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Thermally activated intermittent 
dynamics of creeping crack fronts 
along disordered interfaces
Tom Vincent‑Dospital1,2*, Alain Cochard1*, Stéphane Santucci3,4, Knut Jørgen Måløy2 & 
Renaud Toussaint1,2*

We present a subcritical fracture growth model, coupled with the elastic redistribution of the acting 
mechanical stress along rugous rupture fronts. We show the ability of this model to quantitatively 
reproduce the intermittent dynamics of cracks propagating along weak disordered interfaces. To this 
end, we assume that the fracture energy of such interfaces (in the sense of a critical energy release 
rate) follows a spatially correlated normal distribution. We compare various statistical features from 
the obtained fracture dynamics to that from cracks propagating in sintered polymethylmethacrylate 
(PMMA) interfaces. In previous works, it has been demonstrated that such an approach could 
reproduce the mean advance of fractures and their local front velocity distribution. Here, we go further 
by showing that the proposed model also quantitatively accounts for the complex self-affine scaling 
morphology of crack fronts and their temporal evolution, for the spatial and temporal correlations of 
the local velocity fields and for the avalanches size distribution of the intermittent growth dynamics. 
We thus provide new evidence that an Arrhenius-like subcritical growth is particularly suitable for the 
description of creeping cracks.

In the physics of rupture, understanding the effects that material disorder has on the propagation of cracks is of 
prime interest. For instance, the overall strength of large solids is believed to be ruled by the weakest locations in 
their structures, and notably by the voids in their bulk samples1,2. There, cracks tend to initiate as the mechanical 
stress is concentrated. A growing focus has been brought on models in which the description of the breaking 
matrix remains continuous (i.e., without pores). There, the material disorder resides in the heterogeneities of 
the matrix3–9. The propagation of a crack is partly governed by its spatial distribution in surface fracture energy, 
that is, the heterogeneity of the energy needed to generate two opposing free unit surfaces in the continuous 
matrix10, including the dissipation processes at the tip11. From this disorder, one can model a rupture dynamics 
which holds a strongly intermittent behaviour, with extremely slow (i.e., pinned) and fast (i.e., avalanching) 
propagation phases. In many physical processes, including12–14 but not limited15–18 to the physics of fracture, 
such intermittency is referred to as crackling noise19,20. In the rupture framework, this crackling noise is notably 
studied to better understand the complex dynamics of geological faults21–25, and their related seismicity.

Over the last decades, numerous experiments have been run on the interfacial rupture of oven-sintered acrylic 
glass bodies (PMMA)26–28. Random heterogeneities in the fracture energy were introduced by sand blasting the 
interface prior to the sintering process. An important aspect of such experiments concerns the samples prepara-
tion, which allows to constrain the crack to propagate along a weak (disordered) plane. It simplifies the fracture 
problem, leading to a negligible out-of plane motion of the crack front. This method has allowed to study the 
dynamics of rugous fronts, in particular because the transparent PMMA interface becomes more opaque when 
broken. Indeed, the generated rough air-PMMA interfaces reflect more light, and the growth of fronts can thus 
be monitored.

Different models have successfully described parts of the statistical features of the recorded crack propaga-
tion. Originally, continuous line models4,5,20,29 were derived from linear elastic fracture mechanics. While they 
could reproduce the morphology of slow rugous cracks and the size distribution of their avalanches, they fail 
to account for their complete dynamics and, in particular, for the distribution of local propagation velocity 
and for the mean velocity of fronts under different loading conditions. Later on, fiber bundle models were 
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introduced6,30,31, where the fracture plane was discretized in elements that could rupture ahead of the main 
front line, allowing the crack to propagate by the nucleation and the percolation of damage. The local velocity 
distribution could then be reproduced, but not the long term mean dynamics of fronts at given loads. One of 
the most recent models (Cochard et al.8) is a thermally activated model, based on an Arrhenius law, where the 
fracture energy is exceeded at subcritical stresses due to the molecular agitation. It contrasts to other models that 
are strictly threshold based (the crack only advances when the stress reaches a local threshold, rather than its 
propagation being subcritical). A notable advantage of the subcritical framework is that its underlying processes 
are, physically, well understood, and Arrhenius-like laws have long shown to describe various features of slow 
fracturing processes26,32–36. In particular, this framework has proven to reproduce both the mean behaviour of 
experimental fronts37 (i.e., the average front velocity under a given load) and the actual distributions of propa-
gation velocities along these fronts8, whose fat-tail is preserved when observing cracks at different scales38. It 
has recently been proposed39,40 that the same model might also explain the faster failure of brittle matter, that 
is, the dramatic propagation of cracks at velocities close to that of mechanical waves, when taking into account 
the energy dissipated as heat around a progressing crack tip. Indeed, if fronts creep fast enough, their local rise 
in temperature becomes significant compared to the background one, so that they can avalanche to a very fast 
phase, in a positive feedback loop39,40.

Here, we only consider slow fronts (i.e., fronts that creep slowly enough so that their temperature elevation is 
supposed to remain negligible). Building on the work of Cochard et al.8, we study various statistical features that 
can be generated with this Arrhenius-based model (re-introduced in the “Propagation model” section), when 
simulating the rupture of a disordered interface. By comparing these features to those reported for the PMMA 
experiment by Tallakstad et al.28,38, Santucci et al.27 and Maløy et al.26, we show a strong match to the experimental 
data for many of the scaling laws describing the fracture intermittent dynamics, including the growth of the 
fracture width (“Growth exponent and fracture energy correlation length” section), its distribution in local propa-
gation velocity (“Local velocity distribution and fracture energy standard deviation” section), the correlation of 
this velocity in space and time (“Local velocities correlations” section), the size of the propagation avalanches 
(“Avalanches size and shape” section) and the front Hurst exponents (“Front morphology” section). We hence 
re-enforce the relevance of simple thermodynamics coupled with elasticity in the description of material failure.

Propagation model
Constitutive equations.  We consider rugous crack that are characterised by a varying and heterogeneous 
advancement a(x, t) along their front, x being the coordinate perpendicular to the average crack propagation 
direction, a the coordinate along it, and t being the time variable (see Fig. 1). At a given time, the velocity profile 
along the rugous front is modelled to be dictated by an Arrhenius-like growth, as proposed by Cochard et al.8:

where V(x, t) = ∂a(x, t)/∂t is the local propagation velocity of the front at a given time and V0 is a nominal 
velocity, related to the atomic collision frequency41, which is typically similar to the Rayleigh wave velocity of the 
medium in which the crack propagates42. The exponential term is a subcritical rupture probability (i.e., between 
0 and 1). It is the probability for the rupture activation energy (i.e., the numerator term in the exponential) to be 
exceeded by the thermal bath energy kBT0 , that is following a Boltzmann distribution41. The Boltzmann constant 
is denoted kB and the crack temperature is denoted T0 and is modelled to be equal to a constant room temperature 
(typically, T0 = 298 K). Using this constant temperature corresponds to the hypothesis that the crack is propa-
gating slowly enough so that no significant thermal elevation occurs by Joule heating at its tip (i.e., as inferred 
by Refs.39,40). Such propagation without significant heating is notably believed to take place in the experiments 
by Tallakstad et al.28 that we here try to numerically reproduce, and whose geometry is shown in Fig. 1. Indeed, 

(1)V(x, t) = V0 min

[

exp

(

−
α2[Gc(x, a)− G(x, t)]

kBT0

)

, 1

]

,

Figure 1.   (Left): Separation of two rugous and sintered PMMA plates, as reported by Tallakstad et al.28 (side 
view). The rugosity of the (quasi-plane) interface is here massively exaggerated (the plates are centimetres 
thick while the standard deviation in the interface topography is less than a micrometer43). A local position of 
the front has an advancement a(x, t) and a velocity V(x, t). The out of frame coordinate is x and t is the time 
variable. (Right): top view, showing the crack font roughness, which arises from the disorder in the interface’s 
fracture energy.
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their reported local propagation velocities V did not exceed a few millimetres per second, whereas a significant 
heating in acrylic glass is only believed to arise for fractures faster than a few centimetres per second40,44. See the 
supplementary information for further discussion on the temperature elevation.

In Eq. (1), the rupture activation energy is proportional to the difference between an intrinsic material surface 
fracture Energy Gc (in J m−2 ) and the energy release rate G at which the crack is mechanically loaded, which 
corresponds to the amount of energy that the crack dissipates to progress by a given fracture area. As the front 
growth is considered subcritical, we have G < Gc . We here model the fracture energy Gc to hold some quenched 
disorder that is the root cause for any propagating crack front to be rugous and to display an intermittent ava-
lanche dynamics. This disorder is hence dependent on two position variables along the rupture interface. For 
instance, at a given front advancement a(x, t), one gets Gc = Gc(x, a) . The coefficient α2 , in Eq. (1), is an area 
which relates the macroscopic G and Gc values to, respectively, the microscopic elastic energy U = α2G stored in 
the molecular bonds about to break, and to the critical energy Uc = α2Gc above which they actually break. See 
Vanel et al.36, Vincent-Dospital et al.40 or the supplementary information for more insight on the α2 parameter, 
which is an area in the order of d30/l , where d0 is the typical intra-molecular distance and l is the core length scale 
limiting the stress divergence at the crack tip.

