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From signal‑based 
to comprehensive magnetic 
resonance imaging
Gyula Kotek1,3, Laura Nunez‑Gonzalez1, Mika W. Vogel2, Gabriel P. Krestin1, Dirk H. J. Poot1 & 
Juan A. Hernandez‑Tamames1,3*

We present and evaluate a new insight into magnetic resonance imaging (MRI). It is based on the 
algebraic description of the magnetization during the transient response—including intrinsic magnetic 
resonance parameters such as longitudinal and transverse relaxation times (T1, T2) and proton density 
(PD) and experimental conditions such as radiofrequency field (B1) and constant/homogeneous 
magnetic field (B0) from associated scanners. We exploit the correspondence among three different 
elements: the signal evolution as a result of a repetitive sequence of blocks of radiofrequency 
excitation pulses and encoding gradients, the continuous Bloch equations and the mathematical 
description of a sequence as a linear system. This approach simultaneously provides, in a single 
measurement, all quantitative parameters of interest as well as associated system imperfections. 
Finally, we demonstrate the in-vivo applicability of the new concept on a clinical MRI scanner.

MRI is extensively used in medicine and biology. It provides meaningful images of different organs and patholo-
gies based on the magnetic properties of specific nuclei present in tissues.

Quantitative MR measures these properties and currently relies on the single species approximation of the 
nuclear magnetization evolution as described by Bloch’s equation1. However, accurate and precise absolute 
quantification of the properties requires long scan times and is challenging because of the high sensitivity to 
MR system imperfections such as magnetic field inhomogeneity and radiofrequency pulse inaccuracies2. These 
factors hamper the reproducibility across MR systems.

It is well known that there is no explicit closed-form solution to the Bloch equations for a general, time-
dependent magnetic field. There is a solution though—and it is abundantly exploited in MRI technology—for a 
very simple case, where the magnetic field is constant as stated by Torrey in 19493. We extend this solution from 
the continuous Bloch equation to a discrete description of an entire imaging sequence. This approach has been 
partially explored before by other authors4–9. We take this initiative further and establish a novel application and 
framework in the domain of the impending field of parametric transient MR Imaging10,11.

For nearly 50 years, MR imaging mainly used steady state MR pulse sequences12,13. Such sequences are 
designed to allow a model with a single magnetization vector per voxel and avoid the magnitude and phase 
changes that happen during the transient response—as these could introduce undesirable modulations across 
the k-space. For this reason Hargreaves et al. proposed to reduce the duration of the transient response in 
“refocused-SSFP” sequences to reach the steady state faster5.

In our opinion, insufficient attention has been focused on exploiting the transient response to simultaneously 
obtain multiple intrinsic MR relaxation times by taking advantage of more complicated signal evolutions than 
simple exponential recoveries. A patent was filed in 2001 for simultaneous multiparametric estimation from the 
transient response14 and in 2003, Scheffler pointed out the possibility of extracting relaxation parameters from 
the transient response but without further development or implementation8. Assländer et al.15, using a similar 
formalism that Hargreaves, propose to reduce the population of complex conjugate eigenvalues in order to reduce 
the sensitivity to system imperfections for obtaining only T1 and and T2 maps without performance comparison 
to other reference methods.

Recently, Magnetic Resonance Fingerprinting (MRF) has emerged as a new paradigm for quantitative, multi-
parametric MR imaging11. It takes advantage of the transient response to generate maps of the intrinsic tissue 
properties such as T1, T2 and PD. In the original MRF sequence the acquisition parameters are pseudorand-
omized, which the authors suggest to be essential for generating unique signal evolutions for each tissue. In MRF 
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the signals are matched to an a priori dictionary to find the relaxation properties. This matching procedure avoids 
the fitting to an explicit signal model based on repeatedly solving the Bloch equations. It thereby essentially 
extends the successful compressed sensing principle16 to the temporal direction.

Some improved alternatives have recently been published, such as Quantitative Transient Imaging (QTI)10 
that uses a fixed time of repetition and a linearly increasing variable flip angle (vFA) and Magnetic Resonance 
Field Mapping17 which additionally provides B1 and B0 maps through including multiple B0 and B1

.values in the 
dictionaries. Sbrizzi et al. recently proposed a brute force approach named MR-STAT providing all the relevant 
maps (T1, T2, PD, B1 and B0) that also avoids dictionary matching18.

In this work, we propose a new MR method based on a mathematical closed-form description of the mag-
netization evolution of a single species along a sequence of repetitive blocks which contain RF pulses and readout 
gradients. This provides four important advantages. First, it enables a comprehensive simultaneous estimation of 
all intrinsic parameters and avoids confounding by experimental imperfections such as B0 inhomogeneities and 
B1 inaccuracies. Second, the analytical description of the sequence of blocks gives a new insight that facilitates the 
selection of pulse sequence design (TR, FA and phase) to increase sensitivity for all relevant parameters. Third, 
no dictionary is required to perform the estimation. Fourth, we also show that, the proposed design, based on 
the insight given by the algebraic mathematical model, avoids the banding artefact—a long-standing issue in the 
standard balanced Steady State Free Precession (bSSFP) MRI technique.

