in section D2, 
as measured using the Visium platform. The cluster types in the upper right region (black arrow) of section D2 
were not determined because of potential permeabilization errors. Right image shows the heatmap of cluster 
types in section D2, predicted by DeepSpaCE. Blank areas represent spots that were excluded because of low 
information. For training and gene prediction parts, we excluded cluster 8 because most of the region belonging 
to the cluster showed potential permeabilization errors.
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of Cluster 6 as Cluster 3 was also relatively large (34%). Cluster 6 and Cluster 3 were not adjacent, but similar 
tissue (tumor) activated the same pathways (Estrogen Response Early, Epithelial-Mesenchymal Transition, Allo-
graft Rejection, Inflammatory Response, TNF-alpha Signaling via NF-kB, and Interferon Gamma Response). 
In summary, overall DeepSpaCE predicted the cluster types (max recall value: 80% (cluster 7)) although there 
is a limitation if the clusters are adjacent and/or biologically similar types of clusters (minimum recall value: 
35% (cluster 4)).

Super‑resolution of spatial gene expression.  We performed super-resolution for ESR1 in the images 
of spots measured in section C (Supplementary Fig. S8a,b). Section C was used as both a training and test set to 
generate a super-resolved image as an example. The super-resolved image of ESR1 expression in section C was 
consistent with the immunohistochemical staining results, supporting that DeepSpaCE enables accurate high-
resolution observations of expression profiles (Supplementary Fig. S8c). Notably, we found a region with low 
ESR1 expressions in the super-resolved image, which was not clearly observed in the original spatial transcrip-
tome datasets (Supplementary Fig. S8b), confirming the importance of super-resolution.

We focused on secreted protein acidic and cysteine rich (SPARC​), a potential cancer-invasion marker, and 
assessed whether the super-resolution method could facilitate biological interpretations provided by patholo-
gists based on histology patterns in H&E-stained images. After training and validating the DeepSpaCE model, 
we predicted SPARC​-expression levels among the original spots in section D2 (Fig. 3a,b). Although the color 
intensities themselves did not explain the SPARC​ expression patterns in the H&E-stained images, the patterns 
were successfully predicted by the DeepSpaCE model. For example, the SPARC​ expression levels in two circles 
on the bottom are quite different although it looks similar in color intensity (Supplementary Fig. S9). Com-
parison of the super-resolved image of SPARC​ with the H&E-stained image showed that the invasive tumor 
region overlapped substantially with the distribution of SPARC​ expression (Fig. 3c). In contrast, such patterns 
were not apparent from the color intensities in the original spatial-transcriptome data. Importantly, the spatial 
expression profiles of dense spots imputed by DeepSpaCE and their gene annotations enable delineating a func-
tional boundary clearly. SPARC​ is secreted into the extracellular matrix from cancer and stromal cells, and high 
SPARC​-mRNA expression is related to metastasis and poor prognosis in several types of cancers19. Thus, the 
super-resolved SPARC​-expression image highlighted the potential tumor-invasion region and made it easier to 
identify by a non-pathologist in cases where a given transcript’s function is known. This is an intrinsic value of 
the super-resolution of DeepSpaCE.