Finally, the average mechanical load that is applied on the crack at a given time is redistributed along the 
evolving rugous front, so that G = G(x, t) . To model such a redistribution, we here use the Gao and Rice3 formal-
ism, which integrates the elastostatic kernel along the front:

In this equation, G is the mean energy release rate along the front and PV stands for the integral principal value. 
We, in addition, considered the crack front as spatially periodic, which is convenient to numerically implement 
a spectral version of Eq. (2)45 as explained by Cochard et al.8.

Equations (1) and (2) thus define a system of differential equations for the crack advancement a, which we 
have then solved with an adaptive time step Runge-Kutta algorithm46, as implemented by Hairer et al.47. The 
complete code for the crack simulation is available as a Software Heritage archive48. Further details on the code 
can be obtained by contacting the authors.

Discretization.  In this section, we discuss the main principles we have used in choosing the numerical 
accuracy of our solver. The related parameters are illustrated in Fig. 2.

In attempting to correctly reproduce the experimental results of Tallakstad et al.28, this solver needs to use 
space and time steps, here denoted �xs and �ts , at least smaller than those on which the experimental fronts were 
observed and analysed. Thus, �xs needs to be smaller than the experimental resolutions in space (the camera 
pixel size) �x = �a of about 2 to 5µ m and 1/�ts needs to be higher than the experimental camera frame rate 
1/�t . This frame rate was set by Tallakstad et al.28 to about (100V)/�x , where V  is the average front velocity 
of a given fracture realisation. The propagation statistics of our simulated fronts, henceforward shown in this 
manuscript, have, for consistency, always been computed on scales comparable to the experimental �x , �a , �t 
steps. Thus, as �xs < �x and �ts < �t , we have first decimated the dense numerical outputs on the experimental 
observation grid, by discarding smaller time scales and by averaging smaller space scales to simulate the camera 
frame rate and pixel size.

As the camera resolution was 1024 pixels, the lengths L of the crack segments that Tallakstad et al.28 analysed 
were 1024�x = 3 to 7 mm long, and we have then analysed our numerical simulations on similar front widths. 
Yet, these simulations were priorly run on longer front segments, Ls > L , in order to avoid any possible edge 
effects in the simulated crack dynamics (for instance in the case where L would not be much bigger than the 
typical size of the Gc quenched disorder).

(2)G(x, t) = G(t)

[

1−
1

π
PV

∫ +∞

−∞

∂a(x′, t)/∂x′

x − x′
dx′

]

.

Figure 2.   Illustration of the discretization principles and of the solver and observation grids. Three crack fronts 
at three successive times are shown, over which the parameters discussed in the “Discretization” section are 
defined.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20418  | https://doi.org/10.1038/s41598-021-98556-x

www.nature.com/scientificreports/

Overall, we have checked that the numerical results presented henceforward were obtained using a high 
enough time and space accuracy for them to be independent of the discretization (as is shown in the supple-
mentary information).

Physical parameters values.  For the model dynamics to be compared to the experiments28, one must also 
ensure that the V0 , α , T0 , G and Gc parameters are in likely orders of magnitude.

As V0 is to be comparable to the Rayleigh velocity of acrylic glass, we have here used 1 km s−149. Lengliné 
et al.37 furthermore estimated the ratio α2/(kBT0) to be about 0.15m2 J−1 and they could approximate the 
quantity V0 exp(−α2Gc/[kBT0]) to about 5× 10−14 m s−1 , where Gc  is the average value of Gc in the rupturing 
interface. With our choice on the value of V0 , we then deduce Gc ∼ 250 Jm−2 (note that the trade-off between 
V0 and Gc should be kept in mind when comparing our results with those by Cochard et al.8, as both papers use a 
different V0 ). The value thus inverted for the fracture energy ( 250 Jm−2 ), that is to represent the sintered PMMA 
interfaces, is logically smaller but comparable to that inferred by Vincent-Dospital et al.40 for the rupture of bulk 
PMMA (about 1300 Jm−2 ). Qualitatively, the longer the sintering time, the closer one should get from such a 
bulk toughness, but the less likely an interfacial rupture will occur.

Experiments in two different regimes were run28: a forced one where the deflection of the lower plate (see 
Fig. 1) was driven at a constant speed, and a relaxation regime, where the deflection was maintained constant 
while the crack still advances. In both scenarii, the long term evolution of the average load G(t) and front position 
a(t) was shown8,37 to be reproduced by Eq. (1). In the case of the experiments of Tallakstad et al.28, the intermit-
tent dynamics measured in the two loading regimes were virtually identical. Such similarity likely arises from 
the fact that the avearge load G was, in both cases, computed to be almost constant over time, in regard to the 
spatial variation in G, described by Eq. (2) (see the supplementary information). Here, we will then consider that 
the crack is, in average along the front, always loaded with the same intensity (i.e., G(t) = G).

The actual value of G , together with the average surface fracture energy of the medium Gc  , then mainly 
controls the average crack velocity V  . This average velocity was investigated over five orders of magnitude in 
Ref.28, from 0.03 to 140µms−1 , which, in our formalism, shall correspond to values of (Gc − G ) between 145 
and 85 Jm−2 , respectively, which is actually consistent with the values of G measured by Lengliné et al.37 for 
cracks propagating at similar speeds. The intermittency of the crack motion was experimentally inferred to be 
independent on V  and we show, in the supplementary information, that it is also the case in our simulations. 
The velocity variation along the front shall then only arise from the disorder in Gc and from the related varia-
tions of G due to the roughness of the crack front. Further in this manuscript, we will use G = 120 Jm−2 , which 
corresponds to an average propagation velocity of about 1.5µms−1.

Heterogeneous fracture energy
Of course, the actual surface fracture energy field in which the rupture takes place will significantly impact 
the avalanches dynamics and the crack morphology. Such a field is yet a notable unknown in the experimental 
set-up of Tallakstad et al.28, as their interface final strength derived from complex sand blasting and sintering 
processes. Although these processes were well controlled, so that the rough rupture experiments were repeatable, 
and although the surfaces prior to sintering could be imaged43, the actual resulting distribution in the interface 
cohesion was not directly measurable. While this is, to some extent, a difficulty in assessing the validity of the 
model we present, we will here show that a simple statistical definition of Gc is enough to simulate most of the 
avalanches statistics.

We will indeed consider a normally distributed Gc field around the mean value Gc  with a standard deviation 
δGc and a correlation length lc . Such a landscape in Gc is shown in Fig. 3a, and we proceed to discuss the chosen 
values of δGc and lc in the “Growth exponent and fracture energy correlation length” and “Local velocity distri-
bution and fracture energy standard deviation” sections.

Growth exponent and fracture energy correlation length.  Among the various statistical features 
studied by Tallakstad et al.28, was notably quantified the temporal evolution of their fracture fronts morphology. 
It was interestingly inferred that the standard deviation of the width evolution of a crack front h scales with the 
crack mean advancement:

In this equation, x is a given position along the front, t is a time delay from a given reference time t0 , and h 
writes as

a being the average crack advancement at a given time. To mitigate the effect of the limited resolution of the 
experiments and obtain a better characterization of the scaling of the interfacial fluctuations on the shorter times, 
we computed the subtracted width,

as proposed in Barabasi and Stanley50, and done by Tallakstad et al.28 (whose experiments we here reproduce) 
and Soriano et al.51.

The scaling exponent βG is referred to as the growth exponent, and we will here show how it allows to deduce 
a typical correlation length for the interface disorder. Indeed, βG was measured to be 0.55± 0.08 by Tallakstad 

(3)rms
(

h(t)
)

=

√

<h(t)2>x,t0 ∝
(

Vt
)βG .

(4)hx,t0(t) =
[

a(x, t0 + t)− a(t0 + t)
]

−
[

a(x, t0)− a(t0)
]

,

(5)W(t) =
√
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et al.28. This value is close to 1/2, that is, consistent with an uncorrelated growth process (e.g.,50), such as simple 
diffusion or Brownian motion. We thus get a first indication on the disorder correlation length scale lc . To dis-
play an uncorrelated growth when observed with the experimental resolution ( �x ∼ 3µm), the fronts likely 
encountered asperities whose size was somewhat comparable to this resolution. Indeed, if these asperities in Gc 
were much bigger, the growth would be perceived as correlated. By contrast, if they were much smaller (orders 
of magnitude smaller), the rugosity of the front would not be measurable, as only the average Gc  over an obser-
vation pixel would then be felt. Furthermore, and as shown in Fig. 4a, the exponent βG was observed on scales 
(Vt) up to 100µ m, above which W stabilised to a plateau value of about 30µ m. A common picture is here drawn, 
as both this plateau value and the typical crack propagation distance at which it is reached are likely to also be 
correlated with lc , as the front is to get pinned on the strongest asperities at this scale.

