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Identification of key 
regulators in Sarcoidosis 
through multidimensional systems 
biological approach
Safia Tazyeen1,2, Mohd Murshad Ahmed1, Anam Farooqui1, Aftab Alam1, Md. Zubbair Malik2, 
Mohd Saeed3, Irfan Ahmad4,5, Mohammed Abohashrh6, R. K. Brojen Singh2* & 
Romana Ishrat1*

Sarcoidosis is a multi-organ disorder where immunology, genetic and environmental factors play a key 
role in causing Sarcoidosis, but its molecular mechanism remains unclear. Identification of its genetics 
profiling that regulates the Sarcoidosis network will be one of the main challenges to understand its 
aetiology. We have identified differentially expressed genes (DEGs) by analyzing the gene expression 
profiling of Sarcoidosis and compared it with healthy control. Gene set enrichment analysis showed 
that these DEGs were mainly enriched in the inflammatory response, immune system, and pathways 
in cancer. Sarcoidosis protein interaction network was constructed by a total of 877 DEGs (up-down) 
and calculated its network topological properties, which follow hierarchical scale-free fractal nature 
up to six levels of the organization. We identified a large number of leading hubs that contain six key 
regulators (KRs) including ICOS, CTLA4, FLT3LG, CD33, GPR29 and ITGA4 are deeply rooted in the 
network from top to bottom, considering a backbone of the network. We identified the transcriptional 
factors (TFs) which are closely interacted with KRs. These genes and their TFs regulating the 
Sarcoidosis network are expected to be the main target for the therapeutic approaches and potential 
biomarkers. However, experimental validations of KRs needed to confirm their efficacy.

Sarcoidosis (SARC) is an inflammatory disease (multiple organ inflammation) that causes abnormal granulomas 
consisting of inflamed tissue that is usually observed in the lungs and lymph glands. These granulomas may alter 
the normal structure and function of the affected organs. SARC affects people of all ages, genders, and ethnic 
backgrounds. It usually affects adults less than 40 years of age, and the incidence peaks in the third decade of 
life and is less common in children. Many studies reported a slightly higher rate of incidence in women across 
racial/ethnic groups1. The worldwide prevalence varies from 2 to 80 per 100,0002. In India, the prevalence is 
estimated to be 10–12 per 10003. However, in 30–60% of the cases the prevalence may be underestimated by 
the asymptomatic signs of the disease. In Afro-Americans, the incidence is three times higher as compared to 
Caucasians and it is also more likely to be fatal4. The understanding of SARC has been challenging because of 
the multiple issues. Clinically, SARC is extremely complex because patients do not typically exhibit clear signs 
and symptoms; it varies depending on the organ affected.

In the present era, the research on SARC has been focused on its pathological mechanism.It is believed that 
when a genetically susceptible individual is exposed to one or more extrinsic antigens, inflammatory pathways are 
over-activated, favoring the formation of sarcoidal granulomas. It has been suggested that there is an increased 
risk of SARC in individuals exposed to environmental entities such as microbial agents etc.4. Susceptibility to the 
disease can be genetically determined and many genes have been identified that affect the prevalence and course 
of SARC. In particular, HLA genes have been shown to affect the progression of SARC and its development5. 
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Cytokines like interferon-gamma (IFN-γ), IL-12 and TNF-α have been involved in the SARC formation6. The 
identified causes include inflammation, genetic polymorphism, and development of granulomas and so on, yet 
SARC’s primary causes and the vast majority of involved genes are still unclear.

High throughput technology, such as microarray, has facilitated research to discover new pathogenic SARC 
mechanisms. Significant quantities of information, specifically regarding the microarray-based mRNA expression 
analysis of pathological tissue including lymph nodes, blood cells, and lungs6,7. Separately, bioinformatics analysis 
of gene expression analysis can identify highly regulated molecular pathways which are likely to enhance abnor-
mal granulomatous inflammation. Upregulated VEGF and HIF1A genes have been associated with recognized 
negative prognostics8. MiRNAs and Transcription Factors (TFs) are two types of essential gene regulators that 
participate in many fundamental cellular processes and have a common regulatory logic in the co-regulation 
of target genes, among several other genetic factors. TFs affect gene transcription at the transcriptional level, 
whereas MiRNAs primarily regulate gene expression at the post-transcriptional level. Furthermore, as gene 
regulators, how miRNAs and TFs work together to regulate gene expression to induce SARC pathogenesis has 
yet to be studied.

Genes are regulated in a coordinated fashion, and the absence or presence of another gene normally depends 
on the expression of one gene (i.e., gene interaction). The network theory is an imperative approach for under-
standing the dynamics and properties of complex regulatory networks. The network’s small world, scale-free, 
random and hierarchical nature falls mostly within a real network. The hierarchical network is of particular 
interest to the biologist because it integrates modules, sparsely dispersed hubs that regulate the network and 
its self-organizing working concept. A recent study on the complex protein–protein interaction (PPI) network 
suggests its conformity to scale-free topology on a hierarchical scale9. On these networks, the problem arises 
that the central lethality rule does not apply where the stability and dynamics of the network are disrupted but 
not completely disrupted when the hubs are targeted9. This may be due to the hierarchical organization of com-
munity/sub-communities in complex networks and other biological networks at various topological levels, where 
specific roles are associated with them10–12.

In this study, the DEGs were analyzed by microarray expression profiles based on the GEO datasets between 
Sarcoidosis and healthy control. The biological function and pathway enrichment analysis were also performed. 
SARC network was constructed from DEGs (up-down) and then analyzed its topological properties from which 
we are trying to predict potential key regulators among them some of having its fundamental importance of 
regulating as well as their activities mechanism. Further, we identified hubs, community/modules and sub-com-
munities which control the network stability as well as other communities. Additionally, to assess the interactions 
between the transcription factors and key regulators, a gene-TFs regulation network of key regulators was also 
assessed. The findings of this study are expected to increase our understanding of the genes or proteins involved in 
the formation and development of SARC, which will support the various therapeutic approaches for Sarcoidosis.

