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Survival Genie, a web platform 
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The genomics data-driven identification of gene signatures and pathways has been routinely explored 
for predicting cancer survival and making decisions related to targeted treatments. A large number 
of packages and tools have been developed to correlate gene expression/mutations to the clinical 
outcome but lack the ability to perform such analysis based on pathways, gene sets, and gene ratios. 
Furthermore, in this single-cell omics era, the cluster markers from cancer single-cell transcriptomics 
studies remain an underutilized prognostic option. Additionally, no bioinformatics online tool 
evaluates the associations between the enrichment of canonical cell types and survival across cancers. 
Here we have developed Survival Genie, a web tool to perform survival analysis on single-cell RNA-
seq (scRNA-seq) data and a variety of other molecular inputs such as gene sets, genes ratio, tumor-
infiltrating immune cells proportion, gene expression profile scores, and tumor mutation burden. For 
a comprehensive analysis, Survival Genie contains 53 datasets of 27 distinct malignancies from 11 
different cancer programs related to adult and pediatric cancers. Users can upload scRNA-seq data 
or gene sets and select a gene expression partitioning method (i.e., mean, median, quartile, cutp) 
to determine the effect of expression levels on survival outcomes. The tool provides comprehensive 
results including box plots of low and high-risk groups, Kaplan–Meier plots with univariate Cox 
proportional hazards model, and correlation of immune cell enrichment and molecular profile. The 
analytical options and comprehensive collection of cancer datasets make Survival Genie a unique 
resource to correlate gene sets, pathways, cellular enrichment, and single-cell signatures to clinical 
outcomes to assist in developing next-generation prognostic and therapeutic biomarkers. Survival 
Genie is open-source and available online at https://​bbisr.​shiny​apps.​winsh​ip.​emory.​edu/​Survi​valGe​
nie/.

Over the past decade advancement in genomics and epigenomics technologies has produced a large amount of 
data to understand the complex mechanisms of cancer. This accessibility and affordability of genome sequencing 
resulted in the completion of multiple ambitious projects in the cancer arena such as The Cancer Genome Atlas 
(TCGA)1, the International Cancer Genome Consortium (ICGC)2, and the Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET)3 to generate a comprehensive molecular landscape of different 
cancers. TCGA has profiled genetic and epigenetics landscapes of ~ 20,000 tumor samples across 33 major adult 
cancer types to generate novel insights for better diagnosis and treatment of cancer. Similarly, the TARGET3 
program has generated comprehensive genetics, epigenetics, and transcriptome profiles of 6000 samples from 
nine pediatrics tumor types to understand molecular mechanisms and develop novel therapies. These ambitious 
projects provided access to omics, clinical, demographic, and outcome information through the Genomic Data 
Commons (GDC) gateway4 to understand the impact of various associated factors on cancer outcomes besides 
collecting molecular information. The correlative analysis of these vast omics and clinical data can assist in 
identifying robust prognostic biomarkers to predict cancer outcomes. However, given the inherent complexity 
of data coupled with the sheer volume from numerous initiatives, the overall potential is largely reduced due 
to the lack of systematic and user-friendly online analytical tools. Utilization by a larger number of users will 
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require data access without the need to download or manipulate files in programming languages such as Python 
and R. This raises the need for the development of user-friendly online platforms for the exploration of this data.

