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Modeling hydrogen solubility 
in hydrocarbons using extreme 
gradient boosting and equations 
of state
Mohammad‑Reza Mohammadi1, Fahime Hadavimoghaddam2, Maryam Pourmahdi3, 
Saeid Atashrouz4, Muhammad Tajammal Munir5, Abdolhossein Hemmati‑Sarapardeh1,6,7*, 
Amir H. Mosavi8,9* & Ahmad Mohaddespour5*

Due to industrial development, designing and optimal operation of processes in chemical and 
petroleum processing plants require accurate estimation of the hydrogen solubility in various 
hydrocarbons. Equations of state (EOSs) are limited in accurately predicting hydrogen solubility, 
especially at high-pressure or/and high-temperature conditions, which may lead to energy waste 
and a potential safety hazard in plants. In this paper, five robust machine learning models including 
extreme gradient boosting (XGBoost), adaptive boosting support vector regression (AdaBoost-SVR), 
gradient boosting with categorical features support (CatBoost), light gradient boosting machine 
(LightGBM), and multi-layer perceptron (MLP) optimized by Levenberg–Marquardt (LM) algorithm 
were implemented for estimating the hydrogen solubility in hydrocarbons. To this end, a databank 
including 919 experimental data points of hydrogen solubility in 26 various hydrocarbons was 
gathered from 48 different systems in a broad range of operating temperatures (213–623 K) and 
pressures (0.1–25.5 MPa). The hydrocarbons are from six different families including alkane, alkene, 
cycloalkane, aromatic, polycyclic aromatic, and terpene. The carbon number of hydrocarbons is 
ranging from 4 to 46 corresponding to a molecular weight range of 58.12–647.2 g/mol. Molecular 
weight, critical pressure, and critical temperature of solvents along with pressure and temperature 
operating conditions were selected as input parameters to the models. The XGBoost model best fits 
all the experimental solubility data with a root mean square error (RMSE) of 0.0007 and an average 
absolute percent relative error (AAPRE) of 1.81%. Also, the proposed models for estimating the 
solubility of hydrogen in hydrocarbons were compared with five EOSs including Soave–Redlich–
Kwong (SRK), Peng–Robinson (PR), Redlich–Kwong (RK), Zudkevitch–Joffe (ZJ), and perturbed-
chain statistical associating fluid theory (PC-SAFT). The XGBoost model introduced in this study is 
a promising model that can be applied as an efficient estimator for hydrogen solubility in various 
hydrocarbons and is capable of being utilized in the chemical and petroleum industries.

Abbreviations
ZJ	� Zudkevitch–Joffe EOS
XGBoost	� EXtreme gradient boosting
VLE	� Vapor–liquid equilibrium
SVR	� Support vector regression
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SD	� Standard deviation
SVM	� Support vector machine
SAFT	� Statistical associating fluid theory
SRK	� Soave–Redlich–Kwong EOS
ReLU	� Rectified linear unit
RMSE	� Root mean square error
RK	� Redlich–Kwong EOS
pred	� Predicted
PC-SAFT	� Perturbed-chain statistical associating fluid theory
PR	� Peng–Robinson EOS
OHMS	� One_hot_max_size
MLP-LM	� Multilayer perceptron optimized by Levenberg–Marquardt algorithm
LightGBM	� Light gradient boosting machine
HS	� Hydrogen solubility
exp	� Experimental
EOSs	� Equations of state
EOS	� Equation of state
CARTs	� Classification and regression trees
CatBoost	� Gradient boosting with categorical features support
AAPRE	� Average absolute percent relative error
ANFIS	� Adaptive neuro-fuzzy inference system
APRE	� Average percent relative error
AdaBoost-SVR	� Adaptive boosting support vector regression

Subscript and superscript
R2	� Coefficient of determination
Ei	� Relative error
Ea	� Absolute relative error

One of the fundamental properties for designing gas absorption and stripping columns in chemical industries is 
the solubility of gases in liquids1. While the basic principles of solubility thermodynamics are well known, it is still 
a challenging issue to accurately predict solubility for important industrial systems applying molecular thermo-
dynamics alone. Nowadays, hydrogen is an eminent substance in the industry. Hydrogen plays a substantial role 
in industrial processes, hence the solubility of it in various hydrocarbon solutions such as fuels is very important 
for designing and optimal operating of these processes2. Hydrogen is a useful compound in the chemical and 
petroleum industries. The quality of heavy petroleum fractions can be upgraded through hydrovisbreaking or 
hydrocracking processes by adding hydrogen to them and increase the hydrogen to carbon ratio (H/C). The 
production of low sulfur fuels in the oil refining industry is such that large amounts of hydrogen are used for 
desulfurization plants3–5. Design and operating processes such as hydrogenation and hydrocracking, along with 
corresponding kinetic models, require hydrogen solubility data6. Pressure, temperature, and composition of 
solvents can remarkably affect the hydrogen solubility as a thermodynamic quantity. Increasing pressure and 
temperature have an increasing impact on the solubility of gases. Also, from the molar fraction point of view, as 
hydrocarbon carbon number increases, hydrogen solubility increases as demonstrated by experimental tests2,7–9. 
It is well known that traditional equations of state (EOSs) are limited in accurately predicting the solubility of 
hydrogen for the modeling of hydrogenation processes. There is a potential for energy waste and even a potential 
safety hazard in the hydrogenation process due to the overuse of hydrogen. Therefore, solubility data is very 
significant to predict the optimal amount of hydrogen in this process and can lead to improved plant safety. 
Performing experiments for heavy hydrocarbons due to the complexity of them is particularly difficult. Also, 
the risks associated with high-pressure or/and high-temperature conditions in industrial processes do not make 
extensive testing an attractive choice. Hence, modeling based on experimental data can be a good alternative.

The methods for predictions of hydrogen solubility in solvents such as hydrocarbons or petroleum mixture 
are mostly based on the application of empirical and semi-empirical models such as EOSs and are alike to those 
applied for solubility of other gases such as methane and CO2