From all these clues, we have considered, in our simulations, the correlation length of the disorder to be about 
lc = 50µ m, and we show in Fig. 4a that it allows an approximate reproduction of the front growth exponent and 
of the plateau at high Vt . Note that the accuracy reported for the exponents in this manuscript is estimated by 
fitting various portions of the almost linear data points and reporting the dispersion of the thus inverted slopes. 
In Fig. 4b, we also show how varying lc impacts W, and, in practice, we have chosen lc by tuning it when compar-
ing these curves to the experimental one. Noteworthily, the thus chosen lc is in the lower range of the size of the 
blasting sand grains ( 50− 300µ m) that were used28 to generate the interface disorder. It is also comparable to 
the correlation length of the blasting induced topographic anomalies ∼ 18µ m on the post-blasting/pre-sintering 
PMMA surfaces, as measured by Santucci et al.43 by white light interferometry.

Local velocity distribution and fracture energy standard deviation.  While the crack advances at 
an average velocity V  , the local velocities along the front, described by Eq. (1), are, naturally, highly dependent 
on the material disorder: the more diverse the met values of Gc the more distributed shall these velocities be.

Maløy et al.26 and Tallakstad et al.28 inferred the local velocities of their cracks with the use of a so-called 
waiting time matrix. That is, they counted the number of discrete time steps a crack would stay on a given camera 
pixel before advancing to the next one. They then deduced an average velocity for this pixel by inverting this 
number and multiplying it by the ratio between the pixel size and the time between two pictures: �a/�t . Such 
a method, that provides a spatial map V(x, a), was applied to our simulated fronts, and we show this V(x, a) 
map in Fig. 3c. As to any time t corresponds a front advancement a(x, t) (recorded with a resolution �a ), an 
equivalent space-time map V(x, t) can also be computed, and it is shown in Fig. 3b. The experimental report28 
presented the probability density function of this latter (space-time) map P(V/V) , and it was inferred that, for 
high values of V, the velocity distribution scaled with a particular exponent η = 2.6± 0.1528,38 (see Fig. 5a). That 
is, it was observed that

Figure 3.   (a) Normal distribution of the fracture energy Gc considered for the simulations. The average value is 
Gc = 250 Jm−2 , with a standard deviation δGc = 35 Jm−2 and a correlation length lc = 50µ m. The three lines 
are the modelled propagating front at three different times t1 < t2 < t3 , using Eqs. (1) and (2). (b) A crack front 
reported by Tallakstad et al.28 (Fig. 3 of the experimental paper), plotted on the same spatial scales. (c,d) Local 
velocity maps V(x, a) in the space–space domain (c) and V(x, t) in the space-time domain (d) for a modelled 
crack propagating in this Gc landscape. Both maps are shown with the same color scale and they are computed 
on a resolution similar to that of the experiments by Tallakstad et al.28, using the waiting time matrix (see text 
for details). The velocity are plotted related to the average crack velocity V = 1.5µms−1 . All parameters used to 
run the corresponding simulation are summarised in Table 1.
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Cochard et al.8, who introduced the model that we here discuss, inferred that the η exponent was mainly depend-
ing on α2(δGc)

2/[kBT0(Gc)
2] . Truly, a more comprehensive expression could also include other quantities, 

such as V0 or lc . Yet, as all other parameters have now been estimated, we can deduce δGc by varying it to obtain 
η ∼ 2.6 . We show, in Fig. 5b, how varying δGc impacts P(V/V) and η . We found δGc ∼ 35 Jm−2 . In Fig. 5a, 
we show the corresponding velocity distribution for a simulation run with this parameter, together with that 
from Tallakstad et al.28, showing a good match. Note that the ability of the model to reproduce the local velocity 

(6)P
(

V/V
)

∝
(

V/V
)−η

.

Figure 4.   (a) Standard deviation of the width evolution of the crack front as a function of the mean crack 
advancement, as defined by Eqs. (3) to (5) for the chosen simulation (plain points) and for the experiments28 
(hollow stars) (out of Fig. 8, Expt. 5 of the experimental paper). The continuous line has a slope 0.6, close to 
that of the experimental points: βG ∼ 0.55 . The numerical βG , obtained with a linear root mean square fit of the 
growth of W, is estimated as βG = 0.60± 0.05 . The dashed lines mark the observation scale �x , corresponding 
to the experimental camera pixel size, and the chosen correlation length for the simulation lc = 50µ m. (b) 
The same width function for simulations with different correlation lengths lc . The rest of the parameters are as 
defined in Table 1. The slope and plateau of the experimental data (shown in (a)) is marked by the dashed line 
for comparison.

Figure 5.   (a) Probability density function of the local propagation velocity along a simulated front (plain 
points), computed from the space-time map of Fig. 3d. The experimental probability28 (out of Fig. 5, Expt. 5 of 
the experimental paper) is shown for comparison (hollow stars). The continuous line has a slope −2.6 , close to 
that of the experimental points. This was achieved by setting the standard deviation for the disorder in fracture 
energy to 35 Jm−2 . The numerical η , obtained with a linear root mean square fit of the distribution tail, is 
estimated as η = 2.6± 0.1 . (b) The same distribution for three three simulations with different values of δGc . 
We chose the value of δGc by tuning it and fitting the slope and maximum of the experimental data, which are 
illustrated by the dashed lines. The rest of the parameters used in these simulations are as defined in Table 1. 
Note that the ability of the model to reproduce the local velocity distribution was already shown by Cochard 
et al.8 (see text for explanation and discussion).
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distribution was already shown by Cochard et al.8, and this figure mainly aims at illustrating our calibration of 
the fracture energy field. The model we present is also slightly different to that of Cochard et al., as the inter-
face fracture energy is, contrarily to this previous study, now described at scales below its correlation length, 
similarly to the observation scale of the experiments. We here verify that the reproduction of the local velocity 
distribution is still valid at these small scales. Satisfyingly, the inverted value of δGc is not too far from the value 
found by Lengliné et al.37 for their fluctuation in the mean fracture energy Gc  along their sintered plates, when 
studying the mean front advancement (i.e., neglecting the crack rugosity) in similar PMMA interfaces, which 
was about 25 Jm−2.

Further statistics
We have now estimated the orders of magnitude of all parameters in Eqs. (1) and (2), including a likely distribu-
tion for an interface fracture energy representative of the experiments28 we aim to simulate (i.e., including Gc  , 
δGc and lc ). For convenience, this information is summarised in Table 1.

We will now pursue by computing additional statistics of the crack dynamics to compare them to those 
reported by Tallakstad et al.28.

Local velocities correlations.  In particular, we here compute the space and time correlations of the veloc-
ities along the front. That is, four correlation functions that are calculated from the V(x, t) and V(x, a) matrices 
(shown in Fig. 3) and defined as:

where i and j are the variables of either V(x, t) or V(x, a) and δi a given i increment. Vj  is the mean of V(i, j) taken 
along j at a given i0 . The corresponding δVj is the velocity standard deviation along the same direction and for 
the same i0 . The correlation functions hence defined are the same as those used by Tallakstad et al.28 on their own 
data, allowing to display a direct comparison of them in Fig. 6. A good general match is obtained.

One can notice the comparable cut-offs along the x axis (Fig. 6a,c), indicating that our chosen correlation 
length for the interface disorder ( lc inferred in the “Growth exponent and fracture energy correlation length” 
section) is a good account of the experiment. Yet, one can notice that Cxt (the velocity correlation along the crack 
front shown in Fig. 6a) is higher in the numerical case than in the experimental one. It could translate the fact 
that the experimental disorder holds wavelengths that are smaller than the observation scale �x , and that our 
modelled Gc distribution, where lc > �x , is rather simplified.

To go further, Tallakstad et al.28 modelled Cxt as

and inverted the values of τx and x∗ to, respectively, 0.53 and about 100µ m. Doing a similar fit on the simulated 
data, we found τx ∼ 0.13 and x∗ ∼ 94µ m. The related function is displayed in Fig. 6a (plain line). Our small 
τx ∼ 0.13 may derive, as discussed, from the better correlation that our simulation displays at small δx ( τx may 
in reality tend to zero for scales smaller than those we observe) compared to that of the experiments, while the 
matching x∗ probably relates to a satisfying choice we made for lc . Overall, the existence of a clear scaling law at 

(7)Cij(δi) =

〈

[

V(i0 + δi, j)− Vj

][

V(i0, j)− Vj

]

(δVj)
2

〉

i0

,

(8)Cxt(δx) ∝ δx−τx exp

(

−
δx

x∗

)

,

Table 1.   Summary of all parameters that are considered in this manuscript. (a): physical parameters in 
Eqs. (1) and (2) believed to be representative of the studied creep experiments. (b): observation scale of the 
modelled fronts, similar to the experimental ones of Tallakstad et al.28. (c): the solver grid, finer than the 
observation scale for numerical accuracy.

