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Variations in urban land surface 
temperature intensity over four 
cities in different ecological zones
Ayansina Ayanlade1,3*, Michael I. Aigbiremolen2 & Olakunle R. Oladosu4

This study aims at assessing variations and changes in the intensity of urban land surface 
temperature (LST) over four major cities in different ecological zone. The study intends to examine 
the contributions of different land cover types and variation in ecological locations on the intensity 
of urban LST. Remote Sensing and GIS techniques were used to measure the extent of the LST 
intensity over different cities and implications of land use/land cover (LULC) changes, using the 
Landsat TM/ ETM from 1984 to 2012, and Landsat OLI/TIRS from 2015 to 2019. The contributions of 
different landscape types to urban LST intensity were examined, using contribution index (CI) and 
Landscape index (LI) methods while the relationship between urban LST, and changes in LULC was 
examined using zonal statistics. The results revealed that the spatial and temporal changes in the 
LULC have greatly influenced the LST in the cities, though this varies from identified LULC. Changes 
in estimated LST vary from 0.12 to 1 °C yearly, while the changes are much intensified in the core 
section of the cities. The contribution of each landscapes varies, − 0.25 < CI > − 1.17 for sink landscape 
and 0.24 < CI > 1.05 for source landscape. The results further reveal that as LI ≥ 1, the contribution 
of source landscape to intensity of LST is lesser than that of sink landscape, but LI ≤ 1 shows that 
source landscapes contribute more to intensity of LST than sink landscapes. This might be as a result 
of changes in the vegetation cover between 1984 and 2019 as revealed in LULC change. Loss in the 
vegetal cover is anthropogenically induced leading to an increase in built-up and impervious surfaces 
resulted in mean monthly and yearly temperature changes. It is observed that the core and densities 
areas of cities witnessed higher LST compared with the rural area. The study concludes that different 
types of land cover within an urban area can affect the spatial pattern of urban LST, though this varies 
from one ecological zone to another and distribution of LST intensity in the urban area depends on its 
changes LULC. Thus, as cities’ population is expected to keep expanding there is a need to establish 
more viable linkages between the ever-growing population and land use patterns. The major findings 
from this study are useful in informing policymakers of the need to promote more sustainable urban 
development in the cities.

Change in urban land use is becoming noticeable in many cities, not only in developed countries but also in 
African cities, and this is most responsible for changes in urban land surface temperatures witnessed in recent 
years1–5. A combination of factors has been reported in the literature as the drivers of changes in LST. Such fac-
tors include the removal of vegetation within urban areas6,7, change in urban thermal and physical properties 
of construction materials, building, morphology, surface roughness8,9, and anthropogenic heat sources modify 
the local energy and urbanization, leading to increases in atmospheric temperature in urban areas compared to 
their surroundings10–13. Many of these studies concluded that the main causes of the recent intensification of LST 
in urban can be related to structural and land cover differences of urban and rural areas. Urban areas are rough 
with buildings extending above ground level and are dry and impervious with construction materials extending 
across natural soils and vegetation.

These urban characteristics alter the natural surface energy and radiation balances such that urban areas 
are relatively warm places14,15. Variations in the canopy-layer of urban heat occur close to the surface in cities 
and extend to approximately the mean building height. These changes have as well affected thermal, radiative, 
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moisture and aerodynamic characteristics of the environment leading to the accumulation of heat in urban areas. 
Thus, a huge amount of vegetation cover in the cities is replaced by built-up surfaces, that absorbs incoming solar 
radiation and re-radiate it at night16,17. The urban canopy-layer is governed by local or micro-scale processes and 
refers to that portion of the planetary boundary layer whose characteristics are affected by an urban area18,19. 
Other studies have revealed that the LST difference is usually higher during the day than at the night5,6,20.