Results
Gene expression profiling of sarcoidosis through microarray data.  This study provides informa-
tion on the structure of correlation-based tuning between genes in multiple microarray datasets by comparing 
analysis across datasets that is relevant in understanding gene functions. Each series has a different number of 
differentially expression genes, as presented in Table 1. Based on the differential expression analysis of six GSE 
series, a total of 1,182 DEGs were identified, of which 263 were up-regulated and 919 were down-regulated 
genes, respectively (Table S1).

Gene ontology and pathway analysis of DEGs.  The biological function and pathways enrichment 
was analyzed for a total of 172 up and 705 down-regulated genes. We found that the DEGs were significantly 
enriched in many biological, cellular, and molecular functions as well as some pathways. The modified Fisher 
exact p-value (EASE score) ≤ 0.05 is considered strongly enriched. The top 10 enriched biological functions are 
presented in Table 2. By analyzing the BP, we found that the up-regulated DEGs from the SARC’s PPI network 
were enriched in positive regulation of gene expression, positive regulation of protein kinase activity, osteoblast 
differentiation, inflammatory response, and single organismal cell–cell adhesion. At the same time, the down-
regulated DEGs were significantly involved in the immune response, inflammatory response, signal transduc-
tion, adaptive immune response, and innate immune response. The up-regulated DEGs were correlated with the 

Table 1.   Detailed information on the Gene expression microarray datasets related to Sarcoidosis.

GEO accession Platform No. of probes Experiment type
No. of samples (controls/
disease) Samples types Log fold change DEGs (up/down)

GSE16538 GPL570 54,675 Expression profiling by array 12 samples (6/6) Lung biopsy  ≥ 1 and ≤ − 1 32/198

GSE18781 GPL570 54,675 Expression profiling by array 37 samples (25/12) peripheral blood  ≥ 1 and ≤ − 1 104/75

GSE19314 GPL570 54,675 Expression profiling by array 58 samples (20/38) peripheral blood mononu-
clear cells  ≥ 1 and ≤ − 1 16/16

GSE19976 GPL6244 33,297 Expression profiling by array 15 samples (8/7) Lung biopsy  ≥ 1 and ≤ − 1 55/342

GSE37912 GPL5175 21,788 Expression profiling by array 74 samples (35/39) peripheral blood mononu-
clear cells  ≥ 1 and ≤ − 1 15/18

GSE75023 GPL571 22,277 Expression profiling by array 27 samples (12/15) Bronchoalveolar cells  ≥ 1 and ≤ − 1 48/207
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Category Term Count P-value

Up regulated DEGs

BP

Positive regulation of gene expression 10 8.89E−04

Positive regulation of protein kinase activity 5 0.001006

Osteoblast differentiation 6 0.003096

Manganese ion transport 3 0.005525

Protein kinase C signaling 3 0.0098

Inflammatory response 10 0.010158

Single organismal cell–cell adhesion 5 0.015548

Positive regulation of humoral immune response 2 0.02814

Positive regulation of phagocytosis 3 0.030605

Iron ion homeostasis 3 0.032591

CC

Plasma membrane 53 0.005109

Extracellular exosome 39 0.006336

Integral component of plasma membrane 23 0.008882

Extracellular space 22 0.010231

Golgi apparatus 16 0.011843

Clathrin-coated pit 4 0.013554

Extrinsic component of cytoplasmic side of plasma membrane 4 0.023785

Cell surface 11 0.025944

Postsynaptic density 6 0.026169

Viral nucleocapsid 3 0.026401

MF

Protein binding 97 0.006188

Translation initiation factor activity 4 0.01822

Manganese ion transmembrane transporter activity 2 0.027121

Very-low-density lipoprotein particle receptor activity 2 0.035998

Transporter activity 6 0.037743

Down regulated DEGs

BP

Immune response 91 3.31E−42

Inflammatory response 75 5.81E−32

Adaptive immune response 38 2.63E−20

Signal transduction 106 4.90E−17

Innate immune response 57 8.68E−16

Cell surface receptor signaling pathway 44 2.88E−15

Positive regulation of GTPase activity 48 5.60E−07

Cell adhesion 40 3.09E−06

Apoptotic process 41 1.64E−04

G-protein coupled receptor signaling pathway 48 0.019548

CC

Integral component of plasma membrane 126 5.26E−21

External side of plasma membrane 43 1.95E−19

Plasma membrane 240 2.56E−15

Membrane 145 1.28E−12

Extracellular space 100 1.58E−11

Cell surface 55 2.54E−11

Extracellular region 97 1.17E−06

Integral component of membrane 243 3.90E−06

Extracellular exosome 144 1.79E−05

Cytosol 159 1.84E−04

Continued
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plasma membrane, an integral component of the plasma membrane, Golgi apparatus, extracellular exosomes, 
and cell surface for the CC analysis. In contrast, the down-regulated DEGs were linked with the integral com-
ponent of the plasma membrane, external side of the plasma membrane, cell surface, extracellular region, and 
plasma membrane. The up-regulated DEGs were enriched in translation initiation factor activity, transporter 
activity, protein binding, very-low-density lipoprotein particle receptor, and manganese ion trans- membrane 
transporter activity for the MF analysis. In contrast, the down-regulated DEGs were related to receptor binding, 
receptor activity, actin-binding, trans-membrane signaling receptor activity, and protein binding. For KEGG 
pathways enrichment analysis, the up-regulated DEGs were not enriched. In contrast, the 5 top significant 
KEGG pathways of the down-regulated DEGs included cytokine-cytokine receptor interaction, Tuberculosis, 
Osteoclast differentiation, pathways in cancer, and Human T lymphotropic virus type I (HTLVI) infection.

SARC network: hierarchical scale‑free features.  The primary SARC PPI network was constructed by 
up and down-regulated genes that contain 877 nodes and 10,546 edges; the remaining genes have not shown 
their interaction and were excluded from the network. The network’s topological properties follow hierarchical 
characteristics13 and scale-free behavior in these parameters because of the power-law nature14,15. The prob-
ability of node degree distributions (P), clustering coefficient (C), and neighborhood connectivity (CN) against 
degree k exhibit fractal nature or power-law (Figs. 1a, 2a first rows against level 0).