We propose that the use of the comprehensive MR method described in this work could contribute to stand-
ardized MR through the adoption of multiparametric methods in clinical protocols and to increased reproduc-
ibility in follow-up and multi-site or multi-vendor studies.

Theoretical framework—from linear algebra to dissipative coupled harmonic 
oscillators
We provide an algebraic description of the signal evolution during the entire MR sequence. Our goal is to estab-
lish a theoretical framework for quantitative sequences that utilizes a single transient response and can yield 
quantitative maps for all relevant parameters, intrinsic ( T1 , T2 , PD) and experimental ( B0 , B1 ) at once. First, we 
will consider an imaging voxel as homogeneous and represented by a single magnetization vector, i.e. we use 
a single species model. In general, the assumption of the intra-voxel homogeneity is not valid. However, as we 
demonstrate, it can be maintained by a careful choice of the acquisition scheme.

Discrete algebraic description of an MR imaging sequence.  MRI sequences consist of a train of 
acquisition blocks (Fig. 1). The acquisition blocks alter the magnetization vector. Each block consists of radi-
ofrequency excitations (Fig. 1a, in red), magnetic field gradients (Fig. 1a, in blue) and wait times (Fig. 1a, µ—
periods for free precession, absent of RF excitations or magnetic field gradients) each of which can be described 
as linear operator that acts on the magnetization vector5. Hence, the combined effect is also a linear operator 
called propagator.

We focus on a special case when the propagator, A , is identical along the train of acquisition blocks and has 
duration TR . As only the net effect of the propagator is equal, blocks differing in spatial coding k-space trajectories 
are possible. In this case the magnetization vector m evolves according to the recursive equation:

where mss is the steady state magnetization and m0  the initial state. We can focus on the homogeneous recursive 
Eqs. (5, 9):

with the solution:

where µn = mn −mss .
In comparison, for continuous modeling, the kinetics are described by the differential equation:

(1)mn+1 = A·mn + (I − A) ·mss

(2)µn+1 = A·µn,

(3)µn = A
n · µ0

Figure 1.   (a) Illustration of the “propagator”: a single block of events. μ is the input–output magnetization, in 
red the RF excitations and in blue the gradients. (b) A typical train of blocks in a MR pulse sequence. We will 
use identical blocks or operators A = A1 = A2 = … = An.
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The constant matrix coefficients in the differential equation and the recursive equation are related as  
eB = A1/TR19. Figure 2 depicts both the continuous and the discrete solutions.

In the case of an imaging sequence consisting of k consecutive excitations and free precession periods, A 
takes the following form:

with Rs(ϑ)  specifying a rotation of angle ϑ around axis s ( x , y or z in Eq. 5), where the α, β and γ are a function 
of the RF flip angle, phase and local off-resonance frequency, and

represents the relaxation in the period  τj , 
∑

j τj = TR.

A real‑valued expression for the signal in an MR sequence.  In order to exploit the information 
content of the signal evolution, it is convenient to have a closed-form expression for µn  in Eq. (3). This requires 
an expression for An , where A  is a general, real-valued 3 × 3 matrix.

The usual method to derive an expression for An is to diagonalize A by its eigenvectors provides a simple 
expression with the eigenvalues �1 , �2 , �3  :

(4)
d

dt
y(t) = B · y(t), withthesolution : y(t) = At/TR · y(0))

(5)A =

k
∏

j=1

(E(τj) · Rz
(βj) · Ry(αj) · Rz(γj))

(6)E(τj) =





e−τj/T2 0 0

0 e−τj/T2 0

0 0 e−τj/T1





Figure 2.   (a–c) The repeated block consists of an excitation with flip angle  α=30º, β=14º (accumulated phase 
as a result of off-resonance during TR,TR =10 ms), relaxation times are T1 = 878 ms, T2 = 47.5 ms. n1 and n2 span 
the plane of oscillation. The magnetization vector always points to a point of this plane. Only the orientation of 
the plane is fixed throughout the evolution; it shifts parallel to n3 . Figure (a) 3D trajectory, (b) x–y projection 
(transversal plane), (c) x and y component (signals measured in quadrature). Figures (d–f) similar to (a–c) with 
on-resonance ( β=0º). The plane spanned b. n1 and n2 is the x–z plane throughout the entire evolution. The points 
represent the magnetization difference vector and its evolution along the sequence. The continuous line is the 
corresponding continuously parametrized y(τ) = Aτ/TRµ0  . The quantity y(τ) satisfies the differential equation: 
d
dt
y(t) = B · y(t)  with exp(B) = A1/TR . y(τ) is not the fully continuous trajectory of the magnetization  µ . 