Different LST retrieval methods and platform data have been used in recent years though, the study of urban 
LST changes over the years have taken very varied dimensions, using both ground and satellite datasets. Satellite 
observations are used to study the changes in urban land surface temperature21,22. The remote sensing methods 
which have been used include the split-window method14,23,24, the single-channel algorithm25,26, temperature/
emissivity separation method27–29, and mono-window algorithm30–32. Studies have assessed the performance of 
the mono-window algorithm (MWA), single-channel method (SCM), split-window algorithm (SWA-Q) and 
split-window algorithm (SWA-S). Although all of these methods can provide good results, the radioactive transfer 
equation works in conjunction with in situ measurements collected simultaneously with the satellite data, while 
the mono-window algorithm with radio sounding data can get a better result than the single-channel algorithm 
with a root mean square deviation of 0.9 K33, while Tsou et al.34 further reported that LST retrieval by SWA-Q had 
better accuracy than the other algorithms. Generally, what is obvious in literature is that the cities’ population 
is expected to keep expanding thus there is a need to establish more viable linkages between the ever-growing 
population and land use patterns, essentially because these are the factors directly related to the cities’ land surface 
temperature regime. On the other hand, raised temperatures from urban heat islands, especially throughout the 
midyear, can influence a community’s environment and the quality of life of people. Meanwhile, a steady and 
perceptible detailed study to assess the changes and effects of change in land cover on land surface temperature 
in cities across different ecological zones especially is rare. The present study, therefore, seeks to contribute to 
this by looking at past issues related to urban heat islands in the cities in different ecological zone in the tropics. 
The examination of variations in the cities’ land surface temperature, the establishment of the causes and effects 
of these variations, and the examination of the relationship between land surface temperature and land use land 
cover in the cities in the specified study period are thus essential. Hence, the present study aims at assessing land 
surface temperature in four selected cities, using satellite data. The specific objectives of the study are to examine 
variations in land surface temperature in the cities; and examine the relationship between land use/land cover 
change and land surface temperature.

Methodology
The study area.  This study involves different cities from ecological zones in Nigeria: Akure, Ibadan, Lagos, 
and Saki (Fig. 1). The study cities were purposively selected to cover different ecological zones: Guinean Savan-
nah, derived Savannah, tropical rainforest and mangrove zones (Table 1). The four cities being considered in 
this study have experienced some level of urban growth over the years. In recent years, there has been a major 
increase in the built-up of the area in Akure but the thick forest vegetation has been massively depleted to give 
room for farming and other agricultural activities, a similar change in the land use from thick vegetal cover to 
agricultural farmlands could also be observed in Saki. Lagos is a large port city in southwestern Nigeria and 
one of the most rapidly developing cities in Africa with a landmass of about 2341.72 km2. Lagos is also a key 
cultural centre of the whole region, with very interesting and old local traditions, cuisine, music, and lifestyle. 
Tourism plays an important role in the city’s economy, and most of the guests come to the city when it is time for 
numerous music festivals and cultural events. Ibadan city, the administrative capital of Oyo state, lies completely 
within the boundary between the tropical forest zone and derived savannah. According to the Koppen climate 
classification, it has a tropical wet and dry climate. Its mean total rainfall is 1420.06 mm. Its mean maximum 
temperature is 26.46 °C while its mean minimum temperature is 21.42 °C.

Multi‑year dataset acquisition.  A multi-year Landsat dataset, from 1984 to 2019 were used in the study, 
to examine long period LST. The dataset cover both dry and wet seasons, at least a Landsat scene for a month, 
depending on low cloud coverage. The Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus 
(ETM+) and an Operational Land Imager-Thermal Infrared Sensor (OLI-TIRS) dataset from 1984 to 2019 were 
used in this study to assess change in urban LST. The complete multi-year Landsat dataset was used to develop 
long term LST database for the four cities, results of 1984, 1994, 2004 and 2019 were presented to show the dec-
adal variation. To examine the changes in Land use/Land cover (LULC) within and around the cities, as it varies 
over years, Landsat datasets for years 1984, 2004 and 2019 were used for classification.

Land surface temperature retrieve and assessment.  The LST over the cities were retrieved from the 
thermal bands of multi-year Landsat datasets. Thermal bands 6 (10.40–12.50 μm), 6H (10.4–12.5 μm) and 10 
(10.60–11.19 μm) of TM, ETM + and OLI-TIRS respectively, with spatial resolutions of 120 m, 60 m and 100 m 
respectively were used in the study to distinguish nature urban surface temperature in different cities. Also, 
multi-year Landsat datasets as it relates to changes in land use and land cover (LULC) and NDVI, over four cities 
in southwestern Nigeria (Fig. 1) were acquired from the United States Geological Survey (USGS), using a path of 
191 and a row of 54 for Lagos, path of 191and a row of 55 for Ibadan, the path of 190 and a row of 55 for Akure 
and path of 191 and a row of 55 for Saki (Table 2).

Subsequently resampling the spatial resolutions to a uniform resolution of 30 m, these thermal bands were 
used to retrieve LST over the study area for three different periods were done following five major steps: (1) 
converting Digital Numbers (DNs) to spectral radiance, (2) obtaining effective at-sensor brightness temperature 
also known as black body temperature from the spectral radiance using Plank’s inverse function, (3) estimating 
land surface emissivity, (4) extracting urban land surface temperature, and (5) converting the final LST values 
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to degrees Celsius5,22,35. Conversion of Digital Numbers (DNs) to spectral radiance was performed using the 
equation:

where Lλ is the spectral radiance at the sensor’s aperture in Wm−2 sr−1 μm−1; Q Cal is quantized calibrated pixel 
values in DNs, and ML and AL are band-specific rescaling factors given in the metadata file as radiance multi-
band x and radiance add band x respectively.