Parameter Value Unit

(a)

V0 1000 m s −1

α2/(kBT0) 0.15 m2J−1

Gc 250 J m −2

G 120 J m −2

δGc 35 J m −2

lc 50 µm

(b)

�a = �x 3 µm

�t 10 ms

L 3000 µm

(c)

�xs 1 µm

�ts ∼ 5 ms

Ls 6000 µm
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small offsets, as defined by Eq. (8), is rather uncertain (see the two experimental plots in Fig. 6a) so that mainly 
the cut-off scale is of interest.

On the time correlation Ctx (Fig. 6b), one can similarly define the parameters A, τt and a∗ to fit Eq. (7) with 
a function

where A is a constant of proportionality. Fitting this function to Eq. (7) with a least-squares method, we found 
τt ∼ 0.3 and a∗ ∼ 4.3µ m, and this fit is represented by the dashed line in Fig. 6b. Tallakstad et al.28 reported 
τt ∼ 0.43 and a∗ ∼ 7µ m. Figure 6b shows the experimental and simulated correlation functions in the Vδt/a∗

—Ctx(a
∗/V)τt /A domain, as this allowed a good collapse of the data from numerous experiments28. We show that 

it also allows an approximate collapse of our modelled correlation on a same trend. Finally, the derived value of 
a∗ consistently matches the apparent cut-off length in the Cax correlation function in Fig. 6d. This length being 
of a magnitude similar to that of the observation scale �a , the crack local velocities appear uncorrelated along 
the direction of propagation, which is consistent with the βG ∼ 1/2 growth exponent (e.g.,50).

Avalanches size and shape.  We pursue by characterising the intermittent, burst-like, dynamics of our 
crack fronts and, more specifically, the avalanche (or depinning) and pinning clusters shown by the local front 

(9)Ctx(δt) ≈ Aδt−τt exp

(

−
Vδt

a∗

)

,

Figure 6.   Local velocity correlation functions in space and time as defined by Eq. (7). The plain points were 
computed from the simulation whose parameters are presented in Table 1 and the hollow stars are some of the 
experimental data points extracted from Figs. 6 and 7 of Tallakstad et al.28. In plot (a), the line overlying the 
numerical data set corresponds to a fit using Eq. (8). (b) is plotted in a domain that allowed a good collapse of 
the experimental data for many experiments28. The parameters A, a∗ and τt were inverted from Eq. (9), and the 
related fit is shown by the dashed line overlying the numerical data set. Plots (a,c,d) hold two curves for the 
experiments, corresponding to two distinct sets of experiments done on two different sintered PMMA bodies. 
(b) Shows Expt. 5 of Tallakstad et al.28.
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velocity V(x, a). We define an avalanche when the front velocity locally exceeds the mean velocity V  by an arbi-
trary threshold that we denote c, that is, when

Similarly, we state that a front is pinned when

We then map, in Fig. 7, the thus defined avalanching and pinned locations of the crack. Following the analysis 
of Tallakstad et al.28, we compute for each of these clusters the surface S, the crossline extent lx (that is, the 
maximum of a cluster width in the x direction) and the inline extent la . The definition chosen for la varies for 
the avalanche clusters, where the maximal extent along the a direction is regarded, or the pinned one, where the 
mean extent along the a direction is rather used. This choice was made28 because the pinning clusters tend to be 
more tortuous so that their maximum span along the crack direction of propagation is not really representative 
of their actual extent (see Fig. 7).

In Fig. 8a, we show the probability density function of the cluster surface P(S) and compare it to the experi-
mental one. One can notice that it behaves as

with γ = 1.44± 0.15 . This value is comparable to the exponent inverted experimentally28, that is, γ = 1.56± 0.04
.

Of course, the size of the avalanche (depinning) clusters highly depends on the chosen threshold c, but we 
verified, as experimentally reported, that the value of γ inverted from the simulated data is not dependent on c, 
as shown in Fig. 8b. We also show, in Fig 8c, that the mean cluster size S varies with c approximately as S ∝ c−m , 
with m ∼ 0.68 . This value is comparable with the experimental scaling law28 measured to be S ∝ c−0.75.

(10)V(x, a) > cV .

(11)V(x, a) <
V

c
.

(12)P(S) ∝ S−γ ,

Figure 7.   Positions of the avalanches (left) and pinning locations (right) in the front local velocity map V(x, a) 
shown in Fig. 3c, as per Eqs. (10) and (11). Two thresholds are here used to define these maps relatively to the 
mean velocity: c = 3 and c = 6 . The white areas are the locations of interest, of surfaces S, crossline extents lx 
and inline extents la . Bottom images: Difference in definition of la for the avalanche (or depinning) and pinning 
clusters shown in Fig. 7. For the former, la is the maximum extent along the a direction. For the latter it is the 
average width in the same direction. In both cases, lx is the maximum extent along the x direction and S the full 
surface (in white) of the cluster. The square pattern marks the pixel size ( �x = �a = 3µm).
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We also computed the probability density function of lx and la , that are respectively compared to their experi-
mental equivalent in Fig. 9. These functions can be fitted with

(13)P(lx) ∝ lx
−βx ,

(14)P(la) ∝ la
−βa ,

Figure 8.   (a) Probability density function of the surface of the modelled avalanche clusters (plain points) and of 
the modelled pinning clusters (crosses), for a threshold c = 3 . The straight dashed line has a slope γ = 1.44 , as 
per Eq. (12). For comparison, the hollow stars show the experimental probability density function obtained by 
Tallakstad et al.28 for the avalanche and pinning clusters (both are overlapping, see Fig. 10 of their manuscript). 
(b) Same probability density function for various c values: c = 1.5 (squares), c = 3 (plain points), c = 6 (stars), 
c = 12 (circles). The straight line has a slope γ = 1.4 , as per Eq. (12). (c) Variation of the mean avalanche size 
S as a function of the threshold c for the simulation (plain points) and the experiments (hollow stars). The 
modelled S is expressed in pixels (one pixel is 9µm2 ) and the experimental S reported by Tallakstad et al.28 (in 
their Fig. 13) is in an arbitrary unit, so that the magnitude of both should not here be compared. We have here 
shifted up this experimental data set for an easier comparison with the numerical one. The straight line has a 
slope 0.68.

Figure 9.   (a) Probability density function of the crossline extent lx of the modelled avalanche clusters (plain 
points) and of the modelled pinning clusters (crosses), for a threshold c = 3 . The straight line has a slope 
βx = 1.7 , as per Eq. (13). The hollow stars shows the experimental probability density function obtained by 
Tallakstad et al.28 for the pinning and avalanche clusters (from their Fig. 16a, inset, c = 3). (b) Probability density 
function of the inline extent la of the modelled avalanche clusters (plain points) and of the modelled pinning 
clusters (crosses), for a threshold c = 3 . The two straight dashed lines have a slope βx = 2.2 , inline with that of 
the experimental data from Tallakstad et al.28 for the pinning clusters (hollow stars, from their Fig. 16b, inset, 
c = 3).
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and we found βx = 1.7± 0.2 , close to the reported experimental value28 βx ∼ 1.93 . The value we found for 
βa ∼ 2.2 = 0.2 is also inline with that of Tallakstad et al.28, who reported βa ∼ 2.36.

It should be noted that, while we have here fitted P(S), P(lx) and P(la) with plain scaling laws (i.e., with 
Eqs. (12) to (14)), Tallakstad et al.28 also studied the cut-off scales above which these scaling laws vanish in the 
experimental data, and the dependence of these cut-off scales with the arbitrary threshold c. In our case, such 
scales are challenging to define, as one can for instance notice in Figs. 8 and 9, where an exponential cut-off is not 
obvious. This may result from a limited statistical description of the larger avalanches in our simulations. Similar 
cut-off scales, decreasing with increasing c should however hold in our numerical data, in order to explain the 
decrease of average avalanche size with c, as shown in Fig. 8c.

Front morphology.  Finally, we show, in Fig.  10a, the relations between the clusters surface S and their 
linear extent lx  and la . Here, lx  and la are the mean extents for all the observed clusters sharing a same surface 
(with the given pixel size limiting the resolution). We could fit these relations with lx ∝ S0.77 and la ∝ S0.25 for 
the pinning clusters, and with lx ∝ S0.64 and la ∝ S0.47 for the avalanches clusters. It is in qualitative agreement 
with the laws observed by Tallakstad et al.28: lx ∝ S0.63 and la ∝ S0.34 for the pinning clusters, and S ∝ lx

0.61 and 
la ∝ S0.41 for the avalanches clusters. These exponents were experimentally reported with a ±0.05 accuracy, 
and we estimated comparable error bars for the numerically derived ones. Thus, the shape of our simulated 
avalanches and pinned locations is rather similar to the observed experimental ones. Note that, from all the 
previous exponents, one can easily define H such that la ∝ lx

H , and we thus have Hp ∼ 0.25/0.77 = 0.32± 0.1 
and Hd ∼ 0.47/0.64 = 0.73± 0.01 for, respectively, the simulated pinning and depinning clusters (see Fig. 10b).