To address this unmet need, multiple online platforms for exploring the association of genes and proteins 
with the clinical outcome have been developed5. Among the most used survival analysis tools are the cBioPortal6 
and GDC data portal4, providing users exploratory analyses of multi-omics cancer datasets and survival analysis 
of single gene-based on DNA alterations only. UALCAN7 is an interactive web resource for analyzing cancer 
OMICS data from TCGA, MET500, and CPTAC to correlate gene, protein, and miRNA expression profile and 
patient survival information. TRGAted8 tool allows survival analysis of single and multiple proteins across 
TCGA cancer types. This tool has clinical options with multiple optimal cut-offs, but it is limited to protein data 
and uses the mean expression as a cut-point for querying multiple proteins. Likewise, the KMplotter9,10 allows 
studying the clinical impact of individual genes in cancers from TCGA, GEO, and EGA using different splitting 
methods (e.g., median, percentile, quartiles). In this tool, users can upload multiple genes, ratios of two genes, 
and mean or median expression of genes, yet analysis will be performed at the individual gene level. The tool also 
allows restrictive analysis based on clinical subtypes and the proportion of immune cells. In this series, LOGpc11 
is another web server that estimates survival in 27 cancer types from TCGA and GEO using RNA-seq data but 
limited to single gene-based analysis. A recently developed tool, ESurv12 also provides univariate survival analysis 
by a single gene or cancer type from TCGA datasets.

Multiple genes, gene sets, and canonical pathways play a key role in defining the different subtypes of cancers 
with varying aggressiveness and outcomes. This raises the need for a tool to perform survival analysis from a set 
of genes rather than on a single gene basis within a set. Keeping this in mind, we developed the Survival Genie 
platform by compiling a comprehensive list of adult and pediatric cancers along with the implementation of 
multiple approaches for prognostic genomics features identification. For comprehensive survival evaluation, the 
Survival Genie contains 53 datasets of 27 distinct malignancies from 11 different cancer programs for both adult 
and pediatric cancers. Users can upload single-cell data or gene sets and select partitioning methods (i.e., mean, 
median, quartile, and cutp) to determine the effect of expression levels on survival outcomes. The tool provides 
comprehensive results including box plots of low and high-risk groups, Kaplan–Meier plots with univariate Cox 
proportional hazards model, and correlation of immune cell enrichment and molecular profile.

Methods
Collection and processing of cancer data.  Survival Genie contains 53 datasets of 27 distinct malignan-
cies from 11 different cancer programs for both adult and pediatric cancers (Supplementary Table 1). All the 
clinical and genomics (transcriptomic and mutation) data were downloaded from the GDC data portal4 using 
the GenomicDataCommons Bioconductor R package13. The samples with paired survival (e.g., days to follow-
up, days to death, vital status), mRNA-seq, and whole exome sequencing are only used for survival analysis. The 
three tumor types (primary, recurrent, and metastatic) are included in the analysis depending on the cancer 
type. Additionally, for correlating the survival information with immune infiltrate, the clinical Histology and 
Eosin (H&E) digital image-based quantification of tumor-infiltrating lymphocytes (TILs) were obtained from 
the Cancer Imaging Archive14 for the 13 TCGA datasets.

Survival analysis.  Survival Genie performs overall survival (OS) and event-free survival (EFS) statistical 
analysis as implemented in the ‘survival’ R package15. Kaplan-Meier survival curves are used to estimate the OS/
EFS using the survfit function and a log-rank test is done to compute differences in OS/EFS between the defined 
high- and low-risk groups. Univariate analysis with Cox proportional hazards regression model is performed on 
the patient data using coxph function in R/Bioconductor16. The survival association is considered significant if 
the p-values for the log-rank and Wald tests are lower than 0.05.

Implementation.  The Survival Genie source code is written in the R programming language17 and the 
interactive web-server is implemented using the shiny R package18. Cancer clinical and genomics datasets for 
survival analyses are processed and analyzed using Perl and R languages. The tool has been extensively tested on 
multiple operating systems (Linux, Mac, Windows) and web-browsers (Chrome, Firefox, and Safari). The tool 
is currently hosted on a 64-bit CentOS 6 backend server running the Shiny Server program designed to host R 
Shiny applications18. The tool along with source code is also available on the GitHub repository https://​github.​
com/​bhasin-​lab/​Survi​valGe​nie. A detailed step-wise analysis tutorial about the tool is also available on YouTube 
at https://​www.​youtu​be.​com/​watch?v=​H5s6O​Yvwwoo.