The effective at-sensor brightness temperature also known as black body temperature (TB) was obtained from 
the spectral radiance using Plank’s inverse function:

where Tk is at-satellite brightness temperature (in Kelvin); K2 is a calibration constant in Wm−2 sr−1 μm−1; K1 is 
calibration constant 1 in Wm−2 sr−1 μm−1; and Lλ is the spectral radiance at the sensor in Wm−2 sr−1 μm−1. How-
ever, the land surface emissivity estimation was calculated using the temperature values obtained using Eq. (2), 
which referenced to a blackbody. Therefore, corrections for spectral emissivity (ε) are necessary according to 
the nature of the land cover.

(1)L� = (ML ×QCal)+ AL

(2)T =
K2

In

(

∈K1

L�

)

+ 1

Figure 1.   Map of the study area showing the location of four cities examined in the study. The figure was 
generated using ArcGIS 10.5 software (http://​www.​esri.​com/).

Table 1.   Ecological characteristics of the cities examined in the study.

Ecological zones Cities Ecological characteristic

Tropical rainforest Akure Renowned for very high annual rainfall with high average temperatures, the rays of the sun are obstructed 
by the dense green canopy. The climate is generally hot and humid all year round, with continuous rain

Derived Savanna Ibadan The ecological zones are the result of people clearing forest land for cultivation. High average temperatures 
and periodic rainfall

Mangrove zones Lagos This ecology is located along the coast. It is also characterized by such qualities as a humid climate, saline 
waterlogged ecological region

Guinean Savanna Saki Prominent for relatively low rainfall which supports the growth of short deciduous trees

http://www.esri.com/
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Valuation of contributions of different landscapes to urban LST intensity.  The contributions of 
different landscape types to urban LST intensity were examined, using the contribution index (CI) and Land-
scape index (LI) approach. The CI was used to examine both the spatial and temporal distinctive characteristics 
of both vegetation (sink) and non-vegetation (source) landscapes and how they contribute to the development/
changes of urban LST. The urban landscapes were grouped into two: sink and source landscapes. The source 
landscape types are characterized by built-up surfaces part of the cities which are distinguished with the concrete 
surface while sink landscapes are mainly vegetation and water surfaces. The contribution of both sink and source 
landscapes to urban LST intensity were calculated CI as in Eq. (3):

Dt represents the difference in the temperature between the sink or source landscape and the entire region while 
the proportion of the area that is source landscape or sinks landscape in the entire area are present as S. Thus for 
sink landscape, the contribution to LST intensity is the fraction of the area (S) that is part of the sink landscape 
multiplied by the difference in temperature (Dt) between the sink landscape and the entire region. For a sink 
landscape, the Dt values are negative but the contribution index is also positive for the source landscape. The 
landscape index approach was used to determine the contribution of both landscapes to the urban LST intensity 
as in Eq. (4):

where landscape index (LI) is the function of the contribution index (CI) of both source and sink landscapes. This 
evaluated how the changes in land use/land cover within and around the cities affect the intensity of urban LST. 
Also, zonal statistics were used to calculate the relationship of the statistics and to show if a landscape zone feature 
contains overlapping the LST zones. This was also used to compare the intensity of the LST in a different zone.

Changes in land use/land cover as relate to urban LST intensity.  Multispectral image classification 
was used to extract thematic information from satellite images. It aids in having a good understanding of the 
different land cover classes found within an area of interest. Classification in this study was performed using the 
Maximum likelihood classification form. The maximum likelihood method of classification algorithm is one of 
the common parametric classifiers used for supervised classification36,37. The algorithm is used for Computing 
the weighted distance or likelihood (D) of unknown measurement vector (X) belonging to one of the known 
classes (Mc) which is based on the Bayesian equation:

A supervised classification was performed by creating a training sample, and based on a spectral signature 
curve, different land-use classes were created including Built-up area, Waterbody, Cultivation, Natural vegetation 
and Rock outcrop. While the land surface temperature was extracted using the equation:

Since the LST values were obtained in degree Kelvin, LST was converted into degrees Celsius. The LST is the 
land surface temperature is the function of TB, λ, ρ and ε, such as λ is the central wavelength of emitted radiance 
(11.45 μm for TM and ETM+; 10.90 μm for OLI-TIRS); TB is at-satellite brightness temperature; ρ is h × c/σ 
(1.438 × 10−2 mK or 14,380 µmK); h is Planck’s constant (6.26 × 10−34 Js); c is the velocity of light (2.998 × 108 m/s); 

(3)CI = Dt × S

(4)LI = |CIsink/Cisource|

(5)D = ln(ac)− [0.5ln(covc)]− [0.5(X−Mc) T(covc− 1) (X−Mc)]

(6)LST = TB/1+ (�× TB/ρ)× lnε

Table 2.   Characteristics of the satellite dataset used in the study. The datasets were acquired in December 
2019.