Imputation of a tissue section using semi‑supervised learning.  To assess whether semi-supervised 
learning can improve the prediction accuracy of DeepSpaCE, we performed tissue section imputation for sec-
tion D2 using the model trained by sections D1 and D3 (randomly selected 80% spots were used as training and 
validating data and the others were used as test data; see “Methods”). We used the same test data for only evaluat-
ing both of the teacher model (first trained model) and student models (semi-supervised models). Thus, the test 
data set information was never used for the training and validation procedure. We performed semi-supervised 
learning as an option in DeepSpaCE. In using semi-supervised learning, unlabeled images were used to improve 
the prediction accuracy with predicted proxy labels using the noisy student method20. In section imputation, 
the teacher model was first trained with training data (sections D1 and D3). Next, the teacher model added the 
proxy labels to the unlabeled images (sections A–C). Then, the student 1 model was trained using both train-
ing data (sections D1 and D3) and unlabeled images (sections A–C) with proxy labels. The process is repeated 
until the student 5 model is trained. We selected the most predictive student model in the validation data as the 
best model. We found an increasing trend in the Pearson’s correlation coefficients between the measured and 
predicted expression levels (Supplementary Table S8). In the teacher model, the mean Pearson’s correlation coef-
ficient for 21 genes was 0.369. The mean Pearson’s correlation coefficients progressively increased for student 
model 1 (0.414), student model 2 (0.455), student model 3 (0.438), student model 4 (0.457), and student model 5 
(0.458) (Fig. 4a). For SPARC​, Pearson’s correlation coefficient increased from 0.509 (SD = 0.069; teacher model) 
to 0.616 (SD = 0.067; student model 4, the best model for predicting SPARC​). For MXRA5, the Pearson’s cor-
relation coefficient was not increased after student model 1, although it was increased from 0.501 (SD = 0.083; 
teacher model) to 0.527 (SD = 0.093; student model 1). Therefore, the semi-supervised learning method may 
increase the accuracy of DeepSpaCE through additional computational costs.

To verify whether their related unlabeled images could improve the accuracy of the DeepSpaCE model, 
we performed semi-supervised learning with permutated gene-expression levels or randomized the values as 
negative controls. The Pearson’s correlation coefficients did not increase but decreased when permutated or 
randomized values were used. Moreover, Pearson’s correlation coefficients did not increase when irrelevant 
images of dogs or cats (obtained from ImageNet) were used for semi-supervised learning. Furthermore, Pearson’s 
correlation coefficients did not increase when breast cancer section images obtained from The Cancer Genome 
Atlas (TCGA) were used for semi-supervised learning (Fig. 4b).

We performed linear regression analyses to quantify how much DeepSpaCE explains the predicted expressions 
compared with the baseline model which is composed of simplified predictor such as average color channels 
(mean RGB values), brightness, and log(total UMIs) (see “Methods”). We show R-squared values of baseline and 
full model for predicting SPARC​ expression in testing data from the first iteration of the fivefold cross-validation, 
and the P-value of the coefficient for predicted expression level by DeepSpaCE in the full model (Table 1). In the 
teacher model, mean RGB values explained SPARC​ expression level better than DeepSpaCE, although Deep-
SpaCE explained SPARC​ expression level better than brightness and log(total UMIs). In the student 4 model 
that we proposed as the best model to predict, DeepSpaCE explained SPARC​ expression level better than all 
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baseline models. In conclusion, our DeepSpaCE has a significantly higher prediction performance than classi-
cal simplified predictors such as average color channels of an image, especially using semi-supervised learning.

We also performed the cross-section validation of section imputation using sections D1–D3. The prediction 
accuracy of section D1 prediction (training with sections D2 and D3) (Supplementary Table S9) and section D3 
prediction (training with sections D1 and D2) (Supplementary Table S10) were decreased prediction accuracy 
compared with section D2 prediction (training with sections D1 and D3). That is a reasonable result since sec-
tion D2 was sandwiched with sections D1 and D3.

Performance comparison with different methods.  We compared VGG16 architecture with 
DenseNet121 used in ST-Net21 (Supplementary Table S11, Supplementary Fig. S10). In the case of the teacher 
model, the Pearson’s correlation coefficient of SPARC​ was higher in VGG16 (R = 0.450 (standard deviation 
[SD] = 0.172)) than DenseNet121 (R = 0.471 (SD = 0.066)). However, semi-supervised learning showed the 
higher correlation coefficients for SPARC​ (R = 0.613 (SD = 0.089), VGG16, student model 1). Thus, we kept 
VGG16-based results and set the default model for DeepSpaCE (DeepSpaCE users can change the model if 
necessary).