Results
Development of Survival Genie.  Figure 1 shows the overview of the user-friendly Survival Genie web 
interface for choosing analysis type, inputs, cancer datasets, parameters to explore and visualize the effect of 
dichotomous molecular (e.g., gene) profiles on patient survival outcomes. Detailed documentation for input and 
output parameters, and example data are available on the help page of the Survival Genie web server.

Pathways, gene sets, and systems biology modules‑based survival analysis.  Survival Genie provides a range of 
input options (i.e., gene-based, cell-based, profile-based, and mutation-based) to allow flexible and comprehen-
sive survival analysis based on the user’s needs (Fig. 2, steps 1–2). (a) Gene-based input option requires HGNC 
approved gene symbols as input, the most popular and widely used option for identifying prognostic gene mark-
ers. Gene Sets allow the input of a list of genes from pathways or biological processes as a gene set. An aggregated 
enrichment score is computed for a gene set using the single-sample gene set enrichment method (ssGSEA19) 
to estimate optimal cut-off in predicting survival outcomes. The gene set option also allows submission of a 
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Single-cell RNA-seq clusters markers file containing lists of significant gene markers for each identified cell cluster 
derived from any single-cell RNA-seq experiment using analysis tools such as Seurat20. An adapted ssGSEA is 
implemented to compute enrichment scores (ES) for marker genes for identified clusters from the single-cell 
experiment. Each tumor cluster enrichment score is then divided into two risk categories to predict patient 
outcomes and associations to tumor cell composition. Additionally, the Genes Ratio input option allows users to 
perform survival analysis on the ratio of two genes computed from the normalized expression values, and lastly 
(iii) Single Gene input option allows users to perform single-gene queries to study associations with clinical out-

Figure 1.   An overview of the Survival Genie platform showing input, analysis parameters, and output.

Figure 2.   Summary of steps for performing survival analysis using the Survival Genie platform. Detailed 
instructions for analysis options and procedure are available in the demonstration tutorial video (https://​www.​
youtu​be.​com/​watch?v=​H5s6O​Yvwwoo) and the user manual on the GitHub site (https://​github.​com/​bhasin-​lab/​
Survi​valGe​nie).
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comes. (b) Cell-based is to query cell types derived from (i) CIBERSOFT TILs proportion estimates of tumor-
infiltrating lymphocytes (TILs) using LM6 and LM22 cell signature matrix21. The proportions were estimated 
using bulk tumor normalized FPKM expression data for each tumor for cancer types following the CIBERSORT 
method21 and (ii) Digital TILs percentage retrieved based on H&E images from The Cancer Imaging Archive14. 
(c) Profile-based input option is to query weighted gene profiles derived from weighted gene co-expression net-
work analysis (e.g., 18-gene T-cell inflammation gene expression profile, the so-called Gene Expression Profile, 
GEP scores). The GEP score is calculated as the weighted sum of the normalized FPKM expression values of 
the gene signature for each tumor. The weightings for each HGNC approved gene symbol in the signature are 
provided by the user in the uploaded submission file. (d) Mutation-based input option is to query tumor muta-
tion burden (TMB) within a cancer dataset based on all, only non-synonymous or exonic somatic mutations per 
megabase (Mb) of the genome.

