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Hemodynamic variations in arterial 
wave reflection associated 
with the application of increasing 
levels of PEEP in healthy subjects
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Carlo Palombo

Positive end-expiratory pressure (PEEP) may affect arterial wave propagation and reflection, thus 
influencing ventricular loading conditions. The aim of the study was to investigate the hemodynamic 
variations in arterial wave reflection (i.e., wave reflection time, augmentation index, left ventricular 
ejection time, diastolic time, SEVR) associated with the application of increasing levels of PEEP in 
healthy subjects. We conducted a prospective observational study. Study population was selected 
from students and staff. Pulse contour wave analysis was performed from the right carotid artery 
during stepwise increase in PEEP levels (from 0 cmH2O, 5 cmH20, 10 cmH2O) with applanation 
tonometry. Sixty-two healthy volunteers were recruited. There were no significant changes in heart 
rate, augmentation index (AIx), left ventricular ejection time, Diastolic time (DT) among all of the 
different steps. A significant increase of time to the inflection point (Ti) was observed during all steps 
of the study. Diastolic area under the curve (AUC) divided by systolic-AUC (SEVR) increased from 
baseline to PEEP = 5 cmH2O, and from baseline to PEEP = 10 cmH2O. AIx and Ti were significantly 
correlated (directly) at the baseline and during PEEP = 10 cmH2O. Ti and DT were significantly 
correlated at the baseline and during PEEP = 5 cmH2O. In our preliminary results, low levels of PEEP 
played a role in the interaction between the heart and the vascular system, apparently mediated by a 
prolongation of the diastolic phase and a reduction in the systolic work of the heart.
Clinical trials registration number: NCT03294928, 19/09/2017.

A Positive End-Expiratory Pressure (PEEP) during mechanical ventilation is commonly applied to prevent 
alveolar collapse, recruit and stabilize lung units, improve oxygenation, increase functional residual capacity 
and lung compliance1,2. Furthermore, PEEP may help the respiratory muscles to decrease the work of breathing 
in some conditions.

In light of these positive effects, PEEP is used in various clinical scenarios including pulmonary oedema 
(where it promotes redistribution of extravascular lung water and improves oxygenation and lung compliance)3 
and acute respiratory distress syndrome (where oxygenation can be increased by keeping alveolar units opened at 
the end of expiration)4. Low levels of PEEP increase intra-alveolar volume in pervious alveoli while higher levels 
of PEEP are useful for alveolar recruitment: both of them improve functional residual capacity (FRC)2. Finally, 
PEEP is applied during intraoperative ventilation and after surgery in order to prevent and treat atelectasis5.

However, the application of high PEEP level may also lead to adverse consequences such as incomplete 
expiration, air-trapping (intrinsic PEEP) and increased risk of barotrauma6. Apart from pulmonary effects of 
PEEP, hemodynamic consequences are controversial and not completely understood7,8. Many studies have dem-
onstrated that alveolar recruitment manoeuvres (using high levels of PEEP) increase right ventricular afterload 
and decrease right ventricular preload, similarly to a Valsalva effect9. Moreover, augmented intrathoracic pres-
sure induced by high level of PEEP, decreases right ventricle and increases left ventricle end—diastolic volume 
(EDV) as described also by transmitral pulsed-wave Doppler (PW-D)10. At the same time, PEEP decrease left 
ventricle afterload11. Consequently, to foresee the hemodynamic consequences of PEEP application is challeng-
ing in critically ill patients.
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Arterial contour waveform analysis (CWA) is increasingly proposed as tool to estimate the hemodynamic 
status of a critical care patient as well as essential information about the arterial wall integrity and stiffness12. 
Hemodynamic effects of PEEP strongly depend also on arterial function and arterial properties (i.e., stiffness 
and peripheral tone)13, consequently, it will be useful to examine the haemodynamic impact of PEEP using an 
arterial waveform analysis. CWA can be evaluated with different non-invasive and reproducible techniques14–16. 
Among them, applanation tonometry is a non-invasive measurement capable to perform CWA on central arter-
ies (carotid artery)17 that can be practically used in the intensive care unit (ICU). This technique enables the 
estimation of wave reflection through the analysis of blood pressure waveform.