Figure 3.   Super-resolution of SPARC​ expression as a practical application of DeepSpaCE. Super-resolution of 
SPARC​ expression using DeepSpaCE highlights tumor invasion more clearly and semi-supervised learning for 
tissue section imputation using DeepSpaCE improves prediction accuracy. (a) Nine images show the super-
resolved results for SPARC​ expression. Three images in the left column show section D2 after H&E staining. 
Three images in the middle column show the heatmaps of predicted SPARC​ expression by DeepSpaCE for the 
original spots (top), imputed spots (middle), and both original and imputed spots (bottom). Three images in the 
right column show overlays of predicted SPARC​ expression by DeepSpaCE and H&E staining for section D2. (b) 
Three enlarged images on the right area show tumor cell invasion (blue arrow) and the microenvironment (red 
arrow). Spot size is adjusted to smaller than the exact spot size of the Visium platform to show the background 
image. (c) Left image shows the H&E-stained section adjacent to section D2. Right enlarged image is the same 
region as (b). Enlarged image shows the invasion of tumor cells. We drew annotated outlines of invasive regions 
in the H&E images. The red arrows show the invasive region.
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We performed XFuse5, which is the method to generate super-resolved transcriptomics images using genera-
tive models (Supplementary Fig. S11). We found that XFuse could not interpolate the potential permeabilization 
error region. In addition, we found that XFuse was not optimized for the Visium dataset because, in the training 
process, XFuse cannot consider the fiducial frame (region of four side’s dots) that Space Ranger needs to align 
tissue slide with barcoded spots. On the other hand, DeepSpaCE compensates for potential permeabilization 
error regions, and it was appropriately optimized for the Visium dataset. These are advantage points of Deep-
SpaCE over XFuse.

Discussion
This study proposed performing super-resolution and section imputation with DeepSpaCE and validated the 
accuracy from cross-validation and immunohistostaining. These approaches made it possible to derive more 
knowledge from existing spatial transcriptome datasets. We performed GESA using Pearson’s correlation coef-
ficients between measured and predicted expression values to infer what types of genes were well predictable 
by DeepSpaCE. As a result, the EMT gene set, including SPARC, was most significant. Since EMT drastically 
changes the cell morphology of tumor cells and is a heterogeneous state22,23, the enrichment was considered quite 
reasonable because DeepSpaCE needs to be able to recognize morphological features to predict expression levels. 
Therefore, it suggested that DeepSpaCE can predict expression levels of heterogeneously expressed genes. The 

Figure 4.   Semi-supervised learning for the tissue section imputation. (a) Box plots show Pearson’s 
correlation coefficients between the measured and predicted gene-expression levels of 21 breast cancer-related 
microenvironment markers. Left box plot displays the results of semi-supervised learning, which showed 
increasing Pearson’s correlation coefficients. Middle and right box plots show the semi-supervised learning 
results with permutated and randomized values. For the box plot, the box indicates the first and third quartiles; 
horizontal center line marks the medians; upper whisker extends from the hinge to the highest value that is 
within 1.5× interquartile range (IQR) of the hinge; lower whisker extends from the hinge to the lowest value 
within 1.5× IQR of the hinge; and data were plotted as points. Black lines between boxes connect the same gene. 
(b) Box plots show Pearson’s correlation coefficients between the measured and predicted gene-expression 
levels of 21 breast cancer-related microenvironment markers. Three types of image sets were compared for 
semi-supervised learning, namely sections A–C (red); data from The Cancer Genome Atlas (TCGA) (blue); 
and ImageNet data (green). For the box plot, the box indicates the first and third quartiles; horizontal center 
line marks the medians; upper whisker extends from the hinge to the highest value that is within 1.5× IQR of 
the hinge; lower whisker extends from the hinge to the lowest value within 1.5× IQR of the hinge; and data were 
plotted as points.

Table 1.   Linear regression analysis. The table shows the adjusted R-squared value of the baseline model, 
adjusted R-squared value in the full model, and beta, SE, and P-value of coefficient for DeepSpaCE. The values 
were calculated using mean RGB values, brightness, and log(total UMI) in the teacher model and student 4 
model.