Satellite sensors/imagery 
characteristics Thematic mapper (TM)

Enhanced thematic mapper plus 
(ETM +) Landsat 8 (OLI & TIRS)

Bands

1 (0.45–0.52 μm)
2 (0.52–0.60 μm)
3 (0.63–0.69 μm)
4 (0.76–0.90 μm)
5 (1.55–1.75 μm)
6 (10.4–12.5 μm)
7 (2.08–2.35 μm)

1 (0.45–0.52 μm)
2 (0.52–0.60 μm)
3 (0.63–0.69 μm)
4 (0.76–0.90 μm)
5 (1.55–1.75 μm)
6 (10.4–12.5 μm)
7 (2.08–2.35 μm)
panchromatic band 8 (0.50–0.90 
μm)

1 (0.45–0.52 μm)
2 (0.52–0.60 μm)
3 (0.63–0.69 μm)
4 (0.76–0.90 μm)
5 (1.55–1.75 μm)
6 (10.4–12.5 μm)
7 (2.08–2.35 μm)
panchromatic band 8 (0.50–
0.90 μm)

Spatial resolution 30 m (bands 1–5, 7)
120 m (band 6)

30 m (bands 1–5, 7)
60 m (band 6)
15 m/18 m (band 8)

28.5

Radiometric resolution 8 bits best 8 of 9 bits 16 bits

Path and row
191/055
191/054
190/055

191/055
191/054
190/055

191/055
191/054
190/055

Pre-processing history Geometric corrected
Terrain corrected

Geometric corrected
Terrain corrected

Geometric corrected
Terrain corrected



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20537  | https://doi.org/10.1038/s41598-021-99693-z

www.nature.com/scientificreports/

σ is Stefan Boltzmann’s constant (1.38 × 10−23 J K−1); and ε is the land surface emissivity. In this study, the relation-
ship between LST and vegetation availability was calculated using zonal statistics.

Likewise, each of the LULC categories is assigned an emissivity value by reference to the emissivity classifica-
tion scheme by Snyder et al.38. A heterogeneous surface (that is, a mixture of bare soil, exposed water surface and 
vegetation) was considered in this study. The emissivity of a heterogeneous surface (mixed pixels) was computed 
using Eq. (3), taking into account the proportion of vegetation in each pixel (fv) and the cavity effect due to sur-
face roughness (Cλ).fv was estimated using Eq. (4)33, while Cλ was calculated using Eq. (5), with the geometrical 
(shape) factor ‘F’ having the mean value 0.55, according to Sobrino et al.39:

NDVI is the Normalized Difference Vegetation Index as computed in Eq. (10) for the respective years con-
sidered in this study;

NDVIs and NDVIv are Normalized Difference Vegetation Index Threshold values for soil pixels (NDVIs = 0.2) 
and pixels of full vegetation (NDVIv = 0.5) respectively (Eq. 4), as proposed by Sobrino et al.39 and Sobrino et al.33; 
and εs and εv are the emissivity (ε) of soil pixels and full vegetation pixels with the mean values 0.97 and 0.99, 
respectively. The final expression for land surface emissivity is given by:

Detail flow of the methodology is presented in Fig. 2.

Results and discussion
In this study, the results revealed three major outcomes: (a) the cities centres are much warmer and this increased 
considerably over the years; (b) the contribution index (CI) of source landscapes are positive while the values 
are negative for sink landscapes in all cities irrespective of their ecological location; (c) changes in land use/land 
cover within and around the cities affect the intensity of urban LST.