However, in critically ill patients, several confounding factors may hinder the interpretation of the hemody-
namic effects of PEEP application. Thus, the goal of our study was to investigate in young healthy subjects, with 
normal cardiovascular compliance and arterial tone, the direct effects of stepwise increase in PEEP. "We aimed 
to evaluate, in young healthy subjects, the feasibility of carotid pressure waveform analysis in order to detect 
changes in arterial and LV function associated with various levels of PEEP. Secondary end-point was to assess 
the best level of PEEP from the hemodynamic point of view, at least in young healthy subjects, in order to have 
a reference for evaluation of patients in a clinical setting.

Methods
After approval of the Local Research Ethics Committee of Pisa University Hospital, a prospective observational 
study was conducted in a single university center in a 2 months period. Written informed consent was obtained 
from all the participants in the study. Procedure was carried out in accordance with the Declaration of Helsinki 
(2000).

Study population.  Population in study was selected from students and staff of the University of Pisa. The 
inclusion criteria were as follows: age between 18 and 40, absence of any chronic diseases, no active smoker, no 
story of drug abuse, no use of caffeine the day of the exam. We excluded patients with pregnancy, and intake of 
caffeine the day of the exam.

Study design.  The design of the study consisted in four-step measurements of central artery blood pressure 
evaluating contour wave analysis during a progressive increase of PEEP level. Subjects rested supine for 10 min 
before starting; recordings were performed in the morning, 2–4 h after light breakfast, abstaining from smoking 
and caffeinated beverages. Each step takes two minutes to be performed.

First step (Baseline).  Spontaneously breath in air at atmospheric pressure during applanation tonometry.

Second step (PEEP = 5 cm H2O).  Applanation tonometry performed during the application of PEEP = 5 cmH2O.

Third step (PEEP = 10  cm H2O).  Applanation tonometry performed during the application of PEEP = 10 
cmH2O.

Fourth step (recovery).  Spontaneously rebreating air at atmospheric pressure during applanation tonometry.
Contour wave analysis was performed with applanation tonometry technique using a hand-held tonometer 

probe (PulsePen®; DiaTecne Srl, Milano, Italy18). The applanation tonometry technique consists of locating the 
sensor over the skin where the artery is found and apply a moderate pressure in order to slightly compress the 
artery. Thus, the sensor records the pressure in the middle of the compressed artery. A PEEP valve was connected 
to the “face mask-Ambu bag” system in order to set each increasing level of PEEP19. Subjects were breathing 
spontaneously.

Blood pressure (BP) and contour arterial waveform analysis (CWA).  At the beginning of the test, 
arterial blood pressure (BP) was measured with a standard adult cuff on the left brachial artery, in order to cali-
brate waveforms using the oscillometric method20,21.

Right carotid arterial pulse waves were recorded with an arterial tonometer sensor array integrated with an 
electrocardiogram unit for a total of four times per patient (one time for each step). In the study the tonometer 
was applied to the right carotid artery without head support. The shape of the peripheral pulse wave was captured 
electronically using a laptop computer linked to a desktop (PulsePen pulse wave analysis system). The PulsePen 
system generates an average peripheral pulse wave contour from a 12.5 s period18. Tonometry has a high sensi-
tivity to sensor position and angle.

The following parameters were obtained from pulse wave analysis18,22:

•	 Augmentation pressure (AP): the amount by which central pressure increases due to reflected wave, expressed 
in mmHg.

•	 Pulse pressure (PP): the pressure difference between the systolic and diastolic pressures, expressed in mmHg.
•	 Augmentation index (AIx): defined as reflected wave amplitude divided by pulse pressure, expressed as a 

percentage (AP/PP).
•	 Time to the inflection point (Ti): is measured from the foot of the forward traveling pressure wave to the foot 

of the reflected wave, expressed in msec.
•	 Left Ventricular Ejection Time (LVET): duration of left ventricular systolic ejection in msec.
•	 Diastolic time (DT): duration of left ventricular diastole in msec.
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•	 SEVR: diastolic area under the curve (AUC) divided by systolic-AUC (Buckberg index)
•	 Heart rate (HR) in beats per minute (bpm)
•	 Mean systolic blood pressure (MSBP): the mean of the systolic blood pressure (mmHg)
•	 Mean diastolic blood pressure (MDBP) the mean of the diastolic blood pressure (mmHg)

All measurements taken on single patients were performed by the same operator (JB) and only high-quality 
pulse wave traces were considered acceptable. We also calculated the intra-observer reproducibility, computed 
as the percentage of the absolute difference between two sets of measurements, divided by their mean. Conse-
quently, these measurements allow analysing the degree of agreement of measurements by the same observer 
(intra-observer) on the same patient.