The power-law fits on the data distributions was performed and validated by following the standard statistical 
fitting procedure given by Clauset et al.16, where, all the statistical p-value for all datasets was calculated against 
2500 random sampling are found to be > 0.1 (greater than one), and the goodness of fits are found to be ≤ 0.33 
(less than and equal to) which is the threshold value predicted. These distributions are done on a log–log plot 
through a straight line15.

The negative value of P(k) and C(k) indicates that the primary SARC network follows a hierarchical scale-free 
fractal network. The positive value of CN(k) indicates the nature of assortativity that regulates the primary SARC 
network by identifying a large cluster of degree-nodes (rich club formation).

Similarly, the network centrality parameters: closeness (CC), betweenness (CB), and eigenvector (CE) centrali-
ties also show fractal behavior. The positive values of these centrality parameters indicate that the leading hubs 
in the SARC network play a strong regulatory role.
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Table 2.   The gene ontology and pathway enrichment of DEGs of sarcoidosis.

Category Term Count P-value

MF

Receptor activity 34 8.17E−12

Transmembrane signaling receptor activity 28 4.04E−08

Receptor binding 36 2.01E−07

Carbohydrate binding 24 1.48E−06

Protein binding 389 3.36E−06

Cytokine activity 20 3.89E−05

Protein homodimerization activity 45 0.001576

Actin binding 22 0.002086

Protein kinase binding 24 0.016353

Chemokine activity 19 7.55E−14

Cytokine–cytokine receptor interaction 62 6.31E−21

KEGG

Pathways in cancer 37 0.027273

Tuberculosis 39 4.51E−11

HTLV-I infection 39 1.36E−06

Osteoclast differentiation 41 3.13E−17

Chemokine signaling pathway 52 2.05E−19

Cell adhesion molecules (CAMs) 34 9.82E−11

Phagosome 31 3.06E−08

Hematopoietic cell lineage 30 7.34E−14

Rheumatoid arthritis 30 1.03E−13
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Key regulators and properties of SARC network.  In the SARC Network, we have found fifteen com-
munities that were further broken down into sub-community and sub-sub-community up to sixth level. The 
modular structure and its arrangement were carried out by the standard community finding techniques of New-
man and Girvan17 at different organizational levels (Fig. 3). Using this approach, we found that our network is 
organized hierarchically through six different levels. The corresponding Hamiltonian Energy (HE) is decreased 
from top to bottom in a network organization against the different organizational levels (Fig. 4a).

The leading hubs (nodes) are essential regulators depending on the changes in the activities of proteins/
genes and their regulating mechanism. All of the leading hubs are not a key regulator for disease progression, 
but only those hubs that regulate the network from top to bottom where the network cannot be further divided 
into sub-community and form motif have been considered to be important leading hubs. We termed them as 
"Key Regulators (KRs)" because; they were deeply rooted hub genes which can reach motif level (fundamental 
regulating unit) through different levels of the organization via communities or sub-communities from primary 
network to motif level. These key regulators are treated as the backbone to maintaining the network’s stability, 
as they capacitate the network to tackle any unacceptable changes in it.

We identified six key regulators, namely ICOS, CTLA4, GPR29, FLT3LG, CD33, and ITGA4, which are the 
SARC network’s key regulators or organizers. These key regulators were separated from each other after level 2, 
ICOS-CTLA4-GPR29 moved into the same sub-communities, and FLT3LG-CD33-ITGA4 moved into another 
sub-community and then moved separately till the sixth level (motif). ICOS-CTLA4-GPR29 and FLT3LG-CD33-
ITGA4 are forming a triangular motif (Fig. 6a). ANPEP-IL2RA and FOXN2-TNFR3F25 reached the sixth level 
but because they don’t form motif they could not be considered as key regulators (Fig. S1).

Then, the top 100 hubs were ranked by the number of degrees. Surprisingly, none of these KRs genes fall into 
the top 10 leading hubs categories. However, two key regulators, CTLA4 and CD33 were among the top 100 high 
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Figure 1.   SARC PPI network and sub-networks followed hierarchical scale-free topologies. (a) The behaviors 
of degree distributions P(k), neighborhood connectivity CN(k), clustering co-efficient (k), closeness CC(k), 
betweenness CB(k) and eigenvector CE(k) measurements as a function with degree k for an original primary 
network (level 0) and FLT3LG-CD33-ITGA4 motif knockout networks at various levels of organization (level 
1–4). (b) the changes in the exponent values of the six topological properties of the FLT3LG-CD33-ITGA4 
motif knockout network [colors corresponding to the ones used in the topological properties plots, i.e., violet 
for P(k), orange for CN(k), blue for C(k), green for CC(k), maroon for CB(k) and cyan for CE(k)] compared 
with the topological properties’ exponents of the corresponding original networks (black) at various levels of 
the organization. γ, α, β, δ, µ and τ are the exponents of the degree distribution, neighborhood connectivity, 
clustering coefficient, closeness centrality, betweenness centrality and eigenvector centrality, respectively.
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degree hubs (Fig. 4c). It means that KRs don’t always need to be the network’s large leading hubs; rather, they can 
randomly change their popularity at various levels of an organization (Fig. 3). All the key regulators maintained 
low popularity or profile, but essential regulators in the SARC network; they regulate the motif level of organiza-
tion. Few more genes, namely, ANPEP, IL2RA, FOXN2 and TNFR3F25 supported the network reached till the 
sixth level. IL2RA was among the top 100 high degree hub genes. These key regulators act as signal propagators 
from top to bottom and vice versa to maintain the stability of the networks, whenever the network is under 
external stress and inherent properties.

According to the highest degree, the top 10 leading hubs are IL6, PTPRC, ITGAM, CD86, CTLA4, CCR5, 
ITGB2, ITGAX, LCP2 and SELL. Functional pathways enrichment analysis suggested that the top 10 leading 
hub and key regulators are mainly enriched in the Hematopoietic cell lineage, Cell adhesion molecules (CAMs), 
Pathways in cancer, Intestinal immune network for IgA production, Tuberculosis, Transcriptional misregulation 
in cancer, Rheumatoid arthritis, T cell receptor signaling pathway, Chemokine signaling pathway and Cytokine-
cytokine receptor interaction (Fig. 5).