It was suggested5,52 that H is a good indicator of the front morphology, as the front shape is to be highly 
dependent on the aspect ratio of its avalanches. To verify this hypothesis, we computed the advancement fluc-
tuation along the front σ , that is

While this quantity was not presented by Tallakstad et al.28, it was provided by other experimental works 
done on the same set-up26,27, and Fig. 11a shows σ as reported by these authors, together with that computed 
in the output of our simulation. One can notice that the numerical fronts are less rugous than the experimental 
ones. Such a mismatch is here due to the fact that the experiment from Santucci et al., shown in Fig. 11a, had 
more rugous crack fronts than the one from Tallakstad et al., to which the simulation is calibrated (as shown 
in Fig. 4). In both cases, the data sets seem to present two self-affine behaviours (e.g.,50) with a Hurst exponent 
ζ that differs at low and high length scales. Noting δx∗ the cut-off between these length scales we indeed have:

(15)σ(δx) =

√

<(a(x0 + δx, t)− a(x0, t))
2>x0,t .

(16)σ ∝ δx
ζ− for δx < δx∗,

(17)σ ∝ δx
ζ+ for δx > δx∗.

Figure 10.   (a) Mean linear extents of the simulated pinning and depinning clusters as a function of cluster size. 
The four data sets are, from top to bottom, lx  for the pinning clusters (hollow stars), lx  for the avalanche clusters 
(crosses), la for the avalanche clusters (plain points), la for the pinning clusters (hollow points). The straight 
lines correspond to the fits described in the inset. See text for the equivalent experimental exponents. (b) Mean 
inline extent la as a function of the mean crossline extent lx  for the pinning and depinning clusters. The straight 
lines have a slope of, respectively, Hp = 0.32 and Hd = 0.73.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20418  | https://doi.org/10.1038/s41598-021-98556-x

www.nature.com/scientificreports/

We derived ζ− ∼ 0.68± 0.05 and ζ+ = 0.4± 0.05 for the simulation, which compare well to the exponents 
that were measured experimentally, respectively, ζ− = 0.60± 0.05 and ζ+ = 0.35± 0.05 and which are also 
close to the values we found for Hd and Hp . The cut-off scale between the two regimes is also similar in both the 
experimental and numerical cases: δx∗ ∼ 80µ m, comparable to the disorder correlation length lc , and to the 
length scales x∗ , below which the local propagation velocities are correlated.

For scales above this correlation length, Cochard et al.8 showed, by analytically analysing the same model 
as we here study, that the front morphology is dominated by the material quenched disorder with a Hurst coef-
ficient approximating to ζ+ = 0.5 . At even larger scales, above Rc ∼ π lcα

2Gc/(kBT0) , they also showed8 that the 
roughness of the simulated cracks ceases to be governed by the quenched disorder but is rather dominated by 
the thermal (annealed) noise, with σ decaying logarithmically and with a Hurst coefficient tending to ζ∞ = 0 . 
With our set of parameters, Rc computes to 6 mm, which is close to, yet bigger than, the total analysed length 
of the front. The value ζ+ ∼ 0.4 , that we have here inverted, arises then likely from the transition between the 
two regimes, ζ+ = 0.5 and ζ∞ = 0 , as already mentioned for the experimental case, in Ref.27. In addition to a 
theoretical Hurst exponent ζ+ = 0.5 , Cochard et al.8 computed an analytical approximation for the fronts mor-
phology power spectrum Pa(Ŵ) , for the length scales Ŵ for which the effect of the quenched disorder prevails:

We show, in Fig. 11b, how this approximation also fits the power spectra of our modelled front.

Discussion and conclusion
We studied an interfacial fracture propagation model, based only on statistical and subcritical physics in the sense 
of an Arrhenius law (Eq. (1)) and on the elastic redistribution of stress along crack fronts (Eq. (2)). Following 
the work of Cochard et al.8, we here showed that it allows a good representation of the intermittent dynamics of 
fracture in disordered media, as it approximately mimics the scaling laws dictating the propagation of experi-
mental fronts, such as their growth exponent, their local velocity distribution and space and time correlations, 
the size of their avalanches and their self-affine characteristics.

To run our simulations, we had to assume a given distribution for the toughness of the rupturing inter-
face, as this quantity is not directly measurable in the laboratory. We proposed Gc to be normally distributed 
with a unique correlation length and, of course, this can only be a rough approximation of the actual fracture 
energy obtained by Tallakstad et al.28 by sintering two sand-blasted plexiglass plates. From this approximation, 
could arise discrepancies between our simulations and the experiments. We have indeed shown how some 
of the observed exponents were strongly dependent on the definition of the material disorder. We also have 
assumed a perfectly elastic crack front, when the local dynamics of creeping PMMA could be visco-elastic in 

(18)Pa(Ŵ) ∼

(

δGc

G

)2
ŴRc

4π2
.

Figure 11.   (a) Advancement fluctuation σ along the crack fronts, as per Eq. (15), for the simulation (plain 
points) and an experimental data set from Santucci et al.27 (see their Fig. 4). Different self-affine behaviours 
are observed above and below the δx∗ cut-off, with comparable Hurst exponents ζ . The dashed lines mark the 
slopes fitted on the simulation data for the two cases. The experimental points are from an experiment different 
from those of Tallakstad et al.28 to which the model was calibrated. (b) Power spectra of the simulated crack 
advancement, averaged over 10,000 consecutive fronts. It is shown both before (raw) and after (binned) binning 
the fronts to the experimental camera pixel size. The difference between these two plots shows an influence of 
the observation scale on the small-scale study of the crack morphology. The plain line is the approximation8 
from Eq. (18), which is valid between lc and Rc , where the morphology is dominated by the material quenched 
disorder. Note that the scaling regime for scales above lc was already studied by Cochard et al.8, while the model 
match to the experiment below this cut-off scale, shown in (a), is a new result, as already discussed in the “Local 
velocity distribution and fracture energy standard deviation” section.
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part, particularly below the typical length scale r ∼ GE/σ 2
y ∼ 30µ m for plasticity around crack tips (e.g.,1) in 

this material, where σy ∼ 100 MPa is the tensile yield stress of the polymer and E ∼ 3 GPa its Young modulus53.
These points being stated, the vast majority of the statistical quantities that we have here studied show a good 

match to those from the experimental observations, so that both the considered physical model and the interface 
definition are likely to be relevant. A further validation of this thermally activated model could derive from the 
comparison of its predictions with interfacial experiments at various background temperatures T0 . However, 
such experimental data is, to our knowledge, not yet available. Of course, some of our considered parameters 
(e.g., Gc , V0 or α ) may, in practice, be temperature dependent so that a straight transposition of the model to 
different background temperatures could prove to be too simple. Creep experiments in bulk PMMA at vari-
ous room temperatures can however be found in the literature54, where only the mean front velocity versus the 
mean mechanical load are measured. In this case54, it is reported that the creep dynamics is compatible with an 
Arrhenius-like process. By submitting many different materials to a constant load, at various temperatures, their 
lifetime was also shown33,36 to follow an Arrhenius law, with an energy barrier that decreases with the applied 
stress. These materials include metals, alloys, non-metallic crystals and polymers (and PMMA in particular).

It should be noted that, as stated in our introduction, other models have been considered to numerically 
reproduce the interfacial PMMA experiments, notably, a non-subcritical threshold based fluctuating line model 
by Tanguy et al.29, Bonamy et al.4 or Laurson et al.5,20 and a fiber bundle approach by Schmittbuhl et al.6, Gjerden 
et al.30 or Stormo et al.31. The present manuscript does not challenge these other models per se, but rather offers 
an alternative explanation to the intermittent propagation of rough cracks. The former model, the fluctuating 
line model4,5,20,29, considers a similar redistribution of energy release rate G as proposed in Eq. (2), but with a 
dynamics that is thresholded rather than following a subcritical growth law. The fronts either move forward by 
one pixel5 if G > Gc , or with a velocity proportional4 to ( G − Gc ). It is completely pinned otherwise ( V = 0 for 
G < Gc ). While reproducing several statistical features of the experiments, this non-subcritical line propagation 
model does not simulate the mean propagation of cracks in various loading regimes (as done by Cochard et al.8) 
or the distribution in local velocity55, and, in particular, the power law tail of this distribution (i.e., Fig. 5). By 
contrast, the latter model6,30,31, the fiber bundle one, can reproduce this particular power law tail. It is not a line 
model: the interface is sampled with parallel elastic fibers breaking at a given force threshold. This threshold is 
less in the vicinity of the crack than away from it (it is modelled with a linear gradient), explaining why the rup-
ture is concentrated around a defined front, and it holds a random component in order to model the quenched 
disorder of the interface. An advantage of the fiber bundle model is to be able to describe a coalescence of dam-
age in front of the crack56 rather than solely describing a unique front. This could likely also be achieved in a 
subcritical framework, but would require to authorise damage in a full 2D plane, or require a full 3D modelling 
(i.e., also authorise out-of-plane damage), rather than only the modelling of a 2D front. In practice, thermal 
activation and damage coalescence may occur simultaneously. The observation of actual damage nucleation, in 
the experiments that we reproduce, has however never been obvious. Instead, the experimental fronts look rather 
continuous. Coalescence could yet still be at play at length scales smaller than the observation resolution. This 
being stated, an advantage of our model is to only rely on the experimental observations, on stress redistribution 
and on statistical physics. Another clear advantage of the Arrhenius based model, when compared to the other 
ones, is to hold a subcritical description that is physically well understood and that is a good descriptor of creep 
in many materials1,36. For the record, we show in Table 2 a comparison between the different exponents predicted 
by the three models, that all successfully reproduce some experimental observables.