Cancer datasets, tumor types, optimal cut‑offs, and survival options.  In Survival Genie, users have options to 
select cancer program, tumor type, and methods for partitioning expression profiles (Steps 3–9, Fig. 2). The 
comprehensive analysis parameter includes (3) Selection of a cancer program from the available list that includes 
TCGA, TARGET, and MMRF CoMMpass. (4) Selection of cancer datasets from selected cancer programs to 
perform survival analysis. (5) Selection of the tumor type, primary, recurrent, or metastatic within the selected 
cancer dataset. The majority of cancer datasets consist of primary tumor samples with the exception of skin 
melanoma (TCGA-SKCM) that is dominated by metastatic tumor samples. (6) Selection of partitioning meth-
ods to define the dichotomous patient groups. There are four different partitioning methods (i.e., mean, median, 
percentile, and cutp) to subset the tumors into high and low groups to assess the association of expression levels 
with survival outcomes.  The Percentile-based partitioning method allows the selection of desired upper and 
lower thresholds (e.g., quartiles or 10th vs. 90th percentile) to subset tumor samples into low and high groups. 
The optimal cut-point Cutp  option estimates the martingale residuals6 using the ‘survMisc’22 package to divide 
patients into high and low groups. (7) Selection of survival analysis from either overall or event-free survival 
time, although the latter is only applicable to pediatric cancer datasets from the TARGET program. (8) Select 
TILs signature based on 22 (LM22) or 6 (LM6) immune cell types. The relative fractions of cell types are esti-
mated for LM6 and LM22 immune cell gene signature from bulk tumors FPKM gene expression data using the 
CIBERSORT deconvolution method21. (9) Submit analysis to perform analysis after making appropriate selec-
tions of input parameters.

Analysis outputs and visualization.  The results from the gene set and gene ratio-based analysis are displayed 
in five separate tabs: (A) Expression levels of high and low sample groups display either a box and whisker or 
bar plots showing the distribution of estimated molecular profile (e.g., gene expression, the expression ratio of 
two genes, gene set enrichment scores, cell proportion, or mutation burden) (Fig. 3A). (B) Correlation with 
lymphocytes cell signature shows the colored grid matrix of Pearson correlation of CIBERSOFT deconvoluted 
lymphocytes RNA-seq gene expression data and the estimated molecular data profile (Fig. 3B). Correlation coef-
ficients are indicated with a color gradient, blue color represents negative correlation, while red color represents 
the positive correlation. The shape denotes the significance of the correlation with squares showing significant 
associations (p-value < 0.05). (C) Kaplan–Meier (KM) plot shows the KM survival curves in the stratified high 
(red) and low (blue) groups of patients with log-rank test (Fig. 3C). A log-rank p-value < 0.05 is considered sta-
tistically significant. (D) Hazard ratio (HR) plot shows the survival significance by HR and HR p-value (Fig. 3D). 
HR is estimated based on a univariate Cox proportional hazard regression model with Wald test. An HR value 
above 1 indicates an increase in hazard (poor outcome) while an HR value below 1 indicates a reduction in the 
hazard (good outcome), and an HR value equal to 1 indicates no effect. A p-value < 0.05 is considered statisti-
cally significant. (E) The forest plot shows the detailed table of the univariate Cox regression survival analysis 
(Fig. 3E). The plot shows the hazard ratio and 95% confidence intervals associated with two groups considered 
in the univariable analysis along with Wald test and log-rank p-values. The table also shows the cut-off values 
applied to subset the patients into high and low groups along with the sample numbers in each group. The 
squares represent the HR, and the horizontal lines depict the upper and lower limits of the HR 95% confidence 
interval. Significant associations are shown in red-filled HR value squares. An arrow at the end of the horizontal 
line indicates the upper limit of the 95% confidence interval is higher than the maximum shown (i.e., 3). Addi-
tionally, the “Show Output" option (Fig. 3) allows users to select and view the plots (A) and (C) based on input 
clusters (for scRNA cluster analysis) or datasets (for single-gene analysis).

Use case examples using Survival Genie.  Use case 1: survival analysis of hallmark gene sets.  We per-
formed Cox proportional hazards regression analysis to examine the correlation between hallmark gene sets 
(n = 50) obtained from the Molecular Signatures Database (MSigDB)23,24 and survival (OS) across pediatric and 
adult cancers. Single sample enrichment scores were computed for each hallmark gene set across all cancer 
types using the ssGSEA method. The “survival” R package was utilized to calculate log-rank p-values, hazard 
ratios (HR), and 95% confidence intervals (CI). Hierarchical clustering analysis (HCA) was performed on HR 
to determine survival patterns of hallmark gene sets (n = 50) and cancer type (Fig. 4, Supplementary Table 2).