10–15. Shaw16 proposed a correlation for measur-
ing the solubility of hydrogen in hydrocarbon solvents including heterocyclic, aromatic, and alicyclic type, 
by applying corresponding state theory16. Yuan et al.17 used molecular dynamics simulations to estimate the 
hydrogen solubility in heavy hydrocarbons for a range of pressures and temperatures. They concluded that a 
combination of the EOSs and molecular dynamics simulations can lead to more accurate and practical predic-
tions for the hydrogen solubility at high pressures and temperatures17. Riazi and Roomi5 proposed a method for 
predicting the hydrogen solubility in hydrocarbons and their mixtures based on regular solution theory. Their 
procedure was based on calculating the parameter of hydrogen solubility according to the type of solvents or 
their molecular weight. The advantage of their method was that, unlike EOSs or other models, critical properties 
of solvent were not needed to calculate the hydrogen solubility. However, the need for other calculations in this 
method can still be considered a negative point5. Torres et al.18 applied the augmented Grayson Streed method19 
to better model the solubility of hydrogen in heavy oil cuts. However, they noted that the homogeneous EOSs 
models could provide better results. The solubility of hydrogen in n-alcohols has been measured and modeled 
by d’Angelo and Francesconi20. Also, in their work, individual correlations as pseudo-Henry’s constants were 
used to better estimate hydrogen solubility20. Luo et al.21 experimentally investigated the hydrogen solubility 
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in coal liquid and several hydrocarbons. They also proposed a mathematical model based on Henry’s law and 
the Pierotti method21. Yin and Tan22 obtained hydrogen solubility data in toluene in the presence of CO2 (i.e., 
ternary system H2 + toluene + CO2). An EOS named Peng–Robinson associated with the van der Waals mixing 
rule was used to model the vapor–liquid equilibrium (VLE) data22. Qian et al.23 used Peng–Robinson EOS to 
model a large dataset of various hydrogen-containing binary systems with the implementation of the group-
contribution method for calculating temperature-dependent binary interaction parameters23. This method was 
previously been proposed by Jaubert and Mutelet to predict the VLE of hydrocarbons binary mixtures24. The 
solubility of hydrogen in several heavy normal alkanes has measured and modeled by Florusse et al.2. They used 
statistical associating fluid theory (SAFT) approach to model the hydrogen solubility after experiments. However, 
this method is a complex method due to the adjustable parameters and parameters required for any potential 
function2. Perturbed-Chain SAFT (PC-SAFT) EOS25 is another method that can be used to estimate the solubility 
of hydrogen in hydrocarbons. This method has been utilized to propose several models for prognostication of 
the solubility of hydrogen in hydrocarbons and heavy oils6,26–28. The classical EOSs, activity models, etc. require 
adjustable parameters, proper mixing rules, iterative calculations, etc. Traditional EOSs are only reliable in spe-
cific temperature and pressure ranges and have bounded flexibility for substances used.

Complex calculations in chemical and petroleum sciences have been facilitated by artificial intelligence (AI) 
methods in recent years. Regarding the use of artificial intelligence in the case of hydrogen solubility, Safamirzaei 
et al.29 have considered the hydrogen solubility in primary n-alcohols and after that, they applied artificial neural 
networks (ANNs) to overcome EOSs and simple correlations constraints in achieving best modeling29. Nasery 
et al.30 implemented Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate the solubility of hydrogen 
in heavy oil fractions30. Safamirzaei and Modarress31 modeled hydrogen solubility in heavy n-alkanes (C46H94, 
C36H74, C28H58, C16H34, and C10H22) by ANNs31. As can be seen in the literature studies, the issue of mod-
eling hydrogen solubility in different solvents especially hydrocarbons has always been the focus of researchers. 
Also, according to the classification scheme of van Konynenburg and Scott32 and the updated version by Privat 
and Jaubert33, hydrogen-containing systems systematically show type III phase behavior, and such systems are 
acknowledged to be particularly difficult to correlate. Hence, there is a window for developing a more general 
model to estimate hydrogen solubility in hydrocarbons using AI methods, which accounts more influential vari-
ables, with higher precision. Due to the nature of data-driven soft computing techniques, such a comprehensive 
model can be developed by combining more data points and various operating conditions.

In the current work, we apply a total of 919 experimental hydrogen solubility data points for 26 different 
hydrocarbons accumulated at different operating conditions1,2,8,11,14,21,34–44. Advanced machine learning methods 
namely extreme gradient boosting (XGBoost), adaptive boosting support vector regression (AdaBoost-SVR), 
gradient boosting with categorical features support (CatBoost), light gradient boosting machine (LightGBM), 
and multi-layer perceptron (MLP) optimized by Levenberg–Marquardt (LM) algorithm are utilized to develop 
models for estimating the hydrogen solubility in hydrocarbons. Moreover, the validity of the proposed models 
is checked by applying statistical parameters and graphical error analyses. Also, several hydrogen solubility sys-
tems are estimated by the models developed in this work and five EOSs including Soave–Redlich–Kwong (SRK), 
Peng–Robinson (PR), Redlich–Kwong (RK), Zudkevitch–Joffe (ZJ), and perturbed-chain statistical associating 
fluid theory (PC-SAFT) to make a comparison between these models and EOSs.

Data gathering
To accurately model hydrogen solubility in hydrocarbons, 919 experimental hydrogen solubility data were gath-
ered from the literature1,2,8,11,14,21,34–44. Table 1 represents the sources of the experimental hydrogen solubility data 
used in this work along with the pressure range, temperature range, and uncertainty values for each system. Since 
the type of hydrocarbon dictates hydrogen solubility, a broad range of hydrocarbons was selected with properties 
represented in Table S1. Hydrocarbon families used in this study include alkane, alkene, cycloalkane, aromatic, 
polycyclic aromatic, and terpene.

To model hydrogen solubility in hydrocarbons, thermodynamic properties were considered for model devel-
opment. In this work, molecular weight, critical pressure, and critical temperature of solvents along with pressure 
and temperature were selected as input parameters to the models. The hydrogen solubility (in terms of mole frac-
tion) at different pressures and temperatures is set to be the model output. Moreover, a short statistical description 
of input and target parameters of the data bank applied for modeling is listed in Table 2. Using the uncertainty 
values of the experimental data in data-driven modeling can make the model really reliable. However, because 
uncertainty values (for test conditions and results of solubility tests) were not reported or fully reported in some 
papers, it was not possible to use them in modeling.

It is very important to apply different systems to achieve a comprehensive model for predicting hydrogen 
solubility in hydrocarbons. The characterization data for the 26 various hydrocarbons from 6 hydrocarbon 
families utilized for modeling are presented in Table S1. A databank including 919 data points was gathered from 
48 different systems of the literature1,2,8,11,14,21,34–44, the statistical information of which is reported in Table 2. 
The carbon number of hydrocarbons is ranging from 4 to 46 corresponding to a molecular weight range of 
58.12–647.2 g/mol. Also, the experimental hydrogen solubility data were collected in a broad range of operat-
ing temperatures, 213–623 (K) and pressures, 0.1–25.5 (MPa). According to the statistics reported in Table 2, 
the variation range and distribution of model input parameters are wide enough to provide a general model for 
estimating hydrogen solubility in hydrocarbons.
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Models implementation
Extreme gradient boosting (XGBoost).  The main idea behind a tree-based ensemble technique is to 
utilize an ensemble of classification and regression trees (CARTs) such that the training data is fitted by the mini-
mization of a regularized objective function. XGBoost is one of these tree-based models under the framework of 

Table 1.   Hydrogen solubility database used for modeling in this work.