We have computed the Probability Py
(

xl
)

 of key regulators to understand the regulating ability of each of 
the six key regulators:

where, x = number of edges x[l] at level l. E[l] = total number of edges of the network or modules or sub-modules.
The computed Probability Py

(
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)

 of all the key regulators shows an increase in Py values from top to bottom, 
which increases the level l. This means the regulatory role of each fundamental regulator becomes more powerful 
at deeper levels of the organization and active workers at the grassroots level (Fig. 6b).
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Figure 2.   SARC PPI network and sub-networks followed hierarchical scale-free topologies. (a) The behaviors 
of degree distributions P(k), neighborhood connectivity CN(k), clustering co-efficient (k), closeness CC(k), 
betweenness CB(k) and eigenvector CE(k) measurements as a function with degree k for an original primary 
network (level 0) and ICOS-CTLA4-GPR29 motif knockout networks at various levels of organization (level 
1–4). (b) the changes in the exponent values of the six topological properties of the ICOS-CTLA4-GPR29 
motif knockout network [colors corresponding to the ones used in the topological properties plots, i.e., violet 
for P(k), orange for CN(k), blue for C(k), green for CC(k), maroon for CB(k) and cyan for CE(k)] compared 
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Key regulators knock out experiments.  In order to understand the organization, re-organization and 
significance of the key regulators in a SARC network, changes in the topological properties of the network are 
finally studied by removing key regulators from the network. It demonstrates the importance of the key regula-
tors in the SARC Network. The knockout experiment was carried out separately for both the motifs; FLT3LG-
CD33-ITGA4 and ICOS-CTLA4-GPR29 are triangular motifs. In both cases, a considerable change in the topo-
logical properties of the network has been observed, but somehow the network was reorganized itself and has 
tolerance against network error.

In all the key regulators or motif knockout network, the decrease in the exponent of P(k) γ indicates that 
the network self-reorganizes to stabilize and save the network properties from the breakdown. The increase in 
exponent of C(k) α indicates community compactness increases to save the communities from breakdown. In 
the deeper levels of the organization, the positive exponent value of CN (k) β becomes negative, which indicates 
that the network is most tolerant and dis-assortative in nature. It is observed that the exponent value of CB(k) μ 
in the network first increases then decreases because of the removal of key regulators but again, the value of μ 
increases, which indicates the decreasing importance of the regulatory roles of the remaining hubs but reorganize 
themselves to prevent the network breakdown. The increase in exponent of CC(k) δ indicates that information 
processing in the network becomes faster when key regulators are removed, and hence reorganize the perturbed 
network and save it from breakdown. Further, the decreases in the exponent value of eigenvector centrality τ 
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indicate that transmission of information is diminished because the key regulators are removed (Figs. 1a, 2a). In 
all the key regulators or motif knockout experiments, the values of the exponent for all the topological properties 
show drastic changes in deeper levels of the organization, but we did not get a breakdown of the network and 
maintains the hierarchical features of its organization after removing the key regulators or motif (Figs. 1b, 2b).

The change in γ etc., for Figs. 1b and 2b gives an overall picture of how important these two motifs. While 
ICOS-CTLA4-GPR29 motif knockout has greater impact on destroying scale free and assortative nature of the 
network at lower levels, on the other hand FLT3LG-CD33-ITGA4 motif has a little or no effect on the integrity 
of the network as compared to ICOS-CTLA4-GPR29 motif.

Energy distribution in the network: calculation of Hamiltonian energy.  The Hamiltonian Energy 
calculations for a network within CPM’s formalism analyze competitive contributions from the organization of 
nodes and edges, and this energy is used to organize or reorganize the network at different levels. This technique 
can also amplify the important changes in the organization of the network as it goes down to different levels of 
the organization, capturing the importance of hubs in the network and also at the modular level. Hamiltonian 
Energy formalism, therefore, proves to be a powerful technique for considering differences in the organization 
of a network18. If �HEθ = HE

[L0]
θ −HE

[R]
θ  is the change in Hamiltonian functions due to removal of key regula-

tors at level θ , where HE[L0]θ  and  HE[R]θ  are the Hamiltonian functions for original and removed SARC networks 
respectively and corresponding community/sub-communities, then we obtain, where HEθ = HE

[R]
θ  . This dem-

onstrates that removal of KRs causes slight destruction of wiring or rewiring energy that is propagated at all 
levels of the organization of the SARC network. The relative energy of every key regulators can have at various 
levels of network organization is shown in Fig. 7.
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Figure 4.   (a) Plots of Hamiltonian Energy as a function of level of organization. (b) Plots of LCP-corr as a 
function of the level of organization. (c) Characterization of top hundred leading hubs in the complete network 
by degrees; the plot also indicates unpredictability of these leading hubs at various levels of the organization. 
CTLA4 and CD33 are the key regulators presented by yellow color.
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The Hamiltonian Energy was calculated for hubs with all possible communities in the network at each level. 
We find that the distribution of energy in the primary SARC network is highest and starts to decrease as the 
organizational levels increase. The decrease in Hamiltonian Energy indicates the dominance of the interacting 
edges over the network size, indicating fast processing of information.

Next, in the KRs knockout experiments, we calculated Hamiltonian Energy from the network and communi-
ties or sub-communities in terms of understanding the change in energy distributions within the SARC network. 
Due to KRs knockout, a minor decrease in the Hamiltonian energy is observed at each level (Fig. 7). This means 
that the elimination of KRs causes a significant loss of wiring or rewiring energy that is propagated across the 
level of network organization. However, the network does not collapse and maintains the hierarchical features 
of its organization. This indicates that the network is sensitive to perturbation but tries to maintain its network 
organization and properties, which are elegantly robust.