Model Predictor

Baseline model Full model Coefficient for DeepSpaCE

Adjusted R2 Adjusted R2 Beta SE P-value

Teacher model

Mean RGB 0.306 0.306 0.0736 0.328 0.822

Brightness 0.220 0.245 2.45 0.295 1.98E−16

log(totalUMI) 0.076 0.214 4.63 0.246 8.31E−73

Student model

Mean RGB 0.306 0.357 0.468 0.0371 4.55E−35

Brightness 0.220 0.358 0.569 0.0274 8.04E−87

log(totalUMI) 0.076 0.389 0.664 0.0207 6.86E−182
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relationship between SPARC​ expression and cancer invasion was highlighted in super-resolution, whereas detect-
ing the invasive region using original spatial transcriptome data was difficult because the measured spots were 
not dense (Fig. 3a,b). The SPARC​ glycoprotein has a high affinity for albumin, and macrophage-derived SPARC​ 
contributes to metastasis by acting at the step of integrin-mediated migration of invasive cells19. Previously, 
SPARC​ mRNA expression was reported as a predictor of a pathological complete response after neoadjuvant 
nab-paclitaxel therapy24. Our study underscored the relationship between SPARC​ expression and invasive regions, 
which may be clinically important for treating breast cancer. This interpretation does not require expertise in 
histology or pathology but gene annotations, which spatial transcriptome researchers should be familiar. In 
addition, super-resolution in section C identified the region with low expressed ESR1, the amplification of which 
is frequently observed in proliferative breast cancers15. Although it is unclear whether the region indicates the 
heterogeneity of breast cancer tissues or the existence of normal tissues, this region was unclear in the original 
spatial transcriptome data and experimentally validated expression in adjacent sections.

For super-resolution and section imputation, we developed DeepSpaCE to predict expression levels from 
spot images from Visium. This spot-level analysis should reveal more detailed patterns than those obtained by 
CNN using pairs of images of the bulk transcriptome25 by resolving spatial expression patterns. DeepSpaCE 
requires a minimum of a single experiment to analyze the spatial transcriptome; nevertheless, the predictions 
were well-validated by cross-validation and experimental analysis. DeepSpaCE as well as super-resolution and 
section imputation methods aim to maximize the value of existing datasets and provide foundations for sub-
sequent experiments from at least a single dataset without additional experimental costs. This attribute is an 
important difference from the recently proposed ST-Net study where trained spatial transcriptome data (not 
from the Visium platform) was obtained from as many as 23 individuals21.

The number of training datasets used for single spatial transcriptome analysis (maximum 4992 spots/slide 
with the Visium platform) was insufficient for training the CNN in general, as a previous study used ~ 557,000 
images from 830 slides to predict lung cancer subtypes and ~ 212,000 images from ~ 320 slides to predict lung 
cancer gene mutations11. To increase the ability to apply DeepSpaCE to many datasets for which it is challenging 
to train the connections between H&E-stained images and expression levels, we implemented a semi-supervised 
learning method26 in DeepSpaCE. The DeepSpaCE model with semi-supervised learning using sections A–C as 
unlabeled images showed better performance than a simple prediction model using only experimentally obtained 
spatial transcriptome data. Although we increased the predictive accuracy of tissue section imputation in this 
case, the Pearson’s correlation coefficients were not improved when using breast cancer H&E-stained images 
obtained from TCGA as unlabeled images. This result may be because the DeepSpaCE model is sensitive to 
the protocol for obtaining the H&E images (i.e., batch effects disturb the training steps). We performed semi-
supervised learning for cluster type prediction (Supplementary Table S12). Although prediction accuracy was 
not improved by semi-supervised learning, the AUC was sufficiently high in the teacher model as we described 
(Supplementary Table S5), suggesting that there is not enough room to improve the accuracy in this task. There-
fore, the model that gives the best prediction accuracy should be determined when using semi-supervised 
learning as an option.

As an experimental validation, we confirmed that predicted ESR1 expression levels were correlated with 
protein levels quantified from the immunohistochemistry image (Supplementary Fig. S4). However, RNA levels 
generally do not entirely correlate with protein levels due to post-transcription events27. This is a limitation of 
our additional experimental validation for DeepSpaCE.