The HCA on hallmark gene sets HR segregated cancers into three major groups (i.e., good, poor, and mixed 
outcomes) based on survival associations (Fig. 4). Interestingly, across all the hallmark gene sets, pediatric 
lymphoblastic leukemia (i.e., TARGET-ALL-P2) shows a consistent pattern of overall good survival whereas 
TCGA low-grade glioma (TCGA-LGG) showed overall bad survival. The association might be driven by overall 
low relapse rate for pediatric ALL and bad/short survival associated with low-grade glioma. The chronic inflam-
matory response-related gene sets such as “IL2 STAT5 signaling”, “interferon-gamma response”, “interferon-alpha 
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response”, “inflammatory response”, “apoptosis”, and “p53 pathway” were found to be significantly associated 
with poor overall survival across multiple adult cancers including TCGA-LGG, TCGA-UVM, and TCGA-PADD 
datasets.

Use case 2: survival association of genes from hallmark gene sets.  We performed single-gene 
analysis to explore further whether gene set analysis outcomes are influenced at the individual gene level survival 
associations. Cox regression analysis was performed using the RNA-seq expression of genes (n = 4383) from 50 
hallmark gene sets. The results of survival analysis across 47 types of cancer for individual genes from hallmark 
gene sets are listed in Supplemental Table 3. We computed the proportion of significant genes associated with 
patient survival from each hallmark gene set across tumor types (Fig. 5).

The top cancer types that contained the highest proportion of hallmark genes significantly associated with 
good overall survival are TARGET-ALL-P2, CPTAC-3, TCGA-KIRC (Fig. 5A). On the other hand, most of 
the hallmark genes depicted association with poor outcomes in TCGA-LGG, TCGA-LIHC, TCGA-UVM, 

Figure 3.   Summary of Survival Genie gene set analysis showing the five tabulated outputs: (A) distribution 
of gene expression from high and low sample groups, (B) correlation with immune cell signature, (C) Kaplan-
Meier, (D) hazard ratio, and (E) forest plot.
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TCGA-ACC cancers (Fig. 5B). Regardless of the cancer types, genes such as ITGA5, SERPINE1, EIF4EBP1 are 
majorly associated with bad outcomes; while genes such as ALDH2, DBP, FRAT1, PDCD4 are associated with 
good outcomes.

Single-gene analysis of low-grade gliomas (TCGA-LGG) that showed poor prognosis at the gene set level 
depicted approximately 30–40% genes associated with poor outcomes (hazard ratio > 1 and p-value < 0.05) 
(Fig. 5B). These genes belong mainly to immune response and inflammatory gene sets such as HALLMARK 
inflammatory response, HALLMARK interferon-gamma response, HALLMARK TNFA signaling via NF-KB, 
and HALLMARK IL2 STAT5 signaling (Fig. 5B).

Similarly, single-gene analysis of TARGET pediatric acute lymphoid leukemia (TARGET-ALL-P2) showed 
that 40–50% from hallmark gene sets correlated with good outcomes (Fig. 5A). The majority of these genes 
belong to metabolic and inflammatory gene sets such as HALLMARK interferon-gamma response, HALLMARK 
glycolysis, HALLMARK KRAS signaling down, and HALLMARK adipogenesis.

Use case 3: survival analysis of T cell exhaustion to effector marker genes ratio.  To determine 
the impact of the ratio of exhausted and functional T cells on cancer outcomes, we performed gene ratio-based 
analysis using the Survival Genie platform. For the analysis, we have used expression levels of Layilin (LAYN), a 
potent maker for quantifying tumor-infiltrating exhausted CD8+ T cells25. We have chosen GZMA and IFNG as 
markers for quantifying functional and activated CD8+  T cells26. We explored the effect of exhausted to effector 
CD8+ T cell ratio on survival outcome across adult and pediatric cancers.