Compactness of network: LCP‑DP approach.  The LCP architecture not only assists the quick transfer 
of data through the different network community but also through local processing too. Using LCP approach, we 
analyzed the SARC network to check its self-organization behavior at different levels of network organization. 
The LCP-corr of all the communities or sub-communities was measured at different levels presented in Fig. 4b. 
At each level, the average values of LCP-corr are greater than 0.853 (zero LCP-corr communities aren’t taken on 

Figure 5.   Chord plot showing the association between significantly enriched pathways and the top 10 leading 
hubs and key regulators involved. The outer circle indicates the top 10 significantly enriched pathways (on the 
left) and the top 10 leading hubs and key regulators (on the right). Each gene has a different color band, and the 
undirected colored edge inside the circle represents the relationship of a particular gene with their respective 
connected pathway(s).
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Figure 6.   (a) The modular path of key regulators starting from the primary network to the motif levels. (b) The 
probability distribution of the key regulators as a function of the level.
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average) and these values do not change with the error bar. This means that the network maintains self-organi-
zation and compactness and has effective data processing. It serves as a strong dynamic and heterogeneous LCP 
networks which help in network evolution and reorganization.

miRNA key regulators network.  ENCORI was used for screening the key regulator’s targeted miRNAs. 
Seven databases were predicted to identify the miRNAs as the targeted miRNAs of the key regulators. Further, 
Cytoscape (V 3.6.1) was used to draw the network of the miRNA-key regulator. The resulting network of interac-
tions contains six key regulators and 77 miRNAs, as presented in Fig. 8a. In the Supplementary file, the respec-
tive miRNAs targeting key regulators are presented in Table S2.

TF‑key regulators regulatory network.  NetworkAnalyst has also enriched TF-gene interactions. ChEA 
databases were used to predict the TF-KRs interactions. The resulting interaction network consists of 6 key 
regulators and 65 transcription factors. Furthermore, it has been found that various transcription factors regula-
tor which regulate more than two KRs;, among them, five transcription factors were identified with the highest 
interaction degree ≥ 3 in the TF-Key regulator’s regulatory network (Table 3). This implies that these transcrip-
tion factors have strong connections with these key regulators (Fig.  8b). In the Supplementary file, detailed 
information of transcription factors of key regulators are presented in Table S3.

Figure 7.   Comparison to the Hamiltonian energy of the original (black) and the corresponding key regulators 
knockout network (red) at various levels of organization of the SARC network.
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Discussion
Although some progress in the study of SARC has been made, the exact molecular mechanisms of occurrence 
and development in SARC are still unclear. Therefore, studying the mechanism to identify the molecular targets 
for diagnosis and treatment is crucial. In recent decades, the quest for DEGs has been accelerated and its dif-
ferential expression widely spread.

In this study, the raw gene expression data of six GSE series were obtained from the GEO dataset and a 
total of 1,126 DEGs were identified, including 270 up-regulated and 856 down-regulated genes that surpassed 
the cut-off criteria of p-values and fold change. The KEGG pathways results indicate that the down-regulated 
DEGs were mainly linked with cytokine-cytokine receptor interaction, Tuberculosis, Osteoclast differentia-
tion, pathways in cancer and Human T lymphotropic virus type I infection. In comparison, the up-regulated 
DEGs were not enriched. These findings also provide helpful evidence for the study of molecular interactions 
in SARC progression. Indeed, several research studies have indicated that tuberculosis and pathway in cancer 
are highly associated with the growth and development of SARC. Many studies have been reported a strong 
association between a history of tuberculosis patients with a higher risk for lung cancer and related mortality. 
The association between Tuberculosis and the risk of lung cancer in a high-income country was identified in 
a prospective Korean cohort research study19. In patients with a history of lung disease, oxidative stress and 
local chronic inflammation are mechanisms that increase the risk of lung cancer. Fibrosis is important in the 
maintenance of inflammation20–22. A correlation between SARC and lung cancer has been identified in similar 
studies23–26. In patients with SARC, immunologic defects can result from a lack of immune response against 
tumors or oncogenic viruses. In comparison, chronic inflammation associated with SARC can contribute to the 
development of cancer27. However, the correlation between Osteoclast differentiation and SARC remains unclear.

Furthermore, the SARC network was constructed from up and down-regulated genes (DEGs) that gave a 
network with 877 nodes and 10,546 edges. The constructed network showed hierarchical scale-free behavior, and 
it means that the network has system-level organizations that involve interconnected communities or sub-com-
munities. Since the nature of the network is hierarchical, each gene activity does not have much importance, but 
its synchronization shows different significant functional regulations of the network. In the process, individual 
gene activities assume less significance. In our study, 6 genes out of 877 genes in the network, namely ICOS↑, 
CTLA4↓, GPR29/CCR6↓, FLT3LG↓, CD33↓, and ITGA4↓ were the most influential key regulators of the SARC 
network. These key regulators act as the backbone of network activities and its regulations which could be the 
most probable target gene of disease. Earlier it has been identified that ICOS, CTLA4 and CCR6 polymorphism 
is related to autoimmune disease risk in patients with Sarcoidosis28–30. These key regulators are found to reach 
the same community and formed a triangular motif till the last level. These genes are also involved in several 
other diseases which is life-threatening including various type of cancer, Acute Leukemia, Acute Promyelocytic 
Leukemia, Common variable immune deficiency (CVID), Autoimmune lymphoproliferative syndrome type V, 
Multiple sclerosis, celiac Disease, Immune system Disease, Crohn’s disease and Alzheimer, etc. presented (Fig. 9).

Our study reported that the gene ICOS is the up-regulated gene in SARC patients compared to healthy con-
trols, as determined by a SARC network analysis. ICOS (Inducible T Cell Co-Stimulator) is a co-stimulatory 
molecule that belongs to the CTLA4 and CD28 cell surface receptor family. Although CD28 is expressed on T 
cells constitutively to emerge signal for resting T cells to fully activated, ICOS is only up-regulated after activation 
of cells. A positive signal is provided by this molecule to increase the proliferation of T cells. Studies have been 
shown that the blocking of ICOS results in the inhibition of immune responses for the T helper type-1, T helper 
type-2 and T helper type-1731. Moreover, recent research has shown that in ICOS-deficient patients, impaired 
function is observed in CD4 + and CD8 + T cells.