After the measurements were performed, a case report form was filled out with participant ID, age, weight, 
height, Augmentation pressure, Pulse pressure, AIx, Ti, Left Ventricular Ejection Time, Diastolic time, SEVR, 
Heart rate, Mean systolic blood pressure, Mean diastolic blood pressure.

Main goal of this work was to investigate the variations in wave reflection time (Ti) and augmentation index 
(AIx) induced by the application of different stepwise levels of PEEP in healthy subjects. Secondary aim was to 
assess the effects of stepwise PEEP on cardiac indices such as left ventricular ejection time (LVET), diastolic time 
(DT), SEVR induced by the application of different level of PEEP.

Statistical approach.  In order to calculate the sample size, we followed the recommendations of Charan 
and Biswas23. We calculated our sample size assuming that a standard deviation (SD) in population was about 
1124 and an effect size (d) was 5.8%25. The precise estimation sample size was 56; therefore, we decided to recruit 
a total of 62 participants in order to have sufficient statistical power.

Data were analyzed using Stata 11.1 software (Stata Corp, College Station, TX). Data were expressed as mean 
values ± SD. Student’s t-test was used for assessment of intragroup changes between two different steps (R-2.15.1, 
Free Software Foundation’s GNU project). Pearson’s linear regression analysis (R-2.15.1, Free Software Founda-
tion’s GNU project) was used to investigate relationship between two parameters in the same step. Intraclass 
parameter modifications among all of the different steps were calculated using one-way analysis of variance 
(ANOVA). A p-value < 0.05 was considered to be significant.

Research involving human participants and/or animals.  Approval of the Local Research Ethics 
Committee of Pisa. Procedure was carried out in accordance with the Declaration of Helsinki (2000).  All pro-
cedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards”.

Informed consent.  Informed consent was obtained from all individual participants included in the study.

RB Information.  This study was approved by the Local Research Ethics Committee of Pisa (protocol num-
ber n°43004, date of approval 12/09/2017).

Results
We recruited 62 healthy volunteers, 31 males and 31 females (aged between 20 and 35 years old); all subjects 
were apparently healthy, with not known cardiovascular disease or major cardiovascular risk factors, and none 
was receiving any medication. General characteristics of the study population were reported in Table 1. Intra-
observer variability of measurements was between 2.5% for LVET and 5.7% for AIx.

Hemodynamic parameters obtained by applanation tonometry are shown in Table 2. There were no significant 
changes in HR, AIx, LVET, DT through all the different steps: however AIx and DT showed 2 different trends 
(Fig. 1).

There was an increase of Ti (ms), significant from baseline to the application of PEEP = 5 cmH2O (from 
92.02 ± 24.17 to 102.40 ± 26.90; p < 0.05), from baseline to PEEP = 10 cmH2O (from 92.02 ± 24.17 to 104.07 ± 21.52; 
p < 0.01) and from baseline to spontaneous rebreathing (from 92.02 ± 24.17 to 101.08 ± 23.80; p < 0.05) (Fig. 2).

Table 1.   Demographic characteristics of the population in study. Data are expressed as mean ± standard 
deviation (SD). BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood 
pressure.

Parameters Mean SD

AGE (year) 26.8 3.1

HEIGHT (cm) 172 14

WEIGHT (Kg) 68.7 7.8

BMI 20.5 2.4

HR (bpm) 75 16

SBP (mmHg) 116 12

DBP (mmHg) 77 12
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During all the steps of the study there was an increase of SEVR that was significant from baseline to the 
application of PEEP = 5 cmH2O (from 1.41 ± 0.32 to 1.53 ± 0.38; p < 0.05) and from baseline to the application of 
PEEP = 10 cmH2O (from 1.41 ± 0.32 to 1.57 ± 0.52; p < 0.05) (Fig. 2).