Fluid name Temperature range (K) Pressure range (MPa)
Hydrogen solubility (mole fraction 
in the liquid phase) References

Butane
327.65–394.25 (± 0.05) 2.78–16.88 (± 0.005) 0.019–0.266 (± 0.04) 43

297.05–388.75 2.25–10.72 0.021–0.111 (± 0.002) 44

Hexane

344.3–410.9 (± 0.1) 1.24–15.11 (± 0.007) 0.0105–0.143 (± 0.001) 36

298.15–373.15 (± 0.1) 1.38–9.81 (± 0.002) 0.0107–0.0938 (± 0.02) 39

213.15–298.15 0.101325 0.00037–0.00069 (± 1%) 1

Heptane 295 6.99–20.78 (± 0.5%) 0.0459–0.1289 (± 0.001) 42

Octane

295.15 (± 0.5) 0.68–1.38 (± 0.001) 0.00442–0.00801 (± 0.0002) 38

298.15–373.15 (± 0.1) 2.4–15.27 (± 0.002) 0.0186–0.1371 (± 0.02) 39

295 10.44–17.33 (± 0.5%) 0.066–0.1064 (± 0.001) 42

2,2,4-Trimethylpentane 295 6.99–20.78 (± 0.5%) 0.052–0.1452 (± 0.001) 42

Decane

283.17–449.63 (± 0.02) 1.23–14.21 (± 0.03%) 0.016–0.088 (± 0.001) 2

344.3–423.2 (± 0.1) 3.71–17.39 (± 0.05) 0.0369–0.1288 (± 0.001) 8

462.45–583.45 (± 0.2) 1.92–25.52 (± 0.03) 0.0251–0.5013 (± 0.001) 37

293.15–373.15 (± 0.1) 2.04–10.35 (± 0.002) 0.0157–0.0884 (± 0.02) 39

Dodecane 344.3–410.9 (± 0.1) 1.42–13.24 (± 0.007) 0.0144–0.1252 (± 0.001) 35

Hexadecane
453.15–623.15 1.78–9.74 0.036–0.211 (± 0.001) 21

298.13–448.17 (± 0.02) 1.15–15.13 (± 0.03%) 0.018–0.113 (± 0.001) 2

Eicosane 323.2–423.2 (± 0.1) 2.23–12.91 (± 0.05) 0.0273–0.1289 (± 0.001) 8

Octacosane
342.56–447.34 (± 0.02) 1.46–14.01 (± 0.03%) 0.031–0.178 (± 0.001) 2

348.2–423.2 (± 0.1) 2.86–13.11 (± 0.05) 0.0452–0.1728 (± 0.001) 8

Hexatriacontane
357.53–447.43 (± 0.02) 1.37–14.34 (± 0.03%) 0.033–0.211 (± 0.001) 2

373.2–423.2 (± 0.1) 3.56–16.75 (± 0.05) 0.0677–0.2271 (± 0.001) 8

Hexatetracontane 372.52–447.51 (± 0.02) 2.29–15.97 (± 0.03%) 0.065–0.257 (± 0.001) 2

1-Octene 295 6.99–20.78 (± 0.5%) 0.0435–0.1209 (± 0.001) 42

Benzene

303.15 (± 0.01) 2.02–4.60 (± 0.001) 0.0026–0.0126 (± 0.002) 11

323.2–423.2 (± 0.1) 2.55–15.73 (± 0.06) 0.0103–0.0585 (± 0.001) 14

295 6.99–17.33 (± 0.5%) 0.0172–0.0424 (± 0.001) 42

Toluene

303.15 (± 0.01) 1.22–4.41 (± 0.001) 0.0040–0.0145 (± 0.002) 11

453.15–573.15 0.28–8.36 0.006–0.104 (± 0.001) 21

298.15–373.15 (± 0.1) 0.874–10.12 (± 0.002) 0.0027–0.0471 (± 0.02) 39

293–333 (± 0.1) 0.51–0.891 (± 0.0001) 0.00131–0.0034 (± 0.0001) 40

295 6.99–17.33 (± 0.5%) 0.0216–0.0508 (± 0.001) 42

Ethylbenzene 295 10.44–17.33 (± 0.5%) 0.0332–0.0547 (± 0.001) 42

m-Xylene 295 10.44–17.33 (± 0.5%) 0.0343–0.056 (± 0.001) 42

Cumene 323 (± 0.2) 1.02–11.7 (± 0.035) 0.0041–0.0486 (± 0.003) 41

1,2,4-Trimethylbenzene 295 6.99–17.33 (± 0.5%) 0.0248–0.0571 (± 0.001) 42

Cyclohexane

303.15 (± 0.01) 0.88–4.74 (± 0.001) 0.0034–0.0196 (± 0.002) 11

304–373 0.13–4.61 0.0006–0.0295 (± 0.0001) 34

295 6.99–17.33 (± 0.5%) 0.0287–0.0683 (± 0.001) 42

Methylcyclohexane

303.15 (± 0.01) 1.23–4.32 (± 0.001) 0.0062–0.0218 (± 0.002) 11

293–333 (± 0.1) 0.506–0.891 (± 0.0001) 0.00201–0.00479 (± 0.0001) 40

295 6.99–20.78 (± 0.5%) 0.0332–0.0947 (± 0.001) 42

Naphthalene
373.2–423.2 (± 0.1) 4.29–19.39 (± 0.06) 0.0157–0.0567 (± 0.001) 14

503.15–623.15 1.42–8.67 0.012–0.081 (± 0.001) 21

1,2,3,4-Tetrahydronaphthalene 453.15–623.15 1.53–9.19 0.014–0.085 (± 0.001) 21

Phenanthrene 383.2–423.2 (± 0.1) 5.89–21.69 (± 0.06) 0.0165–0.0557 (± 0.001) 14

Pyrene 433.2–423.2 (± 0.1) 5.17–19.73 (± 0.06) 0.0158–0.0575 (± 0.001) 14

Squalane 295.15 (± 0.5) 0.68–1.38 (± 0.001) 0.0062–0.01358 (± 0.0002) 38
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gradient boosting decision tree (GBDT). To elaborate on the CART’s structure, every cart consists of (I) a root 
node, (II) internal nodes, and (III) leaf nodes as shown in Fig. 1. According to the binary decision practice, the 
root node which embodies the whole data set is subjected to be split into internal nodes, while the leaf nodes 
represent the ultimate classes. In order to build a robust ensemble in gradient boosting, a series of base CATRs 
are consecutively constructed where the weight of every individual CART needs to be tuned through the train-
ing process45.

To model the output y for a given dataset where m and n are dimension features and examples, respectively, 
an ensemble of n tress needs to be trained:

where the example × is mapped by the decision rule q(x) to the binary leaf index. In Eqs. (1) and (2), f represents 
the space of regression trees, fk is the kth independent tree, T denotes the number of leaves on the tree, and ω 
is the weight of the leaf.

The determination of the ensemble of trees is performed by the minimization of regularized objective func-
tion L:

where Ω is the regularization term limiting the model intricacy, assisting the reduction of the overfitting; l denotes 
a differentiable convex loss function; γ stands for the minimum loss reduction which is needed to split a new 
leaf, and λ shows the regulation coefficient. It should be noted that γ and λ in these sets of equations help to soar 
the model variance and decrease the overfitting46.

In the gradient boosting approach, the objective function for every individual leaf is minimized through 
which more branched will be added iteratively.