Our finding suggested that the five genes were down-regulated, in which CTLA4 (cytotoxic T lymphocyte 
antigen 4) is a member of immunoglobulin’s superfamily, which can inhibit T-cell activation, proliferation and 
lead to the incidence of peripheral immune tolerance. CTLA4 is a cell surface receptor related to CD28, which 
binds to CD80 and CD86 ligands. CTLA4 binding to CD86 and CD80 delivers a negative signal to activate T 
cells by making CD86 and CD80 less accessible to CD2832.

The trans-membrane protein CD33 (Siglec-3) is a sialic acid-binding immunoglobulin like lectin and is 
expressed in hematopoietic and immune cells. CD33 recognizes glycolipid and glycoprotein. Sialic acid residues 
have one or more immune-receptor tyrosine based inhibition motif and mediate cell–cell interactions that restrict 
or inhibit immune responses. The function of CD33 has been involved in many processes such as immune cell 
growth, immune or malignant cell in adhesion processes, and inhibition of cytokine release by monocytes and 
endocytosis. However, no studies on CD33 with respect to SARC have been performed. In this study, we found 
that only one potential miRNA hsa-miR-335-5p that CD33 might target.

Table 3.   The transcription factors of key regulators.

TFs Genes Count

RUNX1 CCR6, FLT3LG, ICOS, ITGA4 4

PPARD CD33, FLT3LG, ICOS, ITGA4 4

STAT3 CD33, CTLA4, ICOS, ITGA4 4

PAX3 CCR6, CTLA4, ICOS 3

SMAD4 CTLA4, ICOS, ITGA4 3
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The GPR29 gene that encodes the protein CCR6 (C–C chemokine receptor type 6) is expressed predomi-
nantly in dendritic cells (DC) and memory T cells which is a B cell maturation and differentiation. It is involved 
in recruiting and migrating DCs and T cells during immunological responses. CCR6 only binds CCL20 and 
β-defensins.

The ITGA4 gene encodes a member of the protein family of integrin alpha chains. The ITGA4 integrin family 
mediates cell–cell adhesions that are particularly important for immune function. Alpha 4 integrin’s are involved 
in the surveillance, haematopoiesis, inflammation and pathogenesis of cardiovascular diseases. Up-regulation of 
ITGA4 has been reported in various malignancies in different studies, such as breast cancer, neuroblastoma and 
melanoma and immune disorders such as Crohn’s disease and multiple sclerosis. Down-regulation of ITGA4 and 
its ligands or inhibition of ITGA4 ligand complex formation was considered a possible therapeutic approach. 
However, no studies on ITGA4 with respect to SARC have been performed.

FLT3LG is a protein-coding gene. DCs provide the key association between innate and adaptive immunity 
by recognizing pathogens and priming immune responses specific to the pathogen. FLT3LG regulates the pro-
duction of DCs and is especially essential for the positive classical DCs of plasmacytoid DCs and CD8 and their 
CD103 positive tissue counterparts. However, there is no report on the correlation between FLT3LG and SARC. 
We also found that 6 potential miRNA (hsa-miR-381-3p, 493-5p, 522-3p, 300, 1287-5p, 3150a-3p) that FLT3LG 
might targeted. SARC is closely related to the immune response. Excessive activation of the immune response 
to unknown inhaled antigens is considered to be one of the pathogenesis of SARC​33. Most of the DEGs related 
to SARC, which we obtained are also related to the immune response. This study believes that the complex 
relationship of these immune-related DEGs may lead to excessive immune responses.

The network shows fractal nature because of its topological properties, which follow a power-law distribu-
tion. It indicates that the network is self-organization and stable. Therefore, the network has a significance of 
hierarchical properties, and it has no central control system. The KRs knockout experiments show the slight 
changes in topological properties of the network. However, we did not get a network breakdown, and the net-
work keeps functionally reorganizing itself to stabilize the removal of these key regulators, which is evidence 
of self-organization. The SARC networks’ self-organizing behaviors were also examined by the LCP approach, 
which leads us to conclude that the network maintains self-organization and is compact with efficient process-
ing of information.

The function of genes is regulated at both transcriptional and post-transcriptional levels. Therefore, we stud-
ied the miRNAs-KRs and TFs-KRs networks to provide deeper insights into the regulatory behavior of the 
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Figure 9.   Representation of six key regulators involved directly or indirectly in Sarcoidosis and several other 
life-threatening diseases, including various types of cancer.
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identified key regulators. TFs drive gene transcription which may be in a coordinated fashion through genes 
with associated functions. On the other hand, miRNA are especially powerful regulators of transcript levels at 
the post-transcriptional level, while it should be observed that there are other less potent and less well-defined 
categories of non-coding RNAs that also affect transcript levels post-transcriptionally. Thus, we used miRNA 
and TF targets to identify their targets among the key regulators involved in SARC. In this study we identify 
some TFs with highest connection with key regulators. RUNX1 is involved in immune response, angiogenesis, 
embryonic development, hematopoiesis and tumorigenesis34. PPARD is a receptor of nuclear hormones which 
regulates a range of biological processes. It has been suggested that this gene plays a role in the development of 
many chronic diseases including atherosclerosis, obesity, cancer and diabetes35. STAT3 is a transcription factor of 
cellular signal involved in the regulation of several cellular processes such as cell proliferation, cell differentiation 
and angiogenesis in normal cells. Diseases like immunodeficiency autoimmunity and cancer are associated with 
mutations in human STAT336. The PAX3 gene encodes a member of the transcription factors of the paired box 
or PAX family. During the formation of the skeletal muscle, neural crest derivatives and central nervous system, 
this protein is expressed and regulates the expression of target genes that impact on differentiation, prolifera-
tion, survival and motility in these lineages. PAX3 is also involved in many type of cancers37. SMAD4 belongs 
to the family of signal transduction proteins which are phosphorylated and activated by trans-membrane serine 
threonine receptor kinases in response to TGF-β signaling through many pathways. The function of SMAD4 as 
a tumor suppressor and inhibits the proliferation of epithelial cells38. Our finding showed that these transcription 
factors formed a linked regulatory network with KRs; therefore, our result signified that the dynamic changes 
in these transcription factors activities appear in SARC which may play a significant role in regulating the gene 
function and expression of KRs associated with the appearance and development of SARC.