The RNA-seq normalized expression values were used to compute the ratios of LAYN to GZMA and LAYN 
to IFNG for each tumor sample. The results of Cox regression analysis across 47 cancer types for each gene ratio, 
i.e., LAYN: GZMA and LAYN: IFNG are shown in Fig. 6. The higher LAYN: GZMA ratio (Fig. 6A) showed a 
significant association with poor survival in bladder, breast, head and neck, lung, liver, stomach, thyroid, and 

Figure 4.   Gene sets-based survival analysis. Hierarchical clustering of Broad hallmark-associated gene sets and 
cancer types. The predicted survival outcomes are visualized using Euclidean distance and complete linkage 
method, using hazard ratios values for each hallmark associated gene set (n = 50) across all cancer datasets 
(n = 43).
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uterine cancer (Supplementary Table 4); while low LAYN: GZMA expression ratios were significantly associated 
with better prognosis in multiple myeloma, leukemia, low-grade glioma, and kidney cancer. A similar significant 
association of high LAYN to IFNG ratio with poor survival could also be observed in CPTAC-3, TCGA-BLCA, 
TCGA-BRCA, TCGA-HNSC, TCGA-UCEC (Fig. 6B). On the contrary, in datasets from TCGA-KIRC, TCGA-
KIRP, and TCGA-UVM higher ratios of LAYN: IFNG was associated with better survival. These data suggest that 
high expression of exhausted T cells marker (or lower expression of effector T cell marker) tend to be associated 
with a poor prognosis. However, high expression of cytolytic markers, GZMA or IFNG tend to suggest a good 
prognosis in blood and kidney cancers, respectively.

Use case 4: survival analysis of single‑cell RNA‑seq T cell clusters.  We illustrate the utility of Sur-
vival Genie for scRNA-seq cluster markers prognostic utility by implementing it for survival analysis on T cell 

Figure 5.   Hallmark genesets with enrichment of survival-associated genes. Summary of significantly associated 
hallmark genes with good (A) and bad (B) overall survival for each hallmark gene set for each cancer type. The 
dot color gradient represents the percentage of genes per gene set (% genes) that are significantly associated 
(p-value < 0.05) with survival outcome, while the size of the dots represents the total number of genes within 
a gene set (set size). The blue and orange color gradients indicate the good (HR < 1) and bad (HR > 1) survival 
outcomes.

Figure 6.   Gene ratio-based survival analysis. Association of (A) LAYN: GZMA and (B) LAYN: IFNG gene 
ratios on patient survival in different types of cancer. Only the significantly associated cancer types are labeled.
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clusters (Fig. 7A) generated from scRNA-seq analysis of paired pediatric AML bone marrow samples taken at the 
time of diagnosis and end of induction27. We performed Cox proportional survival analysis using TCGA-LAML 
dataset (Fig. 7). Out of the 11 T cell clusters, the relapse-associated cluster (#CL11) depicted a significant associa-
tion with poor survival (HR = 2, p-value = 0.001) (Fig. 7B). Moreover, cluster 11 (#CL11) depicted overexpres-
sion of CD69, a type II glycoprotein that is known to regulate inflammation and exhaustion of tissue-resident T 
cells and promote tumor growth/relapse28.