Although overcoming the domain shift problem is important but challenging, DeepSpaCE aims to obtain 
super-resolved spatial transcriptomic profiles within a single slide and imputing the intersection of consecutive 
sections (Fig. 1). Therefore, DeepSpaCE expects the data is derived from a single domain, with images from 
the same scanner and spatial transcriptomic data measured by the same protocol. Nevertheless, we increased 
the variability of images by using image augmentation to avoid potential domain shift, and they improved the 
Pearson’s correlation coefficients (Supplementary Fig. S14). Furthermore, we confirmed that the model trained 
with one patient worked well to a section image derived from a different patient (Supplementary Table S4).

Even if a high-resolved spatial transcriptome technology will be released in the future, the value of DeepSpaCE 
will not be diminished because DeepSpaCE can impute the section in consecutive sections (Fig. 4). It reduces 
the experimental costs and clarifies biological functions at higher resolution and in three dimensions. Also, the 
higher resolution spots in a slide might need more sequencing costs for getting the same number of detected 
genes. We also consider that DeepSpaCE can apply to other spatial transcriptomic platforms such as GeoMX28 
because our DeepSpaCE method just needs H&E image(s) and the corresponding spatial transcriptome datasets. 
Although slight code modification would be required for matching formats of GeoMX’s input datasets, users can 
use our core python scripts for running DeepSpaCE under GNU General Public License v3.0. In conclusion, 
DeepSpaCE is an all-in-one package that augments spatial transcriptome data obtained from the in situ capturing 
platform; its applications can improve the understanding of histological expression profiles.

Methods
Ethical approval.  Breast tissue samples and relevant clinical data were obtained from patients undergoing 
surgery at St. Marianna University School of Medicine Hospital after obtaining approval from the Clinical Ethics 
Committee of St. Marianna University (approval number: 2297-i103). The approval allowed the retrieval of sur-
gical pathology tissues that were obtained with informed consented or that were approved for use with a waiver 
of consent. All methods were performed in accordance with the relevant guidelines and regulations.

Spatial‑transcriptomics datasets.  We used six human breast cancer tissue sections, including sections 
A–C and consecutive sections D1–D3, which were derived from one patient. We also used two breast cancer 
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tissues (sections E and F) obtained from a different patient. The spatial transcriptomics experiments were con-
ducted with the same protocol reported in Nagasawa et al.8. Briefly, the tissue sections were stained with H&E, 
and TIFF images were obtained using a microscope at 10× magnification. Spatial-transcriptome profiling was 
performed using the Visium platform with the standard protocol provided by 10× Genomics (Pleasanton, CA, 
USA). UMI counts were calculated using 10x Genomics Space Ranger software (version 1.0.0). Visium demo 
data (version 1.0.0) for the human heart tissue was obtained from the 10x Genomics website (https://​www.​10xge​
nomics.​com/​resou​rces/​datas​ets/).

Preprocessing of spatial gene‑expression data.  Regarding the spatial-transcriptome profiles obtained 
from the Space Ranger pipeline (10x Genomics), we removed spots with low total UMI counts (< 1000) or a low 
number of measured genes (< 1000). The SCTransform function of Seurat package (version 3.1.4)29 was applied 
to normalize the UMI counts, based on regularized negative binomial regression30. Min–max scaling was per-
formed to adjust the expression values between zero and one. We trained 24 genes including three breast cancer-
marker genes (MKI67, ESR1, ERBB2) and 21 breast cancer-related microenvironment marker genes (SPARC​, 
IFI27, COL10A1, COL1A2, COL3A1, COL5A2, FN1, POSTN, CTHRC1, COL1A1, THBS2, PDGFRL, COL8A1, 
SULF1, MMP14, ISG15, IL32, MXRA5, LUM, DPYSL3, and CTSK). These 21 genes were manually selected from 
the cluster of genes overexpressed in the breast cancer-related microenvironment region. These two gene sets of 
three genes and 21 genes were respectively used in the training part of DeepSpaCE. We removed low expressed 
genes (< 10%) for multi-task learning of all genes and used 18,542 genes in section C. The graph-based cluster-
ing algorithm31 implemented in Space Ranger was used for transcriptomic cluster type prediction. We separately 
performed clustering of sections D1–D3 since we used the output of Space Ranger in the default settings, con-
sidering users who are not bioinformaticians.