Therefore, according to this study, the identified few key regulators may act as therapeutic targets for SARC 
in the future. There are some limitations, such as sample size is limited. In addition, we may not further inves-
tigate how KRs-miRNAs networks effects the diagnosis and treatment of SARC in details because of the lack of 
experimental studies and validations. Despite these limitations, this analysis may provide more accurate results 
based on the integrated bioinformatics analysis compared to single dataset studies.

Conclusion
In this study, we performed an integrated analysis based on six microarray gene expression profiles of Sarcoidosis 
and healthy control to identify DEGs and their associated biological function, and pathways enrichment analysis 
was performed. The protein interaction network was constructed and analyzed its topological properties and 
uncovered novel key regulators for Sarcoidosis. Moreover, we constructed miRNA-KRs and TF-KRs network, 
to provide deeper insight into the regulatory behavior. Our result demonstrated the importance of key regula-
tors and found them to reach the same community and form a triangular motif. All of the genes are known to 
be involved in immune response and its metabolism. Therefore, these genes and factors are also likely to play a 
significant role in SARC, considering the preventive impact of immune response on the appearance of this dis-
ease. However, the sample size is limited; further studies are also needed to validate the expression and function 
of the identified key regulators in Sarcoidosis.

Methodology
Sarcoidosis associated microarray datasets selection.  The NCBI-GEO39 dataset is an accessible 
database that contains gene profiles. Six microarray datasets GSE1653840, GSE1878141, GSE1931442, GSE199766, 
GSE3791243 and GSE7502344 were downloaded from GEO datasets45. In our study, the datasets were selected 
based on inclusion and exclusion criteria that are (i) Sarcoidosis patient and healthy control studies of humans. 
(ii) Analysis of gene expression profiling. (iii) Selection of studies with at least six control and six experimental 
samples. (iv) Excluded datasets if studies without a healthy control. (v) Excluded datasets from other organisms 
or expression profiling by RT-PCR.

All the datasets and references, which confirmed to the criteria as mentioned above, were manually screened. 
No ethical approval was required as this study is purely based on bioinformatic analysis.

Identification of differentially expressed genes.  GEO2R45 is an online program that allows the com-
parison and evaluation under the same experimental conditions of two distinct groups of samples. In this study, 
the selected SARC and healthy control datasets were pre-processed using GEO2R for background correction and 
normalization. This is based on limma R package46. Subsequently, the results of the finding were downloaded in 
the format of MS Excel, and genes that followed the |logFC (fold change)| ≥ 1 and P-value < 0.05 primary cut-off 
criteria were considered as DEGs (including regulated genes Up and down). The probes ID without gene annota-
tion or more than one gene annotation were filtered out; the average value of multiple probes corresponding to 
the same. The probe IDs were converted to gene symbols using Synergizer online server47 and the Database for 
Annotation Visualization and Integrated Discovery (DAVID)48.

Gene ontology and pathway analysis of DEGs.  To gain insight into the biological functions and path-
ways of Up and Down-regulated DEGs were submitted to DAVID online server48 was performed to GO classi-
fication and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis49. The 10 top entities of the 
biological process (BP), Cellular component (CC) and molecular function (MF) categories and KEGG pathways 
were sorted based on P-value. DAVID utilizes Fisher’s exact test to enrich the functions of certain genes. The 
P-value < 0.05 was considered statistically significant.
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Construction of SARC protein interaction network.  The primary SARC PPI network of the identified 
DEGs was constructed in the Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING)50 
with an interaction score > 0.40 as the threshold. Through STRING, protein–protein interactions can be inves-
tigated and analyzed, the interactions being functional as well as physical associations. These associations are 
obtained from text-mining, experiment, co-expression analysis, other databases, gene fusion, neighborhood and 
co-recurrence. Subsequently, in the Cytoscape software (V 3.6.1)51 the SARC PPI network was visualized and 
analyzed.

Characterization of networks topological properties.  The Structural properties of complex net-
works were described through topological parameter behaviors. The SARC network’s topological properties 
were computed using the Network Analyzer52 and CytoNCA53 plugin in Cytoscape. The topological properties 
analyzed in this study are defined below:

Probability of degree distribution.  In a PPI network, the degree k represents the number of links the node con-
nects with other nodes. If G = (N, E) describes a graph of a network, where N and E represent the node and edges 
respectively. The network’s degree distribution probability (P(k)) is measured by,

where nk = Number of nodes having degree k and N = Total number of nodes in the network.
P(k) of small world and random network follows Poisson distribution while, for real world, scale free and 

hierarchical network obeys power-law P(k) ~ k−γ, where, γ is the exponent of degree distribution54,55. In hier-
archical networks the value of γ becomes close to γ*2.26 (mean-field value) which indicates the importance of 
community with hubs in the network13,14.

Clustering coefficients.  In a PPI network, the clustering coefficient (C(k)) describes how strongly node neigh-
borhoods are internally connected. This is the ratio of the number of its closest neighborhood edges ei to the 
total likely number of edges of degree ki. Clustering coefficient (C(ki)) of ith node for an undirected network can 
be measured by,

where ei = Total number of connected pairs among all closest neighbors of the node i, ki = degree of the node i.
The average clustering coefficient (C(k)) characterizes the entire organization of clusters in the network. 

Similarly (C(k)), P(k) probably depends on network size. In scale-free networks C(k) ~ constant, but it obeys 
power-law in hierarchical network with degree, C(k) ~ k−α, with α ~ 1, where, α is the exponent of Clustering 
coefficient13,15.

Neighborhood connectivity.  The average connectivity of a node’s closest neighbors in a network represents the 
node’s neighborhood connectivity in the network56. The neighborhood connectivity is measured by,

where P 
( q
k

)

 = conditional probability that a connection belonging to a node with connectivity k to another node 
having q connectivity.