Contribution of different landscapes to LST intensity.  Different landscapes contribute differently to 
the intensity of LST. The contribution indexes (CI) of source landscapes are positive while the values are negative 
for sink landscapes (Tables 3, 4, 5, 6). The size (S) of both landscapes changes (Tables 3, 4, 5, 6) over the years, as 
source landscapes increases, the sink landscapes decreases from 1984 to 2019. The S values for sink and source 
landscapes, in Akure for example, changes from were 67% and 33% in 1984 to 49% and 51% in 2019, respectively. 
Similar increases were observed in all other cities but much more high in Ibadan and Lagos. In Ibadan, the S 
value for sink landscape was 40% in 1984 but changed to 29% in 2019 while source landscape change changed 
from 60% in 1984 to 71% in 2019 (Table 5). Much of these changes are observed in Lagos where S value for sink 
landscape was 47% in 1984 but changed to 25% in 2019 while the source landscape change changed from 53% in 
1984 to 75% in 2019. Both spatial and temporal changes in the landscapes types affect the CI of each landscape 
and the intensity of the LST in all the cities (Tables 3, 4, 5, 6). In terms of the individual contribution of each 
landscape type in the cities of study, source landscape contributes positively to the intensity of LST while sink 
landscape has a negative contribution as presented in CI in Tables 3, 4, 5, and 6. The range of contribution var-
ies, − 0.25 < CI > − 1.17 for sink landscape and 0.24 < CI > 1.05 for source landscape. The contributions of source 
landscapes are much more intense in recent years, especially in Lagos with CI = 1.05 in 2004 and CI = 0.82 in 
2019. These results imply that the source landscape contributes mostly to the intensity of the urban LST in the 
study cities.

The result of LI further revealed that the contribution of the landscape types to the intensity of LST in the 
cities varies. In all the cities, it is obvious that LI decreases from LI = 1.84 in 1984 to LI = 0.57 in 2019 for Akure 
(Table 3); from LI = 1.58 in 1984 to LI = 0.41 in 2019 for Ibadan(Table 4); from LI = 1.13 in 1984 to LI = 0.36 in 
2019 for Lagos (Table 5); and from LI = 1.90 in 1984 to LI = 0.677 in 2019 for Saki (Table 6). The results imply 
that as LI ≥ 1, the contribution of source landscape to intensity of LST is lesser than that of sink landscape, but 
LI ≤ 1 shows that source landscapes contribute more to intensity of LST than sink landscapes (Tables 3, 4, 5, 6). In 
all the cities examined in this study, the core part of each city was much warmer compared to the neighbouring 
areas (Figs. 3, 4, 5, 6). The intensity of the LST increased over the years but much more in the centre of the cities.

The general observation in Akure is that only the central part of the city was much warmer in 1984 compared 
to other past of the city but a significant increase in LST was observed towards the northeastern part of Akure 
as of 2004 and this scenario appears much more towards the northwestern and southern part of the city in 2019 
(Fig. 4).

The intensity of LST clusters in high-density built-up areas in the different cities. It implies thus that the 
expansion of built-up areas further influences the intensity of LST in the urban area. The intensity of LST 
increases along the region of the cities with the high rate of high-density and expansion of built-up areas. These 
results further indicate more of a distinction between the built-up and the vegetal cover in the area as they con-
tribute to the intensity of LST in the study cities. However, the observation of temperature that show a higher 

(7)ε = εv × fv + εs × (1− fv)+ C�

(8)fv = [NDVI−NDVIs/NDVIv −NDVIs]
2

(9)C� = (1− εs)× εv × F′ × (1− fv)

(10)NDVI = NIR−RED/NIR+ RED

(11)ε = 0.004fv + 0.986
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mean temperature in Saki compared to other cities. The ecological location of Saki, in Guinean Savannah, may be 
responsible for this. The intensity of LST increases from year to year as the density of built-up areas expanding. 
In Lagos for example, it could be visually seen (Fig. 5) high cluster of LST in the southern part of the city in 1984 
but there appears a significant spread with much more intensity of LST across every part of the city as observed in 
2019. In other cities, the high cluster of LST is obvious in the later years from 2004 to 2019. The reasons for these 
outcomes are very obvious as the majority of source landscapes in the cities centres are usually built-up surfaces 
distinguished with the concrete surface while sink landscapes are mainly vegetation and water surfaces. This is 
much more apparent in Lagos with a strong heterogeneity of land surface characteristics, increasing built-up 
and soil between the coast and mainland, but the vegetation within the city is exceedingly degraded, leading to 
high intensity of LST40,41. Thus, source landscapes are noted for large exposed concrete surfaces with high heat 
absorption which eventually increases the temperature in the cities while much evapotranspiration and reduc-
tion of temperature takes place in the sink landscapes.

Figure 2.   Flow chart showing the detailed steps of methods and material use in the study. This figure was 
designed by Michael I Aigbiremolen using flowchart symbols in Microsoft Word.
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Table 3.   Variations in LST of the  source and sink with their landscape index over Akure.