Note that, if linearizing Eq. (1) with a Taylor expansion around Gc − G , that is, for propagation velocities 
close to the mean crack speed V = V0 exp(−α2[Gc − G]/[kBT0]) , one obtains

Table 2.   Comparison of various exponents and cut-off scales derived experimentally27,28 (Expt.) and 
numerically with the present, Arrhenius Based, fluctuating Line model (ABL), the Fiber Bundle model30 (FB) 
and the Non-Subcritical fluctuating Line model4,5 (NSL).

Parameter Expt.

Models

ABL FB NSL

βG 0.55 0.6 0.52

η 2.6 2.6 2.56

τx 0.53 0.13 0.4

x∗ ∼ 100µm 94µm

βx 1.94 1.7

βa 2.34 2.2

γ 1.56 1.4 1.5

m 0.75 0.68

ζ− 0.60 0.68 0.67 0.48

ζ+ 0.35 0.4 0.39 0.37

Hd 0.66 0.73 0.6 0.65

Hp 0.55 0.32 0.4
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where Vcst is a constant equal to V(1+ α2[Gc − G]/[kBT0]) . This simplified form for our subcritical model is 
mathematically similar to that of the overcritical model (in the sense that a non zero velocity is only obtained 
for G > Gc ) of Bonamy et al.4, where V = max[µ(Gc − G), 0] and where the coefficient of proportionality µ was 
named the ‘effective mobility of the crack front’. Equation (19) may give some insight in the physical meaning 
of µ in this alternative model4. While the above similitude in mathematical forms may explain the obtention of 
some similar exponents in the dynamics of the two models (see Table 2), Eq. (19) is only a crude approximation 
of our highly non-linear Arrhenius formalism, which, as discussed below, allows a more exhaustive description 
of the experimental intermittent creep dynamics. In our simulations, the exponential Arrhenius probability 
term, describing the crack velocity, ranges over more than three orders of magnitude while ( Gc − G ) ranges 
over less than two decades.

Continuing with the comparison of our model with pre-existing ones, we had, in our case, to calibrate the 
disorder to the experimental data, in particular to accurately reproduce the η exponent, that is, to reproduce the 
fat tail of the crack velocity distribution. Paradoxically, this exponent, which is not accounted for by the other 
line model, has been found to be rather constant across different experiments and experimental set-ups. It 
could indicate that, in practice, the disorder obtained experimentally from the blasting and sintering of PMMA 
plates has always been relatively similar. Such qualitative statement is of course difficult to verify, because there 
exists no direct way of measuring the fracture energy of the experimental sintered samples. From Fig. 5b, one 
can yet notice that the calibration of the disorder amplitude does not need to be particularly accurate to obtain 
a qualitative fit to the experimental velocity distribution. The spread of the η exponent, for large disorders, is 
not that important in our model for the range of considered δGc , which can also be seen in Fig. 5 of Cochard 
et al.8. Gjerden et al.57 suggested that the nucleation of damages, predicted by their fiber bundle model, led to 
a new - percolation - universality class for the propagation of cracks, explaining in particular the robustness 
of the exponent η . Their studies are however also numerical and cover a finite range of disorders, and an extra 
analytical proof would be needed to show that a system of infinite size would lead exactly to the same exponent, 
for any disorder distribution shape and amplitude.

Despite the variety in models reproducing the rough dynamics of creep, the present work provides additional 
indications that a thermodynamics framework in the sense of a thermally activated subcritical crack growth is 
well suited for the description of creeping cracks. Such a framework has long been considered (e.g.,32–34,36,58,59), 
and, additionally to the scaling laws that we have here presented, the proposed model was proven to fit many 
other observable features of the physics of rupture8,37,39,40. It accurately recreates the mean advancement of cracks 
under various loading conditions8,37, including when a front creeps in a spontaneous (not forced) relaxation 
regime, which cannot be achieved with the other (non subcritical) models, predicting an immobile front. When 
coupled with heat dissipation at the fracture tip, our description also accounts for the brittleness of matter40 and 
for its brittle-ductile transition39.

Indeed, for zero dimensional (scalar) crack fronts, it was shown40 that the thermal fluctuation at the crack 
tip, expressed as a deviation of the temperature from T0 in Eq. (1), can explain the transition between creep and 
abrupt rupture, that is, the transition to a propagation velocity close to a mechanical wave speed V0 , five orders 
of magnitude higher than the maximal creep velocity V that was here modelled. It was also shown, similarly to 
many phase transition problems, that such a thermal transition could be favoured by material disorder39. Thus, 
a direct continuation of the present work could be to introduce such a heat dissipation for interfacial cracks in 
order to study how brittle avalanches nucleate at given positions (typically positions with weaker Gc ) to then 
expand laterally to become bulk threatening events.

Received: 6 January 2021; Accepted: 3 September 2021

References
	 1.	 Lawn, B. Fracture of Brittle Solids. Cambridge Solid State Science Series 2nd edn. (Cambridge University Press, 1993).
	 2.	 Gerard, D. & Koss, D. Porosity and crack initiation during low cycle fatigue. Mater. Sci. Eng. A 129, 77–85. https://​doi.​org/​10.​1016/​

0921-​5093(90)​90346-5 (1990).
	 3.	 Gao, H. & Rice, J. R. A first-order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech. 56, 828–836. https://​

doi.​org/​10.​1115/1.​31761​78 (1989).
	 4.	 Bonamy, D., Santucci, S. & Ponson, L. Crackling dynamics in material failure as the signature of a self-organized dynamic phase 

transition. Phys. Rev. Lett. 101, 045501. https://​doi.​org/​10.​1103/​PhysR​evLett.​101.​045501 (2008).
	 5.	 Laurson, L., Santucci, S. & Zapperi, S. Avalanches and clusters in planar crack front propagation. Phys. Rev. E 81, 046116. https://​

doi.​org/​10.​1103/​PhysR​evE.​81.​046116 (2010).
	 6.	 Schmittbuhl, J., Hansen, A. & Batrouni, G. G. Roughness of interfacial crack fronts: Stress-weighted percolation in the damage 

zone. Phys. Rev. Lett. 90, 045505. https://​doi.​org/​10.​1103/​PhysR​evLett.​90.​045505 (2003).
	 7.	 Danku, Z., Kun, F. & Herrmann, H. J. Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture. Phys. Rev. E 

92, 062402. https://​doi.​org/​10.​1103/​PhysR​evE.​92.​062402 (2015).
	 8.	 Cochard, A., Lengliné, O., Måløy, K. J. & Toussaint, R. Thermally activated crack fronts propagating in pinning disorder: Simul-

taneous brittle/creep behavior depending on scale. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.https://​doi.​org/​10.​1098/​rsta.​2017.​
0399 (2018).

	 9.	 Wiese, K. J. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles (2021). Preprint, arXiv:​
2102.​01215.

	10.	 Griffith, A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 221, 163–198. https://​
doi.​org/​10.​1098/​rsta.​1921.​0006 (1921).