Preprocessing of tissue section images.  Each spot image was cropped from a tissue slide image, based 
on the position table in the Space Ranger outputs (Supplementary Table  S13). As shown below, we filtered 
out whitish images in which more than half of the pixels were the > 80% percentiles of mean RGB values. For 
image augmentation, we randomly applied image-transform functions of flipping (RandomRotate90, Flip, and 
Transpose), cropping (RandomResizedCrop), noise (IAAAdditiveGaussianNoise and GaussNoise), blurring 
(MotionBlur, MedianBlur, and Blur), distortion (OpticalDistortion, GridDistortion, IAAPiecewiseAffine, and 
ShiftScaleRotate), contrast (RandomContrast, RandomGamma, and RandomBrightness), and color-shifting 
(HueSaturationValue, ChannelShuffle, and RGBShift) in Albumentations library (version 0.4.5)32.

Preprocessing of images obtained from TCGA and ImageNet.  We obtained 1978 images of H&E-
stained TCGA breast cancer sections from the GDC Data Portal (https://​portal.​gdc.​cancer.​gov) on August 05, 
2020. As negative controls, we obtained 14,500 irrelevant images such as dogs and cats (n02106662, n02110341, 
n02116738, n02123045, n02123159, n02123394, n02123597, n02124075, n02497673, and n03218198) from Ima-
geNet (http://​www.​image-​net.​org) on October 09, 2020. All images obtained from TCGA and ImageNet were 
cropped to 224 × 224 pixels (Supplementary Fig. S12). Four thousand cropped images were randomly selected as 
unlabeled images for each semi-supervised learning model.

Training and prediction of spatial gene‑expression profiles and transcriptomic cluster 
types.  All deep-learning models were implemented using the deep-learning framework PyTorch (version 
1.5.1)33. We adapted the VGG16 architecture for the deep CNN model with 16 weight layers13. We modified 
the number of output features in VGG16 from 1000 to the number of genes or cluster types. We simultaneously 
trained multi genes such as three breast cancer markers or 21 breast cancer-related microenvironment mark-
ers. We also performed multi-task learning of all genes (18,542 genes) in section C (training and test sets). For 
transcriptomic cluster type predictions, the loss value of the training DeepSpaCE dataset was calculated using 
the CrossEntropyLoss function. For gene-expression predictions, the loss value was determined as the sum 
of loss calculated with the SmoothL1Loss function for each gene. As an optimizer, we used Adam34 with the 
hyperparameters of learning rate: 1e−4 and weight decay: 1e−4. Each training was repeated for 50 epochs to 
stabilize the loss curves (Supplementary Fig. S13). Early stopping was applied if the loss value for the validation 
data did not decrease over five continuous epochs. To evaluate the accuracy of cluster type prediction, we used 
the recall value which reflects the proportion of positives identified correctly among the actual number of posi-
tives (recall = true positive/(true positive + false negative)). We also calculated micro/macro-precision, recall, 
f1-score, and AUC values. The micro values were calculated for each cluster (i.e., the classification accuracy of 
a cluster vs. other clusters). The macro values are the mean values of the micro values. For section D2, cluster 
8 was excluded from the training set because it consists of a region of potential permeabilization errors. We 
performed fivefold cross-validation to evaluate DeepSpaCE. In the fivefold cross-validation, we first separated 
the 20% of the dataset as a test set (20%) and used 20% of the remaining set as a validation set and others as a 
training set. The validation set was used for monitoring the progress of training and the decision to apply early 
stopping. The test set was only used for the final quantification of performance. In summary, we used completely 
separated three data sets, training set (64%), validation set (16%), and test set (20%) for validating DeepSpaCE. 
We showed the details of the training set, validation set, and test set which used for the super resolution and the 
section-imputation (Supplementary Table S14).