(1)
ŷi =

N
∑

k=1

fk(Xi), fk ∈ f

With f =
{

f (X) = ωq(x)

}

, (q : Rm → T ,ω ∈ R
T )

(2)
L =

n
∑

i

l(ŷi , yi )+

N
∑

k

�(fk)

With �(f ) = γT +
1

2
��ω�2

(3)L(t) =

n
∑

i=1

{

l(yi , ŷ
(t−1)
i )+ ft(Xi)

}

+�(ft)

Table 2.   Statistical information about the collected databank in this paper.

Molecular weight (g/mol) Pc (MPa) Tc (K) Pressure (MPa) Temperature (K) Mole fraction of hydrogen

Mean 200.06 6.28 661.23 6.85 378.68 0.07

Minimum 58.12 0.36 425.12 0.1013 213.15 0.00063

Maximum 647.2 41.08 938.2 25.52 623.15 0.5013

Median 142.28 2.11 617.7 6.14 373.15 0.0572

Mode 142.28 2.11 617.7 10.44 423.2 0.078

Kurtosis 1.38 4.48 – 0.76 0.81 1.75 6.43

Skewness 1.50 2.52 0.17 0.89 1.17 1.87

Root node 

internal node 

leaf node 

Figure 1.   Level-wise tree growth in XGboost.
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where t represents the t-th iteration in the aforementioned training process. To notably ameliorate the ensemble 
model, the XGBoost’s approach greedily adds the space of regression trees which is usually referred to as “greedy 
algorithm”. Therefore, the model output is iteratively updated through the minimization of the objective function:

The XGBoost benefits from the shrinkage strategy in which newly added weights are scaled after every step 
of boosting by a learning factor rate. This helps to diminish the effects of future new trees on every existing 
individual tree, thereby reducing the risk of overfitting47.

Light gradient boosting machine (LightGBM).  Another new gradient learning framework built up 
upon the idea of the decision tree is LightGBM48. The salient features of LightGBM which dominates XGBoost 
are consuming less memory, utilizing a leaf-wise growth approach with depth restrictions, and benefiting from 
a histogram-based algorithm that expedites the training process49. Using the aforementioned histogram algo-
rithm, LightGBM discretizes continuous floating-point eigenvalues into k bins, hence leading to building a 
k-width histogram. In addition, extra storage of pre-sorted results is not required in the histogram algorithm 
and values can be stored in an 8-bit integer after the feature discretization that reduces the memory consumption 
to 1/8. Nevertheless, this rough partitioning approach does decrease the model accuracy. LightGBM also uses a 
leaf-wise approach which is more effective than the traditional growth strategy named level-wise. The rationale 
behind this inefficiency in level-wise strategy is that the leaves from the same layer are considered at each step, 
thereby leading to a gratuitous memory allocation. Instead, the leaves with the highest branching gain are found 
at every step in the leaf-wise approach after which the algorithm continues to the branching cycle. Thus, the 
errors can be diminished and higher precision is achieved with the same number of segmentations compared to 
the horizontal direction. In Fig. 2, the strategy of leaf-wise tree growth is depicted. The downside of leaf orienta-
tion is growing deeper decision trees which unavoidably results in overfitting. However, LightGBM precludes 
this overfitting while furnishing high efficiency by applying a maximum depth limit to the leaf top48,49.

In the followings, calculations for LightGBM are shown50:
For a given training dataset X =

{

(xi , yi)
}m

i=1
 , LightGBM searches an approximation ̂f (x) to the function 

f*(x) to minimize the expected values of specific loss functions L(y, f (x)):

LightGBM ensembles many T regression trees 
∑T

t=1 ft(x) to approximate the model. The regression trees are 
defined as wq(x), q ∈ {1, 2, ...,N} , where w shows a vector representing the sample weights of leaf nodes, N stands 
for the number of tree leaves, and q represents the decision rule of trees. The model is trained in the additive 
form at step t:

Newton’s approach is used to approximate the objective function.

Gradient boosting with categorical features support (CatBoost).  For categorical boosting, cat-
egorical columns are used in CatBoost which uses permutation techniques such as one_hot_max_size (OHMS) 
and target-based statistics. In this technique, a greedy method is used for each new split of the current tree which 
enables CatBoost to find the exponential growth of the feature combination51. The following steps are applied in 
CatBoost for every feature possessing more categories compared to OHMS:

1.	 Random subset formation of the records

(4)ŷ
(t)
i = ŷ

(t−1)
i + ft(Xi)

(5)
∧

f (x) = argmin
f

Ey,xL(y, f (x))

(6)Gt
∼=

N
∑

i=1

L(yi , Ft−1(xi)+ ft(xi))

Figure 2.   Leaf-wise tree growth in LightGBM.
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2.	 Label conversion to integers
3.	 Categorical feature transformation to numeric, as follows:

where countInClass counts targets with the value of one for a given categorical feature, and totalCount counts 
previous objects (the starting parameters determine the prior to count the objects)52,53.

Adaptive boosting (AdaBoost).  For supervised classification, Freund and Schapire54 have suggested the 
AdaBoost system. In this model, reweighted data, that the eights are chosen reliability refers to the consistency 
of the output of the learners, are sequentially assumed in the week learners. This trick reduces the inexperienced 
learner in order to concentrate on the hard cases55. The following represent the key steps of the Adaboost tech-
nique:

•	 Defining Weights: wj =
1
n , j = 1, 2, . . . ., n ;

•	 For each i, set the training data to a weak learner Wli(x) using weights and obtain the weighted error

•	 For each i, determine weights for predictors as: βi = log
(

(1−Erri)
Erri

)

•	 Modified data wights for each i to N ( N denotes the number of learners);
•	 Adjust weak learner for data test (x) as output.

In this study, support vector regressors (SVR) were applied as the weak learners in Adaboost systems.

Support vector regression (SVR).  Support Vector machine (SVM) is a group of similar supervised 
machine learning algorithms that can be applied for both regression and clustering tasks56. SVR is a systematic 
technique for soft computation, with a well-established mathematical formulation. As it has been shown to 
be very stable for modeling multiple complex structures, this approach has gained significant interest. In the 
literature, the fundamental concept behind SVR is commonly presented57. Therefore, we present a short descrip-
tion of the SVR conception for the sake of brevity. SVR attempts to obtain a regression function f(x) for a given 
dataset [

(

x1, y1
)

, . . . ..,
(

xn, yn
)

] with x ∈ Rd as the d-dimensional input space and y ∈ R as the output vector 
dependent on the input data to estimate the output as below:

where b denotes bias vectors, w shows the weight, and φ(x) refers to the function of the kernel. The following 
minimization problem proposed by Vapnik should be solved in order to achieve the right values of the weight 
and bias vectors58:

where T represents the transpose operator, ε shows the error tolerance, C represents a positive regularization 
parameter that defines the variance from ε , ζ+j  and ζ−j  consider positive parameters, attempting to point out the 
lower and higher excess variations, respectively.