Year Landscape S Dt CI LI

1984
Sink 67 − 0.935 − 0.626

1.834
Source 33 1.035 0.342

1994
Sink 63 − 0.735 − 0.463

1.368
Source 37 0.915 0.339

2004
Sink 58 − 0.515 − 0.299

0.777
Source 42 0.915 0.384

2019
Sink 49 − 1.015 − 0.497

0.569
Source 51 1.715 0.875

Table 4.   Variations in LST of the  source and sink with their landscape index over Ibadan.

Year Landscape S Dt CI LI

1984
Sink 40 − 0.986 − 0.394

1.584
Source 60 0.415 0.249

1994
Sink 38 − 0.819 − 0.311

1.057
Source 62 0.475 0.294

2004
Sink 31 − 0.975 − 0.302

0.922
Source 69 0.475 0.328

2019
Sink 29 − 0.475 − 0.138

0.408
Source 71 0.475 0.337

Table 5.   Variations in LST of the  source and sink with their landscape index over Lagos.

Year Landscape S Dt CI LI

1984
Sink 47 − 1.390 − 0.653

1.131
Source 53 1.090 0.578

1994
Sink 37 − 1.495 − 0.553

1.496
Source 63 0.587 0.370

2004
Sink 30 − 1.495 − 0.449

0.429
Source 70 1.495 1.047

2019
Sink 25 − 1.195 − 0.299

0.364
Source 75 1.095 0.821

Table 6.   Variations in LST of the  source and sink with their landscape index over Saki.

Year Landscape S Dt CI LI

1984
Sink 68 − 1.715 − 1.166

1.895
Source 32 1.923 0.615

1994
Sink 58 − 1.734 − 1.006

1.319
Source 42 1.815 0.762

2004
Sink 58 − 1.523 − 0.883

1.253
Source 42 1.678 0.705

2019
Sink 45 − 1.345 − 0.605

0.677
Source 55 1.625 0.894
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Figure 3.   Land surface temperature intensity over Akure from 1984 to 2019. The figure was generated using 
Quantum GIS (QGIS 3.4) software (https://​qgis.​org/​en/​site/).

https://qgis.org/en/site/
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Figure 4.   Land surface temperature intensity over Ibadan from 1984 to 2019. The figure was generated using 
Quantum GIS (QGIS 3.4) software (https://​qgis.​org/​en/​site/).

https://qgis.org/en/site/
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What are the drivers of differences in the intensity of LST?  Human activities such as urban devel-
opment and farm cultivation significantly altered and impacted the natural surface conditions and atmospheric 
properties of the urban areas. This is observed to result in different heat patterns within the cities. Changes in 
the LST observed in the study cities are attributed to the changes in Land use/Land cover (LULC) within and 
around the cities (Fig. 7, Table 7). The results reveal that as the built-up areas increases in the cities (Fig. 8), the 
intensity of LST is much more upsurged (Figs. 3, 4, 5, 6). Change in LULC is noticeable in all the cities examined 
in this study. For example, the total land area of Akure, used in this study, is approximately 1638 km2. In 1984, 
the built-up was about 33 km2 which increase to nearly 100 km2 in 2019. Cultivation also increased from 217.6 

Figure 5.   Land surface temperature intensity over Lagos from 1984 to 2018. The figure was generated using 
Quantum GIS (QGIS 3.4) software (https://​qgis.​org/​en/​site/).

https://qgis.org/en/site/
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to 837.95 km2 in 2019. However, the vegetation decreases significantly from 1357 km2 in 1984 to 1067 km2 in 
2004 and many reductions in 2019 to about 701 km2 (Table 7). What is obvious from these results is that as both 
built-up within the city and the cultivation land around the city expanding, vegetation decreases (Fig. 7a), lead-
ing to much of the LST intensification in the city (Fig. 3). A similar scenario is obvious in Ibadan in 1984 where 
for instance, the built-up and cultivation increase from 101 km2 and 242 km2 to 343 km2 and 269 km2 in 2019, 
respectively. These expansions decrease in vegetation land from 702 km2 in 1986 to 434 km2 in 2019 (Table 7).