Parameter optimization of DeepSpaCE.  We optimized the parameters of DeepSpaCE, such as the 
image size, image-filtering threshold, and image-augmentation methods. We performed fivefold cross-valida-
tion using six sections (A–C, and D1–D3) to evaluate the prediction accuracy. We developed prediction models 

https://www.10xgenomics.com/resources/datasets/
https://www.10xgenomics.com/resources/datasets/
https://portal.gdc.cancer.gov
http://www.image-net.org
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for the expression levels of the 24 genes including three breast cancer-marker genes (MKI67, ESR1, ERBB2) and 
21 breast cancer-related microenvironment marker genes (described above) because these genes are representa-
tive markers of heterogeneous ductal carcinoma tissues. First, we assessed the impact of the size of the input 
images (0%, 50%, 100%, 150%, and 200%; relative to the original spot image size) on the prediction accuracies; 
the results showed that an image size of 150% gave better outcomes than the original and smaller image sizes 
(Supplementary Fig. S14a). This result is biologically plausible because the surrounding cells can communicate 
with cells in the spot and affect their gene-expression levels. Second, we assessed the different image-filtering 
thresholds to exclude uninformative images (i.e., excluding almost white images). We calculated whiteness for 
each spot by calculating the mean RGB values and obtained the percentiles (50%, 60%, 70%, 80%, 90%, and 
100%) over spots in a slide. We filtered out images where more than half of the pixels were the > 80% percentiles 
of mean RGB values as judged from the histogram (Supplementary Fig. S14b). This strategy maximized the 
prediction accuracy (Supplementary Fig. S14c). Third, to further improve accuracy, we augmented images with 
various image transformations such as flipping, cropping, blurring, distortion, noise, contrast, and color-shifting 
(Supplementary Fig. S15). All image augmentation (except for color-shifting) improved the Pearson’s correlation 
coefficients compared with non-augmented images (Supplementary Fig. S14d); however, we also used the color-
shifting method because H&E-staining on different slides may change the color intensities.

Pathway analysis of transcriptomic clusters.  To annotate each transcriptomic cluster in a section, we 
obtained differentially expressed genes between the cluster and others (positive (Fold-change > 0) or negative 
(Fold-change < 0); adjusted P-value < 0.05 (Benjamini–Hochberg method)) from Space Ranger in the default 
settings, and performed pathway analysis for them using Enrichr (Gene set: MSigDB Hallmark 2020)35,36. We 
considered pathways with adjusted P-value < 0.05 (Benjamini–Hochberg method) for each analysis as significant 
and summarized them (Supplementary Table S15).

Gene set enrichment analysis of Pearson’s correlation coefficients.  We performed gene set 
enrichment analysis (GSEA)17 to interpret what types of genes were well predictable by DeepSpaCE using GSEA 
software (v4.1.0, Broad Institute). We used 18,451 genes expressed in section C which contains both tumor and 
microenvironmental regions and tested the enrichment of hallmark gene sets in MSigDB18 (Hallmark.all.v7.5) 
in the genes with higher Pearson’s correlation coefficients between measured and predicted expression values.

Super‑resolution of spatial gene expression.  New spot image files were created by cropping around 
three adjacent spots to impute the expression levels among spots on a slide image (Supplementary Fig. S16). We 
used sections C and D2 as both the training and test sets (randomly selected 80% spots were used as training data 
and others were used as test data). By performing super-resolution, the numbers of spots increased from 2238 to 
6733 and from 2168 to 6623 in sections C and D2, respectively. We trained both of three breast cancer-marker 
genes and 21 breast cancer-related microenvironment marker genes, respectively. Semi-supervised learning was 
not used for super-resolution.

Imputation of a tissue section using semi‑supervised learning.  Sections D1–D3 were obtained as 
consecutive sections. Thus, sections D1 and D3 were used as the training set. Section D2 was used as the test set 
to impute gene-expression levels because it was located between sections D1 and D3. Sections A–C were used for 
semi-supervised training as unlabeled images. In the noisy student model20, gene-expression levels in unlabeled 
images were predicted using the first trained model (teacher model). Four thousand predicted proxy labels and 
the associated images were added to the original dataset and used to train the next model, designated as a stu-
dent model. The training student models were run five times (Supplementary Fig. S17a). In addition to the spot 
images of sections A–C, we used images of breast cancer sections obtained from TCGA as unlabeled images. 
Irrelevant images obtained from ImageNet were used as negative controls during semi-supervised learning. In 
addition, we also performed semi-supervised learning with permuted gene expression and random values as 
negative controls (Supplementary Fig. S17b).