By means of the Lagrange multipliers, the previously discussed constrained optimization problem is taken 
into a dual function. This move then leads to the final solution, which is presented as follows:

where K(xk , xl) represents the kernel function; ak and a∗k represent the Lagrange multipliers that follow the 0 k 
and k C constraints.

Multilayer perceptron (MLP) neural network.  MLP is a class of feedforward ANNs that consists of 
various layers. The primary layer which is pertinent to the input data is the input layer, the last layer which cor-
responds to the output of the model is the output layer and the middle layers which process the information 
are hidden layers59. In the hidden layers, each neuron will connect to every neuron in the next and prior layers. 

(7)avgT arg et =
countInClass + prior

totalCount + 1

Erri =

∑n
j=1wjI(tj �= wli(x))

∑n
j=1wj

, I(x) = {
0ifx = false
1ifx = true

(8)f (x) = w.φ(xi)+ b

(9)

minimize
1

2
wTw + C

N
�

j=1

(ζ−j + ζ+j )















(w.φ(xi)+ b)− yi ≤ ε + ζ−j

yi − (w.φ(xi)+ b) ≤ ε + ζ+j

ζ+j , ζ−j ≥ 0, i = 1, 2, ...,m

(10)f (x) =

n
∑

j=1

(ak − a∗k)K(xk , xl)+b
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The manner of calculating the value of every neuron in the output or hidden layers is as follows: the amount of 
every neuron in the prior layer which is multiplying in its corresponding particular weight is summed together 
and a bias factor is appended to these values. Then, the resulting value passes through an activation function60. 
Table S2 summarizes different activation functions along with their corresponding mathematical equations. The 
number of hidden layers and neurons in any hidden layer should be optimized to acquire a highly efficient and 
accurate model, usually using the empirical method. The performance of the MLP model depends on the opti-
mization algorithms such as Levenberg–Marquardt (LM)61 applied to train this intelligent model. In this work, 
the MLP model which is developed on the basis of the LM optimization algorithm is dubbed MLP-LM . Figure 3 
represents a schematic of the developed MLP in this work.

The procedure of model development.  For developing each model and take care of overfitting, we used 
grid search for optimizing hyperparameters of models. The hyperparameters used in grid search for each model 
were different, the importance of the hyperparameters was based on theoretical and practical aspects. The fol-
lowing hyperparameters were used for each model:

•	 For XGBoost: max_depth, n_estimators, learning_rate, min_child_weight, base_score.
•	 For LightGBM: Boosting type, objective, metric, learning rate, feature fraction, bagging fraction.
•	 For AdaBoost-SVR: learning rate, loss, epsilon, n_estimators, γ, C.
•	 For CatBoost: n_estimators, max_depth, learning rate.
•	 For MLP-LM: learning rate, Epoches.

The empirical method is also applied to determine the optimal number of hidden layers and neurons in any 
hidden layer for the MLP neural network.

In this work, we used k-fold cross-validation on our train dataset because it cares that every observation 
from the dataset has the chance of appearing in training and validation. For all models, we did use KFold 6 (as 
we know Kfold should not be too small or too high, and it depends on data size) so the value is picked up based 
on our data. It means we split the train data randomly into 6 folds and then fit the model using K-1 (which is 5 
folds) and validate the model using the remaining fold.

Equations of state (EOSs).  The analytical description of the relationship between volume, temperature, 
and pressure of a substance can be expressed by an EOS. The vapor–liquid–equilibria (VLE), volumetric behav-
ior, and thermal properties of mixtures and pure substances can be described by this expression. The phase 
behavior of petroleum fluids is widely predicted by EOSs. As already mentioned, traditional EOSs offer poor 
predictions for the solubility of gases in solvents, especially in complex operating conditions. In this study, four 
cubic EOSs including SRK, PR, RK, and ZJ along with PC-SAFT as a type of SAFT EOSs are implemented to 
measure the hydrogen solubility in hydrocarbons and their precision in estimating the hydrogen solubility is 
compared with the proposed machine learning models. Conventional van der Waals one-fluid mixing rules are 
utilized in cubic EOSs. Table S3 shows the PVT relationships of the cubic EOSs and PC-SAFT equation in terms 
of the residual Helmholtz free energy. Furthermore, the parameters and mixing rules for the EOSs are presented 
in Table S4. Also, the pure-component PC-SAFT parameters for the substances used in this work are reported in 
Table S5. The binary interaction parameter (kij) in van der Waals mixing rules characterizing molecular interac-
tions between molecules of two components, can be a key parameter in estimating the solubility of a solute in a 
solvent in cubic EOSs. A similar kij parameter is introduced by applying the van der Waals one-fluid mixing rules 
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Figure 3.   A schematic of the developed MLP neural network.
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to the perturbation terms in PC-SAFT EOS that corrects the segment-segment interactions of unlike chains. The 
optimized values of kij parameter for all EOSs in different hydrogen solubility systems are reported in Table S6.

Model assessment
Statistical error analysis.  The following definitions have been implemented for the statistical parameters 
of standard deviation (SD), average absolute percent relative error (AAPRE), root mean square error (RMSE), 
coefficient of determination (R2), and average percent relative error (APRE) to assess the validation and accuracy 
of the models:

In these formulas, HSi,e, HSi,p, and N, respectively, represent the experimental hydrogen solubility data and 
predicted values of hydrogen solubility in hydrocarbons by developed models, and the number of data points. 
The coefficient of determination which is represented almost everywhere by the R2 is one of the most well-known 
criteria for the goodness of fit of a model. R2 is an important statistical parameter that shows how well the model 
output corresponds to the experimental data and how valid the model is. If the R2 value is closer to 1, the fit of 
the model response to the experimental values is greater. The data scattering around zero deviation is assessed 
by RMSE. APRE and AAPRE measure the relative deviation and the relative absolute deviation from the target 
data, respectively. The measure of scattering is assessed by SD, which less value of it demonstrates a lower grade 
of dispersion.

Graphical error analysis.  Besides the statistical error analysis that has already been mentioned, visual 
graphical analysis can also help to understand the validity of the models developed in this work. The significant 
items are classified as follows:

Crossplot: in this graph, the estimated values of a model are plotted versus experimental values. If the finest fit 
line of the model estimation has no deviation from the 45° line and the computed data are mostly concentrated 
nearest to the unit slope line (Y = X), the performance of the model is excellent.

Error distribution plot: the presence or absence of error trend is checked by measuring the error scattering 
around the zero-error line. Here, the relative error (Ei) is calculated through Eq. (16):

Cumulative frequency graph: the cumulative frequency of data is sketched versus absolute relative error (Ea). 
The higher cumulative frequency curve reveals that most of the estimations fall within the usual error range. In 
other words, the closer the curve to the vertical axis, the model error in estimating the high percentage of data 
is less. In this work, the Ea is calculated through Eq. (17):

Group error diagram: the data are divided into diverse ranges and their error at each range is calculated and 
sketched.