In Lagos in 1984, the built-up was about 296 km2 but increased each year to 1053 km2 in 2019 Cultivation, 
however, decreased from 193 km2 in 1984 to nearly 165 km2 in 2019. The reason for the reduction in cultivation 
land in Lagos is obvious, since the city is a major industrial location in the country, only a few lands are used for 

Figure 6.   Land surface temperature intensity over Saki from 1984 to 2019. The figure was generated using 
Quantum GIS (QGIS 3.4) software (https://​qgis.​org/​en/​site/).

https://qgis.org/en/site/
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Figure 7.   Land use/land cover classification (a) Akure; (b) Ibadan; (c) Lagos; and (d) Saki; 1984, 2004 and 
2019. The Figure was generated using ArcGIS 10.5 software (http://​www.​esri.​com/).

http://www.esri.com/
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farming. As the built-up increases in the city, the natural vegetation in Lagos decreased from 1371.19 km2 in 1984 
to about 553 km2 in 2004 and 686 km2 in 2019. Even the waterbody is shrinking as it reduces from 481.56 km2 
in 1984 to about 439 km2 in 2019 (Table 7). Reduction in waterbody may be due to sand filling of some canals 
to accommodate the expansion of built-up. The total land area of Saki, used in this study, is about 122 km2. In 
1984, the built-up was 5.98 km2 which increased to 8.91 km2 in the year 2004 and over 15 km2 in 2019. Natural 
vegetation in Saki was on constant reductions, it decreased from 42.79 km2 in 1984 to 34.12 km2 in 2019 (Table 7).

Much of the changes in the LST in the cities (Figs. 3, 4, 5, 6) are the results of changes in the built-up area 
(Fig. 8). The relationship between LST and LULC was further examined by calculating the zonal statistics of the 
images for the different years across all four cities (Fig. 6). The result reveals that the mean surface temperature 
variations over different land cover types. For Akure, the mean temperature over built-up ranges between 24 and 
29 °C from 1984 and 2019, this is a high temperature. For the Ibadan area, the mean surface temperature variation 
over different land cover types revealed that the majority of the bare surface and impervious surface of Ibadan 
metropolis had temperatures between 22 and 38 °C, while the mean temperature for built-up ranges between 26 
and 29 °C from 1984 and 2019 in which by implication of the interpretation of the zonal statistic corresponding 
to high temperature. For Lagos metropolis, the mean surface temperature variation over different land cover 
types revealed that the majority of the bare surface and impervious (built-up) surface of Lagos metropolis had 
temperatures between 20 and 39 °C, while the mean temperature for built-up ranges between 25 and 30 °C from 
1984 and 2019. For the Saki area, the mean surface temperature variation over different land cover types revealed 
that the mean temperature for built-up ranges between 29 and 36 °C from 1984 and 2019 in which by implication 
of the interpretation of the zonal statistics corresponding to high temperature. The highest mean temperature 
was observed in Saki and this again is as a result of the ecological location of Saki in the Guinean Savannah.

The results are indicated that the LST is strongly correlated with change in LULC. Hence areas with the least 
vegetation are experiencing higher land surface temperatures. Again in this study, LST and LULC were found 
to be closely correlated in all land cover categories, especially in urban and vegetated/rural areas across the four 
cities that are being considered. Putting the side of the image by side one another could help to visually observe 
the relationship amongst these variables, seeing the correlation between LST and LULC in a specific location as 
well as their disparities as they are located in different ecological zones. Thus the results from this study reveal 
that anthropogenic factors such as urban encroachment into agricultural or rural land due to urban expansion 
and farming activities have contributed immensely to the removal of vegetation cover. As a result, this alteration 
in land cover is most responsible for the variation in land surface temperatures over time and space. Besides, 
the impervious surface is one of the most important land cover types and a feature of urban/suburban environ-
ments which affects the LST in the urban area. It is known to affect urban surface temperatures by altering the 

Table 7.   Land use/land cover change in different cities between 1984 and 2019.

LULC type 1984 (km2) 1994 (km2) 2004 (km2) 2019 (km2)

Akure

Built-up 33.19 39.87 71.23 99.78

Cultivation 217.53 271.11 469.21 806.91

Natural vegetation 1357.15 1298.01 1067.45 701.22

Rock outcrop 30.16 29.02 30.03 30.01

Waterbody 0.11 0.13 0.22 0.22

Total 1638.14 1638.14 1638.14 1638.14

Ibadan

Built-up 101.07 151.98 197.59 343.12

Cultivation 241.87 244.45 259.03 269.42

Natural vegetation 702.25 649.67 589.86 433.92

Waterbody 1.52 1.61 1.23 1.25

Total 1046.71 1047.71 1047.71 1047.71

Lagos

Built-up 295.71 696.24 775.12 1052.51

Cultivation 193.26 235.97 581.97 164.88

Natural vegetation 1371.18 930.11 552.89 685.71

Waterbody 481.57 479.4 431.74 438.62

Total 2341.72 2341.72 2341.72 2341.72

Saki

Built-up 5.98 6.99 8.91 15.98

Cultivation 72.83 74.48 76.26 71.36

Natural vegetation 42.79 40.12 36.42 34.12

Water body 0.07 0.08 0.08 0.21

Total 121.67 121.67 121.67 121.67



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20537  | https://doi.org/10.1038/s41598-021-99693-z

www.nature.com/scientificreports/

Figure 8.   Changes in built-up area (A) Akure; (B) Ibadan; (C) Lagos; and (D) Saki. The Figure was generated 
using ArcGIS 10.5 software (http://​www.​esri.​com/).

http://www.esri.com/
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sensible and latent fluxes. Impervious surfaces represent materials that do not absorb water or dampness40–42. 
Most materials used in urban constructions, for example, housetops, roads, interstates, parking areas and walk-
ways are impervious.