Linear regression analysis comparing with the baseline model.  We performed linear regression 
analyses of average color channels (mean RGB values), the brightness of the image, and log(total UMIs) as the 
baseline model. We also performed linear regression analyses of the full model, which incorporated predicted 
expression level by DeepSpaCE to the baseline model. The formulas for the baseline and full model are shown 
below. We calculated R-squared values of baseline and full model for predicting SPARC​ expression in testing 
data from the first iteration of the fivefold cross-validation. We also calculated the P-value for the coefficient of 
predicted expression by DeepSpaCE in the full model. All analyses were performed by R (version 3.6.0).

Baseline model:

Full model:

Performance comparison with different methods.  In DeepSpaCE, we used VGG1613 as a deep learn-
ing model because the model is widely used as a gold standard (number of citations: 65,552, Google Scholar, 
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October 24, 2021). We compared VGG16 with DenseNet12137 which was used in ST-Net. We performed XFuse 
with default parameters (below) in sections D1–D3. The parameters were network_depth: 6, network_width: 16, 
min_counts: 50, batch_size: 3, epochs: 100,000, learning_rate: 0.0003, and patch_size: 768.

Immunohistochemistry and measurement of protein expression.  Breast cancer tissues were fro-
zen and embedded in an optimal cutting temperature compound (Sakura Finetek, Tokyo, Japan). Ten-microm-
eter-thick sections were cut onto slides using a Leica CM3050 S cryostat (Wetzlar, Germany), fixed in methanol 
at − 20 °C for 20 min, and air-dried for 60 min. Endogenous peroxidase activity was blocked in phosphate-
buffered saline containing 3% H2O2 for 5 min. For ESR1 staining, the sections were incubated with an anti-ESR1 
antibody (FLEX Monoclonal Rabbit Anti-Human Estrogen Receptor α, Clone EP1, Catalog No. IS084, Agilent 
technologies, Dako, Glostrup, Denmark) at a 1:2 dilution for 60 min at room temperature. Antibody labeling was 
detected with the Histofine Simple Stain, MULTI (Nichirei Bioscience, Tokyo, Japan) following the manufac-
turer’s protocol, and all sections were counterstained with H&E. To quantify the immunohistochemistry image, 
we calculated the mean RGB values of each spot (14 × 14 pixels) on the IHC image, which implies the estimated 
protein levels (high mean RGB values indicate low protein levels, and vice versa).

Data processing and analysis.  Python (version 3.6.5) was used for preprocessing and implementation of 
DeepSpaCE with the libraries, torch (version 1.5.1), torchvision (version 0.6.1), numpy (version 1.19.0), pandas 
(version 1.0.5), scikit-learn (version 0.23.1), mlxtend (version 0.17.2), albumentations (version 0.4.5), opencv-
python (version 4.2.0.34), and matplotlib (version 3.2.2). R (version 3.6.0) was used for statistical analysis and 
visualization with the packages, dplyr (version 1.0.2), data.table (version 1.12.8), Matrix (version 1.2.17), grid 
(version 3.6.0), rjson (version 0.2.20), hdf5r (version 0.9.7), readbitmap (version 0.1.5), ggplot2 (version 3.3.0), 
hrbrthemes (version 0.8.0), ggsci (version 2.9), ggpubr (version 0.4.0), cowplot (version 1.0.0), and Seurat (ver-
sion 3.1.4.9904).

 Data availability
All sequencing data and pathological images for Visium have been deposited in the DNA Data Bank of Japan 
under the accession number JGAS000202 and JGAS000290.

 Code availability
All codes for DeepSpaCE are available on GitHub (https://​github.​com/​tmonjo/​DeepS​paCE). These codes include 
image-preprocessing procedures and expression data produced from Space Ranger.
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