Trend plot: in this diagram, both target data and estimated values by the proposed model are sketched against 
the index of data points and their coverage and trend are tracked.
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√
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1
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Results and discussion
Description of model development.  The optimal values of the important hyperparameters along with 
the search interval of the hyperparameters tuned for the machine learning models implemented in this work are 
presented in Table 3.

In Table 3, n_estimators show the number of trees; subsample is subsample ratio of the training instance; C 
denotes a degree of importance that is given to misclassifications; max_depth represents maximum depth of a 
tree; min_child_weight is the minimum sum of instance weight (hessian) needed in a child; bagging_fraction 
shows the fraction of data to be used for each iteration; feature_fraction is parameters randomly selected in 
each iteration for building trees; learning_rate controls the impact of each tree on the final outcome; base_score 
represents the initial prediction score of all instances; epsilon is a parameter affect the number of support vectors 
applied to construct the regression function; γ shows kernel coefficient, and epochs show the number of times 
that the learning algorithm is passed through a full training dataset.

Statistical assessment of the developed models.  To identify the most accurate model, we should 
compare the developed models using statistical factors including, R2, AAPRE (%), SD, APRE (%), and RMSE. 
The calculated values for these parameters are reported in Table 4. The results reveal that among all developed 
models, XGBoost provides the most accurate predictions, followed by AdaBoost-SVR, LightGBM, CatBoost, 
and MLP−LM models, respectively. Based on Table 4, AAPRE values of 2.14% for the testing set, 1.71% for the 
training set, and 1.81% for the total set of data, suggest that the XGBoost model has the most accurate estimation 
of hydrogen solubility in hydrocarbons. However, Table 4 reveals that other models also display good accuracy.

For a comparative evaluation of the models developed in this work with five EOSs, 30 hydrogen solubility 
data points in three different systems including hydrocarbons with low, medium, and high molecular weight 
collected from the literature8,11,39 were estimated by these models. Predictions of models along with the results 
calculated by the EOSs are presented in Table 5. The AAPRE reported in Table 5 is much higher for the EOSs 
than the machine learning models. ZJ EOS with an AAPRE of 15.78% has the best calculations for hydrogen 
solubility in hydrocarbons among the other cubic EOSs. Also, PC-SAFT as a modern type of EOSs shows good 
estimates with AAPRE of 9.56% and has superior performance compared to traditional cubic EOSs. All machine 

Table 3.   Optimal features for implemented models.

Model Hyperparametr Search range Optimum value/feature

AdaBoost−SVR

γ 0.1–0.0001 0.005

Epsilon 0.1–0.0001 0.0001

C 1–500 100

Learning rate 0.01–0.9 0.35

loss – Exponentioal

Max_depth 1–14 8

MLP-LM

Train function – LM

Hidden layer (s) 1–20 [16 * 8]

Activation function [sigmoid-ReLU] ReLU

Epoches 100–300 250

Learning rate 0.001–0.1 0.095

LightGBM

n_estimators 1–2000 800

Learing_rate 0.01–0.9 0.29

Max_depth 1–14 12

metric Rmse, mse, mape Mape

Feature_fraction 0.4–1 0.9

bagging fraction 0.6–0.9 0.8

XGBoost

n_estimators 1–2000 1700

Learing_rate 0.01–0.9 0.09

Subsample 0.1–1 0.6

Max_depth 1–16 15

Feature_fraction 0.4–0.95 0.8

Base score 0.25–1 1

min_child_weight 1–4 2

CatBoost

n_estimators 1–2000 100

Learing_rate 0.01–0.9 0.3

Subsample 0.1–1 0.8

Max_depth 1–16 15
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learning models have good predictions and show a significant advantage over EOSs. XGBoost model has the best 
performance among all models and EOSs with an AAPRE of 1.92%. It is noteworthy that uncertainty values are 
different for different systems. According to our studies, AAPRE values reported in Table 5 can vary about 5–10% 
due to uncertainty values, but it is better to trust the reported experimental values in the literature.

To further evaluate the validity and reliability of the XGBoost model, an external validation dataset containing 
413 hydrogen solubility data in 18 different hydrocarbons, including 6 new hydrocarbons (i.e. ethane, propane, 
ethene, 1-hexene, 1-heptene, and diphenylmethane) over a wide range of operating temperatures (98–701 K) and 
pressures (1.03–78.45 MPa), were collected from the literature. The properties of all hydrocarbons used in this 
work are presented in Table S1. Table 6 describes this validation dataset of hydrogen solubility data. This dataset 
is completely outside the training and testing sets used for modeling in this paper. Hence, it allows evaluating 
the performance of the model outside the modeling data sets. AAPRE values for each system are calculated 
using experimental data and predictions of the XGBoost model. The AAPRE values reported in Table 6 show 
that the XGBoost model has good predictions for all systems, even for new hydrocarbons not used in modeling. 
Overall AAPRE of 1.78% for this validation dataset shows the high validity of the XGBoost model in predicting 
hydrogen solubility in hydrocarbons.

Visual error analysis.  For a more detailed assessment of the accuracy of the proposed models, visual analy-
sis applying the crossplot of predicted hydrogen solubility against the corresponding experimental values was 
depicted in Fig. 4. Besides, Fig. 5 presented the error distribution diagram for each of the two testing and training 
sets of all models. Figure 4 demonstrates that the high concentration of data points surrounding the 45° line for 
all models. However, the XGBoost model performs much better than other models, indicating its high reliability 
for predicting hydrogen solubility in hydrocarbons. The relative errors among experimental hydrogen solubil-
ity and estimated values by the proposed models versus the experimental data for the test and training sets are 
illustrated in Fig. 5. This figure demonstrates that the relative errors of XGBoost and AdaBoost-SVR models are 
highly near the zero-error line, but the errors of the predictions of CatBoost, LightGBM, and MLP-LM models 
are not as low as the XGBoost and AdaBoost-SVR models. The maximum percent relative error among the 
estimated hydrogen solubility values and the experimental data for the XGBoost model is 19%. Figures 4 and 5 
reflect the significant extent of agreement between the experimental hydrogen solubility data and the XGBoost 
model predictions.

Figure S1 represents the trend plot of the predicted values of hydrogen solubility in hydrocarbons for all pro-
posed models and the experimental hydrogen solubility data versus the index of data points. As demonstrated in 
Fig. S1 in the Supplementary file, all models show good overlap between the estimated hydrogen solubility data 
and the experimental values, but the degree of overlap is excellent for the XGBoost model.

Figure S2 depicts the cumulative frequency of the data versus Ea for all developed models. Based on this figure, 
more than 70% of estimated hydrogen solubility by the XGBoost model have an absolute relative error < 1.3%, as 

Table 4.   Statistical error analysis for the models developed in this work.