AIx and Ti were significantly correlated at the baseline (p < 0.01) and during the application of PEEP = 5 
cmH2O (p < 0.05), while AP and Ti resulted correlated during the application of PEEP = 10 cm H2O (p < 0.05).

Ti and DT were significantly associated at the baseline and during the application of PEEP = 5 cmH2O (both 
p < 0.01).

Discussion
In our observational study, we evaluated the hemodynamic variations in wave reflection induced by the appli-
cation of increasing levels of PEEP in healthy subjects. In healthy volunteers, cardiovascular compliance and 
intravascular status can be assumed to be normal. Consequently, the direct effects of progressive higher levels of 
PEEP on intact cardiac and arterial systems can be assessed without confounding factors due to comorbidities 
and therapies. We found a progressive prolongation of Ti and SEVR during each PEEP application. In addition, 
we observed an inverse correlation between Ti and AIx and a direct correlation between Ti and DT from baseline 
to PEEP = 5 cm H2O. No significant changes were found in heart rate, mean systolic and mean diastolic blood 
pressure among all stepwise of PEEP.

The cardiovascular response to PEEP depends on several factors; intravascular volume status, cardiac com-
pliance, arterial properties and levels of PEEP. Applanation tonometry provides information on hemodynamic 
status as well as on arterial wall mechanical properties. The carotid CWA technique allows to obtain surrogate 
indexes of central hemodynamics and wave reflection, in particular central augmentation index (AIx), timing of 
the returning reflected waves (Ti) and Buckberg index (SEVR)12. These parameters, assessing mechanical arte-
rial properties, are extensively used as an aid to the cardiovascular risk stratification for atherosclerotic-related 

Table 2.   CWA parameters of the population in study. Data are expressed as mean ± standard deviation (SD). 
PEEP, Positive end-expiratory pressure; AIx, augmentation index; Ti, time to inflection point; LVET, Left 
Ventricular Ejection Time; DT, Diastolic time; SEVR, diastolic AUC divided by systolic-AUC (Buckberg 
index); PP, Pulse pressure; AP, Augmentation pressure; MSBP, Mean systolic blood pressure; MDBP, Mean 
diastolic blood pressure; ms: milliseconds.