(19)V ∼ Vcst −
α2V

kBT0
(Gc − G),

https://doi.org/10.1016/0921-5093(90)90346-5
https://doi.org/10.1016/0921-5093(90)90346-5
https://doi.org/10.1115/1.3176178
https://doi.org/10.1115/1.3176178
https://doi.org/10.1103/PhysRevLett.101.045501
https://doi.org/10.1103/PhysRevE.81.046116
https://doi.org/10.1103/PhysRevE.81.046116
https://doi.org/10.1103/PhysRevLett.90.045505
https://doi.org/10.1103/PhysRevE.92.062402
https://doi.org/10.1098/rsta.2017.0399
https://doi.org/10.1098/rsta.2017.0399
http://arxiv.org/abs/2102.01215
http://arxiv.org/abs/2102.01215
https://doi.org/10.1098/rsta.1921.0006
https://doi.org/10.1098/rsta.1921.0006


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20418  | https://doi.org/10.1038/s41598-021-98556-x

www.nature.com/scientificreports/

	11.	 Irwin, G. R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957).
	12.	 Barés, J., Hattali, M. L., Dalmas, D. & Bonamy, D. Fluctuations of global energy release and crackling in nominally brittle hetero-

geneous fracture. Phys. Rev. Lett. 113, 264301. https://​doi.​org/​10.​1103/​physr​evlett.​113.​264301 (2014).
	13.	 Turquet, A. L. et al. Source localization of microseismic emissions during pneumatic fracturing. Geophys. Res. Lett. 46, 3726–3733. 

https://​doi.​org/​10.​1029/​2019G​L0821​98 (2019).
	14.	 Vu, C.-C. & Weiss, J. Asymmetric damage avalanche shape in quasibrittle materials and subavalanche (aftershock) clusters. Phys. 

Rev. Lett. 125, 105502. https://​doi.​org/​10.​1103/​PhysR​evLett.​125.​105502 (2020).
	15.	 Santucci, S., Planet, R., Måløy, K. J. & Ortín, J. Avalanches of imbibition fronts: Towards critical pinning. Europhys. Lett. 94, 46005. 

https://​doi.​org/​10.​1209/​0295-​5075/​94/​46005 (2011).
	16.	 Vives, E. et al. Distributions of avalanches in martensitic transformations. Phys. Rev. Lett. 72, 1694–1697. https://​doi.​org/​10.​1103/​

PhysR​evLett.​72.​1694 (1994).
	17.	 Dimiduk, D. M., Woodward, C., LeSar, R. & Uchic, M. D. Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190. 

https://​doi.​org/​10.​1126/​scien​ce.​11238​89 (2006).
	18.	 Durin, G. & Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. 

Lett. 84, 4705–4708. https://​doi.​org/​10.​1103/​PhysR​evLett.​84.​4705 (2000).
	19.	 Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 12, 12. https://​doi.​org/​10.​1038/​35065​675 (2001).
	20.	 Laurson, L. et al. Evolution of the average avalanche shape with the universality class. Nat. Commun. 4, 242–250. https://​doi.​org/​

10.​1038/​ncomm​s3927 (2013).
	21.	 Jolivet, R. et al. The burst-like behavior of aseismic slip on a rough fault: The creeping section of the Haiyuan Fault, China. Bull. 

Seismol. Soc. Am. 105, 480–488. https://​doi.​org/​10.​1785/​01201​40237 (2014).
	22.	 Rousset, B. et al. An aseismic slip transient on the north anatolian fault. Geophys. Res. Lett. 43, 3254–3262. https://​doi.​org/​10.​1002/​

2016G​L0682​50 (2016).
	23.	 Grob, M. et al. Quake catalogs from an optical monitoring of an interfacial crack propagation. Pure Appl. Geophys. 166, 777–799. 

https://​doi.​org/​10.​1007/​s00024-​004-​0496-z (2009).
	24.	 Lengliné, O. et al. Downscaling of fracture energy during brittle creep experiments. J. Geophys. Res. Solid Earthhttps://​doi.​org/​10.​

1029/​2010J​B0080​59 (2011).
	25.	 Lengliné, O. et al. Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach. Earth 

Planet. Sci. Lett. 331–332, 215–223. https://​doi.​org/​10.​1016/j.​epsl.​2012.​03.​022 (2012).
	26.	 Måløy, K. J., Santucci, S., Schmittbuhl, J. & Toussaint, R. Local waiting time fluctuations along a randomly pinned crack front. 

Phys. Rev. Lett. 96, 045501. https://​doi.​org/​10.​1103/​PhysR​evLett.​96.​045501 (2006).
	27.	 Santucci, S. et al. Fracture roughness scaling: A case study on planar cracks. Europhys. Lett. 92, 44001. https://​doi.​org/​10.​1209/​

0295-​5075/​92/​44001 (2010).
	28.	 Tallakstad, K. T., Toussaint, R., Santucci, S., Schmittbuhl, J. & Måløy, K. J. Local dynamics of a randomly pinned crack front dur-

ing creep and forced propagation: An experimental study. Phys. Rev. E 83, 046108. https://​doi.​org/​10.​1103/​PhysR​evE.​83.​046108 
(2011).

	29.	 Tanguy, A., Gounelle, M. & Roux, S. From individual to collective pinning: Effect of long-range elastic interactions. Phys. Rev. E 
58, 1577–1590. https://​doi.​org/​10.​1103/​PhysR​evE.​58.​1577 (1998).

	30.	 Gjerden, K. S., Stormo, A. & Hansen, A. Local dynamics of a randomly pinned crack front: A numerical study. Front. Phys. 2, 66. 
https://​doi.​org/​10.​3389/​fphy.​2014.​00066 (2014).

	31.	 Stormo, A., Lengliné, O., Schmittbuhl, J. & Hansen, A. Soft-clamp fiber bundle model and interfacial crack propagation: Com-
parison using a non-linear imposed displacement. Front. Phys. 4, 18. https://​doi.​org/​10.​3389/​fphy.​2016.​00018 (2016).

	32.	 Brenner, S. S. Mechanical behavior of sapphire whiskers at elevated temperatures. J. Appl. Phys. 33, 33–39. https://​doi.​org/​10.​
1063/1.​17285​23 (1962).

	33.	 Zhurkov, S. N. Kinetic concept of the strength of solids. Int. J. Fract. 26, 295–307. https://​doi.​org/​10.​1007/​BF009​62961 (1984).
	34.	 Santucci, S., Vanel, L. & Ciliberto, S. Subcritical statistics in rupture of fibrous materials: Experiments and model. Phys. Rev. Lett. 

93, 095505. https://​doi.​org/​10.​1103/​PhysR​evLett.​93.​095505 (2004).
	35.	 Santucci, S., Cortet, P.-P., Deschanel, S., Vanel, L. & Ciliberto, S. Subcritical crack growth in fibrous materials. Europhys. Lett. 74, 

595–601. https://​doi.​org/​10.​1209/​epl/​i2005-​10575-2 (2006).
	36.	 Vanel, L., Ciliberto, S., Cortet, P.-P. & Santucci, S. Time-dependent rupture and slow crack growth: Elastic and viscoplastic dynam-

ics. J. Phys. D Appl. Phys. 42, 214007. https://​doi.​org/​10.​1088/​0022-​3727/​42/​21/​214007 (2009).
	37.	 Lengliné, O. et al. Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium. Phys. Rev. E 

84, 036104. https://​doi.​org/​10.​1103/​PhysR​evE.​84.​036104 (2011).
	38.	 Tallakstad, K., Toussaint, R., Santucci, S. & Måløy, K. Non-gaussian nature of fracture and the survival of fat-tail exponents. Phys. 

Rev. Lett. 110, 145501. https://​doi.​org/​10.​1103/​PhysR​evLett.​110.​145501 (2013).
	39.	 Vincent-Dospital, T., Toussaint, R., Cochard, A., Måløy, K. J. & Flekkøy, E. G. Thermal weakening of cracks and brittle-ductile 

transition of matter: A phase model. Phys. Rev. Mater.https://​doi.​org/​10.​1103/​PhysR​evMat​erials.​4.​023604 (2020).
	40.	 Vincent-Dospital, T. et al. How heat controls fracture: The thermodynamics of creeping and avalanching cracks. Soft Matter 12, 

12. https://​doi.​org/​10.​1039/​d0sm0​10 (2020).
	41.	 Hammes, G. G. Principles of Chemical Kinetics (Academic Press, 1978).
	42.	 Freund, L. B. Crack propagation in an elastic solid subjected to general loading. J. Mech. Phys. Solids 20, 129–152. https://​doi.​org/​

10.​1016/​0022-​5096(72)​90006-3 (1972).
	43.	 Santucci, S., Måløy, K. J., Toussaint, R. & Schmittbuhl, J. Self-affine scaling during interfacial crack front propagation. NATO, ASI, 

Geilo. In Dynamics of Complex Interconnected Systems (eds Skjeltorp, A. T. & Belushkin, A. V.) (Springer, 2006).
	44.	 Hattali, M., Barés, J., Ponson, L. & Bonamy, D. Low velocity surface fracture patterns in brittle material: A newly evidenced 

mechanical instability. In THERMEC 2011, Materials Science Forum Vol. 706, 920–924 (Trans Tech Publications Ltd, 2012) https://​
doi.​org/​10.​4028/​www.​scien​tific.​net/​MSF.​706-​709.​920.

	45.	 Perrin, G., Rice, J. R. & Zheng, G. Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43, 1461–1495. https://​doi.​
org/​10.​1016/​0022-​5096(95)​00036-I (1995).

	46.	 Dormand, J. R. & Prince, P. J. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26. https://​doi.​org/​10.​
1016/​0771-​050X(80)​90013-3 (1980).