Statistical factors RMSE APRE % AAPRE % SD R2

XGBoost

Train 0.0006 0.009 1.707 0.043 0.9999

Test 0.0007 0.128 2.145 0.065 0.9998

Total 0.0007 0.039 1.815 0.048 0.9998

CatBoost

Train 0.0014 0.194 4.678 0.201 0.9994

Test 0.0016 − 1.551 4.808 0.161 0.9990

Total 0.0015 − 0.161 4.705 0.193 0.9993

LightGBM

Train 0.0047 − 0.980 3.374 0.133 0.9938

Test 0.0038 − 1.422 4.087 0.137 0.9946

Total 0.0045 − 1.073 3.517 0.134 0.9940

AdaBoost-SVR

Train 0.0011 − 2.559 3.256 0.142 0.9996

Test 0.0014 − 3.004 3.960 0.125 0.9928

Total 0.0012 − 2.651 3.401 0.139 0.9995

MLP−LM

Train 0.0054 − 1.859 5.809 0.087 0.9918

Test 0.0049 − 2.694 6.786 0.114 0.9908

Total 0.0053 − 2.042 6.011 0.093 0.9917
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well as more than 90% of the estimated data, have an absolute relative error < 3.6%. However, for the AdaBoost-
SVR, LightGBM, CatBoost, and MLP-LM models respectively 81%, 79%, 73%, and 48% of predicted hydrogen 
solubility data have an absolute relative error < 3.6%, indicating the high validity of the XGBoost model.

Operating pressure and temperature greatly affect the solubility of hydrogen in hydrocarbons. As mentioned 
earlier, predicting hydrogen solubility under high-pressure/ igh-temperature conditions in various industries, 
is very important and the safety and efficiency of industrial processes depend on it. Figure 6 presents the valid-
ity of models at selected values of pressure and temperature ranges by applying the group error plots. It is 
worth noting that the group error analysis is performed by splitting all data into various ranges of pressure (i.e. 
0–5 MPa, 5–10 MPa, 10–15 MPa, 15–20 MPa, and 20–25 MPa) and temperature (i.e. 210–294 K, 294–378 K, 
378–462 K, 462–546 K, and 546–630 K) to investigate the validity of the proposed models at various ranges of 
these important parameters. AAPRE was calculated for the mentioned intervals and plotted in Fig. 6a for pressure 
parameter and Fig. 6b for temperature parameter. As can be seen in Fig. 6, LightGBM and MLP-LM models have 
relatively higher errors in low and high pressures and temperatures. Also, CatBoost and AdaBoost-SVR models 
have relatively higher errors in low pressures and temperatures. XGBoost model has the lowest error among all 
models for different temperature and pressure operating conditions, which proves the previous claims of good 
performance of this model.

Trend analysis.  At the next stage, several different analyses were performed to assess the performance of 
the XGBoost model in different systems of hydrogen solubility in hydrocarbons. First, the impact of pressure 
on the hydrogen solubility in n-Decane at a high temperature of 432 K2 is evaluated in Fig. 7. The hydrogen 

Table 5.   Comparison of proposed models’ performance in this work with EOSs.

Hydrocarbon Data no.

Hydrogen solubility, mol frac

Experimental XGBoost CatBoost LightGBM AdaBoost-SVR MLP-LM PR SRK RK ZJ PC-SAFT

Benzene

1 0.00267 0.00243 0.00368 0.00303 0.00395 0.00315 0.0035 0.0031 0.0034 0.0029 0.00232

2 0.00395 0.00359 0.00386 0.00325 0.00430 0.00442 0.0041 0.0036 0.0039 0.0036 0.00269

3 0.00468 0.00454 0.00428 0.00469 0.00601 0.00571 0.0061 0.0054 0.0057 0.0038 0.00397

4 0.00560 0.00552 0.00675 0.00561 0.00719 0.00671 0.0074 0.0066 0.0069 0.0051 0.00477

5 0.00601 0.00604 0.00571 0.00600 0.00794 0.00778 0.0081 0.0072 0.0075 0.0046 0.00521

6 0.00761 0.00783 0.00737 0.00842 0.00956 0.00975 0.01 0.0089 0.0093 0.0075 0.00647

7 0.00983 0.01037 0.00859 0.00983 0.01140 0.01164 0.013 0.0115 0.012 0.008 0.00834

8 0.01077 0.01136 0.00918 0.01078 0.01308 0.01272 0.0143 0.0127 0.0132 0.0091 0.00918

9 0.01268 0.01253 0.01436 0.01268 0.01683 0.01510 0.0168 0.0149 0.0155 0.0109 0.01079

Octane

10 0.01961 0.01857 0.01681 0.02047 0.01961 0.01985 0.0227 0.022 0.0275 0.0156 0.01692

11 0.04472 0.04406 0.04451 0.04473 0.04472 0.04712 0.052 0.0503 0.0625 0.0359 0.03943

12 0.06806 0.06815 0.06738 0.07083 0.06802 0.07290 0.0786 0.0759 0.0937 0.0544 0.06056

13 0.09073 0.09003 0.09243 0.09073 0.08871 0.09755 0.1026 0.0988 0.1213 0.0711 0.08013

14 0.01861 0.01860 0.01855 0.01861 0.01904 0.01814 0.0207 0.0205 0.0257 0.0157 0.01671

15 0.04841 0.04800 0.04651 0.04534 0.04841 0.04856 0.0527 0.0519 0.0651 0.04 0.04313

16 0.076 0.07544 0.07551 0.07719 0.07408 0.07553 0.0823 0.0808 0.1007 0.0626 0.06859

17 0.1022 0.10177 0.10019 0.10220 0.10220 0.10079 0.1089 0.1066 0.1321 0.083 0.09241

18 0.0286 0.02825 0.02873 0.02860 0.03000 0.02969 0.0334 0.0332 0.0412 0.0274 0.02801

19 0.06582 0.06700 0.06595 0.05796 0.06711 0.06581 0.0742 0.0732 0.0917 0.0608 0.06294

20 0.10491 0.10402 0.10265 0.10492 0.10373 0.11202 0.1163 0.1139 0.1419 0.0951 0.10011

21 0.13701 0.13738 0.13683 0.13698 0.13701 0.13579 0.1483 0.1445 0.1791 0.1212 0.12931

Octacosane

22 0.0503 0.05084 0.05200 0.05234 0.05240 0.05159 0.0619 0.0652 0.1008 0.0403 0.04883

23 0.0524 0.05296 0.05251 0.05238 0.05240 0.05303 0.0637 0.0671 0.1042 0.0415 0.05028

24 0.0747 0.07369 0.07386 0.07309 0.07470 0.07558 0.0913 0.0957 0.1523 0.0601 0.07222

25 0.0921 0.09211 0.09479 0.09210 0.09155 0.09173 0.1119 0.1169 0.1862 0.0742 0.08871

26 0.1047 0.10449 0.10370 0.10469 0.10470 0.10211 0.1265 0.1318 0.2093 0.0844 0.10042

27 0.1235 0.12420 0.12469 0.12386 0.12350 0.12008 0.1482 0.154 0.2422 0.0997 0.11799

28 0.1407 0.14109 0.14115 0.14070 0.14070 0.14074 0.1695 0.1755 0.2729 0.115 0.13526

29 0.1511 0.15027 0.15209 0.14623 0.15110 0.14782 0.1823 0.1884 0.2907 0.1243 0.14565

30 0.1728 0.17321 0.17476 0.17280 0.17280 0.17083 0.2087 0.2149 0.3258 0.1439 0.16763

AAPRE % – 1.92 5.24 2.67 8.68 7.85 19.87 16.63 49.95 15.78 9.56
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solubility values predicted by the XGBoost model for this system along with the values calculated by the EOSs 
are demonstrated in Fig. 7. As indicated in this figure, at high-temperature conditions, the deviation between 
traditional RK EOS calculations and experimental data is high, but the other EOSs and XGBoost model predict 
experimental data excellently. As expected, the solubility of hydrogen in the n-Decane increases with increasing 
pressure. However, cubic EOSs slightly overestimate or underestimate the increase in solubility with increasing 
pressure at high temperatures, while the XGBoost model follows the trend very well. PC-SAFT EOS also has 
good predictions with low deviation from experimental data and outperforms traditional cubic EOSs.