Conclusion
The study attempted to compare spatiotemporal variations and intensity of land surface temperature (LST) in 
four cities located in different ecological zones. Based on the satellite dataset, remote sensing and Geographic 
Information System (GIS) techniques, the study assesses variations in urban LST in the cities over a period of 
30 years. The drivers of LST and consequently urban heat islands, including changes in vegetation cover, bare 
surface (considering soil moisture content), water bodies and population (hence built density and impervious 
surfaces) are examined in the study. Compared to the traditional meteorological observation method, remote 
sensing technology has the advantage of wide coverage, which makes the large-scale assessment of LST possible43.

The major findings from this study reveal: (1) spatial and temporal variations in the LST in the cities; (2) 
change in the land use and land (LULC) are responsible for the change in the LST noted in the cities; (3) sig-
nificant relationship between change LST, LULC and Ecological location of the cities. Generally, most locations 
in the cities with a relatively low temperature in 1984 were converted to hot spots in 2004 and hotter in 2019. 
What is obvious from this study is that maximum air temperature was in built-up areas of the city while the 
minimum temperature observed was in areas with dense vegetation. This is noticeable to be a result of an increase 
in built-up areas over the years and a corresponding decrease in vegetation5,44. This implies that the spatial and 
temporal changes in the land uses have greatly influenced the increase in the land surface temperature of each of 
the identified land uses. The study further reveals increasing variations in LST in all land uses which are results 
of rapid change LULC and modification of urban landscapes. Cities demonstrate greater temperature in their 
centre than the surrounding rural areas, which is known as Urban Heat Island effect. These forms a temperature 
difference between the cities and the surrounding suburbs because of the effect which causes discomfort to the 
city dwellers45. In recent years, the results from the present study demonstrate that a huge amount of vegetation 
cover is replaced by an artificial built surface that absorbs incoming solar radiation or heat and makes the cities 
warmer than ever before. The reasons for this outcome is very obvious as the majority of source landscapes in 
the cities centres are usually built-up surfaces distinguished from the concrete surface. According to the physical 
properties of the materials, thermal conductivity, and heat capacity, the materials with higher thermal conductiv-
ity conduct heat to their interior easier, whereas materials with high heat capacity store more heat and, as more 
heat is retained, the temperature of the material increases40,46,47.

It has been reported in the literature that the phenomenon exists in almost every big city. Numerous factors are 
held accountable for this effect, including land use and land cover changes in urban areas48, anthropogenic heat 
release, climatic conditions and air pollutants42,45. Lagos and Ibadan for instance are some of the fastest-growing 
cities in Africa today due to the rapid physical expansion of the cities. It is also reported that the population of 
the people living in Lagos has increased up to five times in the past 30 years which invariably means that there 
will be massive crowding in terms of establishing structures increased competition for amenities and increased 
thermal discomfort due to overcrowding of people as well as changes in land use and land cover. These findings 
are coherent with the results of the studies by Dewan and Corner48 and Ayanlade6 which revealed the impacts 
of land use and land cover changes on urban LST. Moreover, the results from the present study disclose a strong 
relation between LULC and urban temperature, especially regarding vegetation and built density. The major 
findings and innovation of this study are that different types of land cover within an urban area can affect the 
spatial pattern of the LST, though this varies from one ecological zone to another. Normally, the distribution of 
temperature in an urban area depends on its urban LULC. Based on findings from the present study, it can be 
established that vegetation availability plays a very low significant role in the temperature of the metropolis. The 
results from this study are also useful for urban heat mitigation efforts, which will aid policy maker in dealing 
with city challenges. Essentially as these are the factors directly related to the cities’ land surface temperature 
regime. The major findings from this study are useful in informing policy that will promote more sustainable 
urban development in the cities. What can be learned from this study is that cities’ population is expected to 
keep expanding and therefore there is a need to establish more viable linkages between the growing popula-
tion and land use patterns, essentially because these are the factors directly related to the cities’ land surface 
temperature regime.
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