	47.	 Hairer, E., Nørsett, S. P. & Wanner, G. Solving Ordinary Differential Equations I, Nonstiff Problems (Springer, 1993).
	48.	 Cochard, A.,  Lengliné, O.,  Vincent-Dospital, T.,  Toussaint, R.,  Santucci, S.  & Måløy, K. J.  CreepyFractures, Software Heritage, 

swh:1:dir:03ab8789332dc44bb7699b36c1bb6abfc061dbb4 (2021).
	49.	 Zerwer, A., Polak, M. A. & Santamarina, J. C. Wave propagation in thin plexiglas plates: Implications for Rayleigh waves. NDT E 

Int. 33, 33–41. https://​doi.​org/​10.​1016/​S0963-​8695(99)​00010-9 (2000).
	50.	 Barabási, A.-L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge University Press, 1995).
	51.	 Soriano, J. et al. Anomalous roughening of viscous fluid fronts in spontaneous imbibition. Phys. Rev. Lett. 95, 104501. https://​doi.​

org/​10.​1103/​PhysR​evLett.​95.​104501 (2005).
	52.	 Måløy, K. J., Toussaint, R. & Schmittbuhl, J. Dynamics and structure of interfacial crack front. In 11th International Conference on 

Fracture 2005, ICF11 7 (2005).
	53.	 Technical information, Altuglas sheets. Tech. Rep., Arkema (2017).

https://doi.org/10.1103/physrevlett.113.264301
https://doi.org/10.1029/2019GL082198
https://doi.org/10.1103/PhysRevLett.125.105502
https://doi.org/10.1209/0295-5075/94/46005
https://doi.org/10.1103/PhysRevLett.72.1694
https://doi.org/10.1103/PhysRevLett.72.1694
https://doi.org/10.1126/science.1123889
https://doi.org/10.1103/PhysRevLett.84.4705
https://doi.org/10.1038/35065675
https://doi.org/10.1038/ncomms3927
https://doi.org/10.1038/ncomms3927
https://doi.org/10.1785/0120140237
https://doi.org/10.1002/2016GL068250
https://doi.org/10.1002/2016GL068250
https://doi.org/10.1007/s00024-004-0496-z
https://doi.org/10.1029/2010JB008059
https://doi.org/10.1029/2010JB008059
https://doi.org/10.1016/j.epsl.2012.03.022
https://doi.org/10.1103/PhysRevLett.96.045501
https://doi.org/10.1209/0295-5075/92/44001
https://doi.org/10.1209/0295-5075/92/44001
https://doi.org/10.1103/PhysRevE.83.046108
https://doi.org/10.1103/PhysRevE.58.1577
https://doi.org/10.3389/fphy.2014.00066
https://doi.org/10.3389/fphy.2016.00018
https://doi.org/10.1063/1.1728523
https://doi.org/10.1063/1.1728523
https://doi.org/10.1007/BF00962961
https://doi.org/10.1103/PhysRevLett.93.095505
https://doi.org/10.1209/epl/i2005-10575-2
https://doi.org/10.1088/0022-3727/42/21/214007
https://doi.org/10.1103/PhysRevE.84.036104
https://doi.org/10.1103/PhysRevLett.110.145501
https://doi.org/10.1103/PhysRevMaterials.4.023604
https://doi.org/10.1039/d0sm010
https://doi.org/10.1016/0022-5096(72)90006-3
https://doi.org/10.1016/0022-5096(72)90006-3
https://doi.org/10.4028/www.scientific.net/MSF.706-709.920.
https://doi.org/10.4028/www.scientific.net/MSF.706-709.920.
https://doi.org/10.1016/0022-5096(95)00036-I
https://doi.org/10.1016/0022-5096(95)00036-I
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/S0963-8695(99)00010-9
https://doi.org/10.1103/PhysRevLett.95.104501
https://doi.org/10.1103/PhysRevLett.95.104501


16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20418  | https://doi.org/10.1038/s41598-021-98556-x

www.nature.com/scientificreports/

	54.	 Marshall, G. P., Coutts, L. H. & Williams, J. G. Temperature effects in the fracture of PMMA. J. Mater. Sci. 9, 1409–1419. https://​
doi.​org/​10.​1007/​BF005​52926 (1974).

	55.	 Santucci, S. et al. Avalanches and extreme value statistics in interfacial crackling dynamics. Philos. Trans. R. Soc. A Math. Phys. 
Eng. Sci. 377, 20170394. https://​doi.​org/​10.​1098/​rsta.​2017.​0394 (2019).

	56.	 Bouchaud, E., Bouchaud, J., Fisher, D., Ramanathan, S. & Rice, J. Can crack front waves explain the roughness of cracks?. J. Mech. 
Phys. Solids 50, 1703–1725. https://​doi.​org/​10.​1016/​S0022-​5096(01)​00137-5 (2002).

	57.	 Gjerden, K. S., Stormo, A. & Hansen, A. Universality classes in constrained crack growth. Phys. Rev. Lett. 111, 135502. https://​doi.​
org/​10.​1103/​PhysR​evLett.​111.​135502 (2013).

	58.	 Scorretti, R., Ciliberto, S. & Guarino, A. Disorder enhances the effects of thermal noise in the fiber bundle model. Europhys. Lett. 
55, 626–632. https://​doi.​org/​10.​1209/​epl/​i2001-​00462-x (2001).

	59.	 Roux, S. Thermally activated breakdown in the fiber-bundle model. Phys. Rev. E 62, 6164–6169. https://​doi.​org/​10.​1103/​PhysR​
evE.​62.​6164 (2000).

	60.	 Toussaint, R. et al. How cracks are hot and cool: A burning issue for paper. Soft Matter 12, 5563–5571. https://​doi.​org/​10.​1039/​
C6SM0​0615A (2016).

	61.	 Vincent-Dospital, T., Toussaint, R., Cochard, A., Flekkøy, E. G. & Måløy, K. J. Thermal dissipation as both the strength and weak-
ness of matter. A material failure prediction by monitoring creep. Soft Matter 12, 12. https://​doi.​org/​10.​1039/​D0SM0​2089C (2021).

	62.	 Dugdale, D. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104. https://​doi.​org/​10.​1016/​0022-​5096(60)​90013-2 
(1960).

	63.	 Henkee, C. S. & Kramer, E. J. Crazing and shear deformation in crosslinked polystyrene. J. Polym. Sci. Polym. Phys. Ed. 22, 721–737. 
https://​doi.​org/​10.​1002/​pol.​1984.​18022​0414 (1984).

	64.	 Anderson, T. L. Fracture Mechanics: Fundamentals and Applications (Taylor and Francis, 2005).

Acknowledgements
The authors declare no competing interests in the publishing of this work. They acknowledge the support of 
the Universities of Strasbourg and Oslo, of the CNRS INSU ALEAS program and of the IRP France-Norway 
D-FFRACT. We thank the Research Council of Norway through its Centres of Excellence funding scheme, project 
number 262644. We are also grateful for the support of the Lavrentyev Institute of Hydrodynamics, through 
Grant No 14.W03.31.0002 of the Russian Government.

Author contributions
T.V.-D. developed and analyzed the model and the simulations, and redacted the first versions of the manuscript. 
A.C. set the basis for the numerical implementation of the model and the principles of the resolution algorithm. 
R.T. proposed the physical basis of the model and its mathematical formulation. K.J.M. and S.S. contributed in 
the interpretation of the model in fracture mechanics applications, and advised on the the experimental results. 
All authors participated to the redaction of the manuscript and agreed with the submitted version.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​98556-x.

Correspondence and requests for materials should be addressed to T.V.-D., A.C. or R.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1007/BF00552926
https://doi.org/10.1007/BF00552926
https://doi.org/10.1098/rsta.2017.0394
https://doi.org/10.1016/S0022-5096(01)00137-5
https://doi.org/10.1103/PhysRevLett.111.135502
https://doi.org/10.1103/PhysRevLett.111.135502
https://doi.org/10.1209/epl/i2001-00462-x
https://doi.org/10.1103/PhysRevE.62.6164
https://doi.org/10.1103/PhysRevE.62.6164
https://doi.org/10.1039/C6SM00615A
https://doi.org/10.1039/C6SM00615A
https://doi.org/10.1039/D0SM02089C
https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/10.1002/pol.1984.180220414
https://doi.org/10.1038/s41598-021-98556-x
https://doi.org/10.1038/s41598-021-98556-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Thermally activated intermittent dynamics of creeping crack fronts along disordered interfaces
	Propagation model
	Constitutive equations. 
	Discretization. 
	Physical parameters values. 

	Heterogeneous fracture energy
	Growth exponent and fracture energy correlation length. 
	Local velocity distribution and fracture energy standard deviation. 

	Further statistics
	Local velocities correlations. 
	Avalanches size and shape. 
	Front morphology. 

	Discussion and conclusion
	References
	Acknowledgements