Next, the hydrogen solubility data in a hydrocarbon named diphenylmethane76 with a molecular weight 
of 168.23 and a carbon number of 13 are predicted by the XGBoost model at high temperature and pressure 
conditions (Fig. 8). Again, as depicted in Fig. 8, the XGBoost model correctly detects data trends and provides 
excellent forecasts. As can be seen, the effect of temperature increase along with increasing pressure on hydrogen 
solubility is correctly predicted by the XGBoost model.

As mentioned earlier, the solubility of hydrogen increases with an increasing carbon number of 
hydrocarbons2,7–9. Therefore, the predictions of the XGBoost model for the solubility of hydrogen in several 
hydrocarbons with different carbon numbers (decane, eicosane, octacosane, and hexatriacontane) at a tem-
perature of 373 K, which have been studied experimentally in literature8, are presented in Fig. 9. In this case, as 
well, the estimations of the XGBoost model are in good agreement with the reported experimental hydrogen 
solubility data for all these hydrocarbons.

Conclusions
In this work, five robust machine learning models were introduced for estimating the hydrogen solubility in 
hydrocarbons as a function of critical pressure, critical temperature, and molecular weight of solvents along 
with pressure and temperature operating conditions. A databank including 919 data points gathered from 48 
different systems of the 26 various hydrocarbons was applied to model the hydrogen solubility. Implementing 
the techniques of XGBoost, CatBoost, LightGBM, AdaBoost-SVR, and MLP-LM revealed that the estimations of 
hydrogen solubility in hydrocarbons from the five proposed models reached the AAPRE of 1.81%, 3.40%, 3.52%, 
4.70%, and 6.01% for XGBoost, AdaBoost-SVR, LightGBM, CatBoost, and MLP-LM , respectively. XGBoost is 
introduced as the best-proposed model in this work based on graphical and statistical error analysis. Evaluation 
of the XGBoost model with an external validation dataset containing 413 hydrogen solubility data in 18 differ-
ent hydrocarbons over a wide range of operating temperatures (98–701 K) and pressures (1.03–78.45 MPa) also 
proved the validity and reliability of the XGBoost model in predicting hydrogen solubility in hydrocarbons. 
Also, the calculation of hydrogen solubility in hydrocarbons for several different systems by EOSs showed that 

Table 6.   Validation dataset for evaluation of XGBoost model.

Fluid name Temperature range (K) Pressure range (MPa)
Hydrogen solubility (mole 
fraction in the liquid phase) No. of data References

AAPRE % using XGBoost 
model

Ethane 148.15–223.15 (± 0.1) 2.03–8.11 (± 0.01) 0.0061–0.0557 (± 1%) 16 62 1.90

Propane 98.15–148.15 (± 0.05) 1.03–20.68 (± 0.02) 0.0021–0.0473 (± 2%) 23 63 5.11

Butane 144.26–244.26 (± 0.5) 2.07–51.36 (± 0.13) 0.008–0.229 (± 0.0025) 26 64 2.28

Hexane 308.35 (± 0.1) 5.1–15.17 (± 0.13) 0.0328–0.0908 (± 0.002) 8 65 0.69

Heptane 424.15–498.85 (± 0.1) 2.45–78.45 (± 0.01) 0.02–0.71 (± 3%) 26 66 0.41

Decane
358.15–483.15 (± 1) 4.05–30.4 (± 0.05) 0.036–0.345 (± 3%) 12 67 0.39

503 (± 0.5) 1.48–10.1 (± 0.03) 0.0178–0.1507 (± 0.6%) 6 68 2.17

Dodecane 366.5–422 (± 0.2) 3.62–34.72 (± 1%) 0.0373–0.299 (± 1%) 11 69 1.05

Hexadecane 461.65–622.85 (± 0.1) 2.009–25.27 (± 0.01) 0.0311–0.4458 (± 1%) 21 70 0.59

Cyclohexane 310.9–407.6 (± 0.02) 3.45–62.05 (± 0.003) 0.0135–0.2644 (± 0.001) 46 71 0.82

Toluene 461.83–575.15 (± 0.1) 2.02–25.37 (± 0.05%) 0.0082–0.3935 (± 0.001) 25 72 2.22

Benzene
433.15–533.15 (± 0.1) 1.9–17.803 (± 0.05%) 0.0071–0.1317 (± 0.001) 49 73 2.28

288.15 (± 0.1) 5.01–49.3 (± 0.35%) 0.0114–0.102 (± 0.5%) 11 74 1.52

1-Hexene 333.15–443.15 (± 1) 4.05–30.4 (± 0.05) 0.04–0.38 (± 3%) 12 67 0.34

1-Heptene 333.15–473.15 (± 1) 4.05–30.4 (± 0.05) 0.028–0.353 (± 3%) 12 67 0.56

1-Octene 328.15–463.15 (± 1) 4.05–30.4 (± 0.05) 0.024–0.318 (± 3%) 12 67 1.18

Phenanthrene 398.2–473.2 2.613–25.23 0.0094–0.0840 (± 0.001) 24 75 1.44

Diphenylmethane 462.75–701.65 (± 0.7) 2.026–25.33 (± 0.03) 0.0123–0.3056 (± 1%) 27 76 0.82

Ethene 123.15–248.15 (± 0.1) 2.03–8.11 (± 0.01) 0.0053–0.0603 (± 1%) 22 62 6.30

1,2,3,4-Tetrahydronaphthalene 462.75–662.25 (± 0.05) 2.03–25.33 (± 0.1) 0.0118–0.2824 (± 1%) 24 77 1.16

Overall 98.15–701.65 1.03–78.45 0.0021–0.71 413 - 1.78
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Figure 4.   Crossplot of prediction of hydrogen solubility in hydrocarbons by the models versus experimental 
data.
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Figure 5.   Error distribution graphs of the proposed models for test and training sets.
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PC-SAFT has the best predictions for hydrogen solubility in hydrocarbons among the other EOSs. However, ZJ 
EOS also outperformed another cubic EOSs.
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