In scale free network, CN(k) ~ constant, while the hierarchical network obeys power-law in degree k, CN(k) ~ k−β 
with β ~ 0.557 where, β is the exponent of neighborhood connectivity. Furthermore, positive and negative signs 
in β could be an indication of assortivity & dis-assortivity in network topology respectively58.

Betweenness centrality.  Betweenness centrality of a node in a PPI network represents the prominence of infor-
mation flow through one node to another node through the shortest path59,60. The geodesic paths are shown 
from node i to node j by ’dij(v)’ which passes through node ’v’ and ’dij’. The Betweenness centrality of a node v 
can be measured by,

Closeness centrality.  Closeness centrality represents how quickly information is circulated in the network from 
one node to another node61. The Closeness centrality of the node i is described as the reciprocal average length 
of the geodesic paths between the node and all other nodes connected to it in the network and it is measured by,

where dij = length of the geodesic path between nodes i and j, n = total number of nodes in the network con-
nected to node i.
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Eigenvector centrality.  In a PPI network, Eigenvector centrality of a node i (CE(i)) in a network is proportional 
to the sum of closest neighbor centralities62, and it is measured by,

where nn(i) = closest-neighbors of nodes i in the network. λ = Eigen value of the eigenvector. vi = ‘Avi = λvi’ where 
A is the adjacency matrix of the network.

The principal eigenvector of A, which corresponds to the maximum positive eigenvalue πmax, represents a 
centrality score of its eigenvector. Because the eigenvector centrality function of the node varies smoothly across 
the network and depends on its neighbors, node with high eigen-vector centrality is embedded in the locality 
of nodes of high eigen-vector centralities, and chance of having isolated nodes in and around the locality is very 
low63. Thus, the centrality of the eigenvector can be used as an indicator of the spreading power of the node in 
the network.

Community detection: leading Eigen vector approach.  Detecting and characterizing the modular 
structure and its properties in the hierarchical network are important in identifying network behavior predic-
tions at different levels of hierarchy, as well as accessing the network’s organizing principle in the study. In this 
study, the Leading Eigen Vector (LEV) approach64,65 was used in R from the package ’igraph’ (http://​igraph.​sf.​
net)66 to detect the community or modules. The LEV approach is the most effective approach for community 
detection as it calculates the Eigenvalue for each link, which illustrates the importance of each link, not nodes. 
We used this approach to detect modules from the primary network, sub-modules from modules at each level of 
organization, and so on until the motifs level is reached (i.e., 3 nodes and 3 edges), which is the last level of net-
work organization after which the network cannot be further broken. Identifying any sub-module as a commu-
nity was based on the criterion that it should be found to contain at least one triangular motif (defined by G(3, 
3). All the communities, sub-community and sub-sub-community are classified as level-1, level-2 and so on.

Genes tracing across the networks.  In a network, all hubs are important regulators and only those 
genes which regulate the network from up to down (top to motif level) were considered as the most important 
and persuasive genes. These genes are termed as ‘Key Regulators’ of the network. To identify these key regula-
tors in the SARC network was done through gene tracing. This gene tracing was conducted up to the level of 
the motif in different communities or sub-communities obtained from Newman and Girvan’s method of com-
munity detection or clustering65. Through tracing, the most important and persuasive genes within the network 
were identified that regulates the network.

Key regulators knock out experiment.  To understand the change in the network organization was 
observed through the knockout experiment in the absence of these important nodes. We consecutively removed 
the identified key regulators from the constructed primary SARC network, after that, we measured different 
topological properties of the reorganized or modified network to study the regulating abilities of these key genes 
by measuring the degree of structural change due to their absence. Each time we measured the topological 
properties using Network Analyzer, while in Cytoscape, we used another CytoNCA53 plugin for topological 
properties for Eigenvalue calculation.

Energy distribution in the network: calculation of Hamiltonian energy.  At each level of the net-
work, by following the formalism of the Constant Potts Model (CPM), the Hamiltonian energy (HE) is used as a 
technique to organize a network at a certain level. HE gives the energy distribution at the global level as well as at 
the modular level of the network67,68. HE of a network and community or sub-community can be calculated by,

where ec = Number of edges in a community c. nc = Number of nodes in a community c and γ = the resolution 
parameter acting as edge density threshold which is set to be 0.5.

Further, in the KRs knockout experiment, after removing key regulators from the network, we calculated the 
HE of network and communities or sub-communities at each level. The difference in HE of the primary SARC 
network and the key regulators removed SARC network calculated the perturbation caused by the key regulators.

here L = level in the network, θ = key regulators removed network.

Compactness of network: local‑community‑paradigm (LCP) approach.  The LCP Decomposition 
Plot (LCP-DP) is an approach to represent the topological properties of a network in 2D (two dimensional) 
space of common neighbour’s (CN) index of interacting nodes and local community links (LCL) of each pair of 
interacting nodes in the network, and it provides number, information of size, and firmness of communities in a 
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network. This can further be used as a measure of self-organization in the network69. The LCP correlation (LCP-
corr) is the Pearson correlation coefficient between the variables LCL and CN and it is measures as;

where cov (CN, LCL) = the covariance between LCL and CN, σCN and σLCL = standard deviation of LCL and CN.

miRNA‑key regulators network construction.  The Encyclopedia of RNA Interactomes (ENCORI) is 
an accessible web-based tool that focuses mainly on interactions with miRNA targets70. ENCORI uses seven 
developed miRNA target prediction databases, including TargetScan, miRanda, PITA, PicTar, microT, RNA22 
and miRmap. In this study, the targeted miRNAs of key regulators were considered miRNAs. Subsequently, 
this was visualized in Cytoscape software and analyzed the co-expression network of key regulators and their 
targeted miRNAs51.

TF‑key regulators regulatory network.  Network Analyst is a comprehensive, accessible web-based tool 
for network visual analytics of gene expression profiles, statistical meta-analysis and data interpretation71. The 
integrative study of TF-gene interactions for input genes can be supported, and TF’s effect on the functional 
pathways and expression of the key regulators can be assessed. In this study, TF-KRs interaction was predicted 
using the ChEA database and Cytoscape software was constructed and visualized the TF-KRs regulatory net-
work.
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