Parameters Baseline Peep = 5 cmH20 Peep = 10 cmH20 Recovery

AIx (%) 5.85 ± 6.44 3.95 ± 7.56 4.3 ± 27.16 4.92 ± 6.74

Ti (ms) 92.02 ± 24.17 102.4 ± 26.9 104.07 ± 21.52 101.1 ± 23.8

LVET (ms) 297.52 ± 24.32 304.15 ± 35.55 309.47 ± 64.09 300.02 ± 22.84

DT (ms) 516.8 ± 146.8 564.45 ± 203.86 601.13 ± 358.1 536.87 ± 150.63

SEVR 1.41 ± 0.32 1.53 ± 0.38 1.57 ± 0.52 1.47 ± 0.34

PP (mmHg) 40.15 ± 8.83 38.73 ± 8.22 40.27 ± 8.06 39.45 ± 8.91

AP (mmHg) 5.29 ± 3.02 4.84 ± 2.40 5.19 ± 2.95 4.89 ± 2.44

MSBP (mmHg) 105.77 ± 9.99 104.71 ± 10.33 105.27 ± 10.15 105.40 ± 9.82

MDBP (mmHg) 86.53 ± 8.28 86.73 ± 8.83 86.44 ± 8.77 86.58 ± 8.80

Figure 1.   Clustered column for AIx (chart on the left) and DT (chart on the right) from baseline to Recovery; 
no significant difference observed between the measurements. Data are presented as mean, error bars represent 
standard deviation. CTR, percentage of changes in comparison to control; AIx, augmentation index; DT, 
Diastolic time.
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diseases18. AIx depends on age, gender, weight, arterial pressure, LDL concentration and position; several studies 
shows that AIx independently predicts adverse cardiac events13,26,27. Ti, together with reflected wave magnitude, 
contributes to systolic pressure and is a supposed indicator of aortic stiffness28. Buckberg index is a ratio between 
systolic and diastolic portions of AUCs in the central aortic pulse wave. Blood flow within the coronary arteries 
occurs mainly during diastole, consequently, the diastolic-AUC indicates myocardial perfusion and oxygen sup-
ply. In normal coronary arteries, subendocardial ischemia occurs when SEVR% falls below 50%29. Arterial CWA 
appears to be also a promising non-invasive tool to evaluate arterial properties and ventricular-arterial function 
in the critical care setting. In our study we observed a transient prolongation of Ti during PEEP ventilation, 
suggesting a delay of reflected waves and their shift on diastole. This observation can be putatively ascribed to 
a decrease of arterial peripheral resistance that is directly correlated with diastolic blood pressure and inversely 
correlated with cardiac output (CO). However, we did not observe significant changes in MDBP during all PEEP 
steps, and consequently, the arterial peripheral resistance reduction could be the result of an increase of CO. The 
evaluation of CO is difficult to assess without echocardiographic or invasive measurements but, from a physi-
ological point of view, the possible increase in CO could be in contrast with PEEP effects on preload reduction 
but in agreement with a decrease in left ventricle afterload 9. In addition there was an increase of SEVR during the 
application of both levels of PEEP. Hence, this result can account for an increase of diastolic AUC or a decrease 
on systolic AUC. This trend, in addition to a decrease in AIx, may reflect a positive effect of PEEP ventilation 
on the systolic phase. Having recruited healthy patients, we did not observe significant changes in HR, mean 
systolic and mean diastolic blood pressure among all stepwise of PEEP.

Garcia et al. evaluated the arterial pressure response (i.e., pulse pressure variation, systolic pressure variation) 
to the Valsalva manoeuvre (VM) in spontaneous breathing patient30. The VM consists in a forced expiratory 
effort against a closed glottis leading to an increase in intrathoracic pressure, similarly to the PEEP effect. They 
found that hemodynamic variations induced by the VM predict fluid responsiveness in this group of patients. 
Contrarily from the above-mentioned study, we did not study the fluid responsiveness to VM and our trial 
included only healthy subject with normal arterial tone. However, this trial shows the impact of the VM on the 
haemodynamic system.

There are three main limitations in our study. Firstly, the absence of echocardiographic or invasive measure-
ments of CO that is important to assess PEEP effects on pump function. Secondly, for ethical reasons, we did not 
investigate changes on CWA induced by levels of PEEP higher than 10 cm H2O. Thirdly, we recruited only healthy 
subjects, thus, our findings might not be applicable to the critical care patients or during mechanical ventilation.

Despite these limitations, this preliminary study may contribute to provide a new protocol for assessing the 
effects of PEEP atrio-ventricular (A-V) coupling in critical patients. It will be important to integrate echocardio-
graphic assessment and lung ultrasonography examination in order to obtain CO measurement and to diagnostic 
possible lung injuries. In fact, in patients with ARDS or heart failure, there are many cofactors that influence 
positive effects of PEEP, together with the seriousness of the disease.

Figure 2.   Clustered column for Ti (chart on the left) and SEVR (chart on the right) from baseline to Recovery; 
significant difference observed for Ti from baseline to PEEP = 10 cmH2O and from baseline to recovery; 
significant increase also for SEVR from baseline to the application of PEEP = 5 cmH2O and from baseline to the 
application of PEEP = 10 cmH2O. Data are presented as mean, error bars represent standard deviation. CTR, 
percentage of changes in comparison to control; Ti, time to inflection point; SVER, diastolic AUC divided by 
systolic-AUC (Buckberg index). *p values < 0.05, statistically significant. **p values < 0.01.
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Conclusion
In conclusion, together with the effects on pulmonary ventilation, we observed an influence of PEEP ventilation 
on hemodynamic status that is confirmed by morphological changing on contour arterial waveform. It seems that 
in healthy patients there are not adverse effects induced by PEEP. In healthy subjects, low levels of PEEP seem to 
have an impact on cardiovascular efficiency thanks to the prolongation of the diastolic phase.

Data availability
Data in tables and figures.

Received: 20 August 2021; Accepted: 16 February 2022
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