Discussion
In this genomics era with abundant cancer genomics data, the bioinformatics tools to explore the prognostic 
utility of individual genes or gene sets are a major bottleneck in identifying robust prognostic biomarkers using 
the power of big data. Despite the multiple existing survival analysis tools, these tools have multiple shortcomings 
including data comprehensiveness and survival analysis on gene markers from single-cell data or cell fractions. 
Using traditional transcriptomic data, a plethora of individual genes have been tested and numerous suggested 
as potential prognosis markers for different cancer. As intuitively obvious to calculate single sample enrichment 
scores for a gene set per sample to test prognostic utility, it is not routinely used for survival analysis. With 
Survival Genie, researchers can easily explore multi-gene markers at once and identify gene sets associated 
with cancer survival. The analytical options in Survival Genie make it a unique resource for predicting clinical 
response based on profiles other than single-gene or average multiple-gene expression across different cancers 
with extended functionality to evaluate survival associations of single-cell clusters.

With multiple data sources and no consensus on cross-platform data processing and normalization, data 
standardization and optimization, cohort size, and analysis workflows, different survival tools yield different 
results. To maintain uniformity in the genomic data, while developing Survival Genie we have used harmonized 
cancer datasets from the NCI Genomic Data Commons. At present, GDC4 contains multidimensional datasets 
from 68 cancer programs, all processed and analyzed with the latest human reference genome build GRCh38 
and up-to-date workflows. This uniformly processed data allows comparative analysis of prognostic genes or 
genesets with minimal bias resulting from inconsistent data preprocessing, normalization, or technological 
differences among datasets. To further enhance the comprehensiveness of Survival Genie, we are planning to 
include data from other cancer genomics initiatives including cancer projects such as BEATAML1.029, Cancer 
Genome Characterization Initiative (CGCI), and Cancer Dream Team projects.

Exploring the prognostic utility of different malignant and immune cells clusters from single-cell data allows 
exploration of prognostic utility of heterogeneous malignant tumor cells along with the immune microenviron-
ment. With bulk RNA-seq data, we may not be able to determine how single-cell signatures are related to cell-level 
composition during tumor progression. This certainly holds true when studying rare subclonal profiles in cancers 
such as acute myeloid leukemia. To address this limitation, we estimated the cellular composition of tumors 
from bulk RNA-seq expression by deconvolution, using immune cell-type-specific profiles from tumor-derived 
single-cell RNA sequencing data21. The resulting cell correlation matrix can subsequently be used to identify the 
cell type abundance in bulk tissue data when predicting outcomes.

We have improved upon the existing tools in the ability to predict prognosis from multi-gene marker sets. In 
the future, efforts will be made to include options for multivariable regression and in-depth subtype analysis using 
clinicopathological features (tumor grade, lymph node status, treatment, mutation status, subtypes, tumor tissue 
image, microsatellite instability). In addition, Survival Genie will also allow exploration of prognostic associations 

Figure 7.   Single-cell clusters-based survival analysis. (A) UMAP of single-cell RNA-seq data from relapse-
associated non-AML cells at the time of diagnosis. The colors represent the 11 distinct sub-clusters of T cells. (B) 
Prognostic significance of identified scRNA-seq clusters on overall survival in TCGA-LAML patient dataset. The 
significant associations between cluster enrichment and OS are highlighted.
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of miRNA, long non-coding RNA, and hyper-/hypomethylated genomic regions. We also intend to include the 
ability to subset survival analysis based on genes that correlate with canonical cell-specific markers (e.g., T cells), 
thus allowing survival analysis based on cell-specific signatures. Running and being tested since September 2020, 
Survival Genie is an open-source web-based tool we intend to maintain it for a minimum of five years.

Conclusion
In summary, Survival Genie allows the exploration of the prognostic potential of genes and gene sets in a 
broad range of cancer datasets and specifically to validate the cell-type-specific markers from single-cell mRNA 
sequencing. The exploration of the three-way relationship between the cell-specific biomarker genes, enrich-
ment of cell types and survival outcomes will assist in understanding how specific genes impact the cellular 
composition of the tumor microenvironment to drive cancer outcomes. This will assist in developing biomarkers 
to predict the immune-suppressive microenvironment that might lead to the identification of next-generation 
candidates for targeted immunotherapies.
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