However, y(τ)  and  µ are equal at the discrete time points: y(τ = nTR) = µn  .
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where V = [v1, v2, v3] is the matrix formed by the eigenvectors of A 5,8.
A sufficient and necessary condition of the diagonalization is det(V)  = 0 , i.e. the eigenvectors of A are lin-

early independent. This condition is met if the eigenvalues are distinct, however this is not a necessary condition 
(multiplicity of the eigenvalues of A alone does not preclude diagonalization).

We follow a different method for derivation of the expression of An . This method does not rely on the diago-
nalizability of A and it is also idependent of the multiplicity of the eigenvalues. The discrete Putzer’s algorithm20,21 
relies on a consequence of the Cayley-Hamilton theorem: An can be expressed as an ( d-1) order polynomial of A 
∈ R

d×d , in our case with the identity matrix I,  A and A2 . Applying the Putzer’s algorithm the resulting expression 
for 3 × 3 matrices with distinct eigenvalues is:

The expression is also valid in its limit for multiple eigenvalues, may any of the eigenvalues as roots of the 
characteristic polynomial be identical: �1 → �2 , �1 → �3 , �2 → �3 . A is a product of rotation and dilation 
operations, represented by a non-singular, real valued matrix. The eigenvalues of A can always be expressed as 
�1 = ρeiϕ , �2 = ρe−iϕ , and �3 = η , where ρ   and η are real valued, and ϕ  is either real or purely imaginary. A 
has one real- valued eigenvalue and its real eigenvector ( �3  and v3 ), but the other two eigenvalue and eigenvector 
pairs are usually complex conjugates. It is also relevant to realize that ρ2 · η is the determinant of the propagator 
which depends on the intrinsic T1 and T2 and it is essentially the total dissipation during the entire propagator 
block. This amount can be voxel-wise obtained and it can be reconstructed as a map. This map is characteristic 
of the specific harmonic oscillator and we will refer to it as the HO (harmonic oscillator) map, or image, for the 
rest of the document.

Substituting the eigenvalues in Eq. (8), with a somewhat lengthy, but otherwise straightforward derivation 
we get:

The real-valued matrices Mj are:

The expression for the special cases when two or all three eigenvalues are identical can be derived in the limit, 
e.g. ϕ → 0 , ρeiϕ → η.

So, the explicit discrete expression of the magnetization evolution as in Eq. (3) is :

where the real-valued normal mode22 vectors n1 = M1 · µ0 , n2 = M2 · µ0 and n3 = M3 · µ0  depend on the 
initial state µ0 .

At this point it is important to make two important remarks.
First, in order to clarify the terminology: these normal modes are not the eigenvectors (sometimes also called 

normal modes, especially if A is a symmetric matrix). They are always real valued and represent special directions 
in real 3D space, along which motion is defined in Eq. (11).

Second, it is important to point out that the matrix expressions in Eq. (10). include a projection matrix: 
Re(A− �1I) = (A− ρcosϕI) . Based on this one, we can predict that the normal modes can also have zero length. 
This happens to be the case when  µ0 is in the null-space of a matrix M1 , M2 or M3 . The normal modes n1 , n2 and 
n3 form a complete non-orthogonal basis in 3D if µ0 is not in the nullspace of any of the matrices in Eq. (10).

It is clear from Eq. (11) that µ  follows decaying oscillations in two directions n1 and n2 with locked phase 
and frequency. In the third n3 direction it will follow an exponential decay towards zero.

The detectable signal is a projection of mn  on the plane of detection ( xy-plane). It is a straightforward calcula-
tion to show from Eq. (11), by the usual quadrature detection with a complex expression:

where a , b , δ and ξ are real parameters determined by the initial value m0 and the propagator. δ is the phase differ-
ence between transmit and receive. This equation resembles Torreys’ solution of the Bloch Eq. (3) but stretched 
to the repetitive pulse sequence.

The parameters in Eqs. (11) and (12) are uniquely determined by the T1 , T2 , and PD (intrinsic parame-
ters) as well as the propagator (experimental parameters). Equation (12) highlights the decaying oscillation 

(7)A
n = V

−1 ·

(

�
n
1 0 0

0 �
n
2 0

0 0 �
n
3

)

· V

(8)An = �
n
1I+

�
n
1 − �

n
2

�1 − �2
(A− �1I)+

�
n
1(�2 − �3)+ �

n
2(�3 − �1)+ �

n
3(�1 − �2)

(�1 − �2)(�1 − �3)(�2 − �3)
(A− �1I)(A− �2I)

(9)A
n = ρn · sin(nϕ) ·M1+ρn · cos(nϕ) ·M2 + ηn·M3,

M1 =
1

ρ · sinϕ
· A−

cosϕ

sinϕ
· I +

(

−
η

ρ
+ cosϕ

)

·M3

M2 = I −M3

(10)M3 =
1

ρ2 + η2 − 2ρ · η · cosϕ

(

A
2 + ρ2

I − 2ρ · cosϕ · A
)

(11)µn = ρn · sin(nϕ) · n1+ρn · cos(nϕ) · n2 + ηn·n3,

(12)sn = aρnei(nϕ+δ) + bηneiξ
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characteristics of the signal evolution, directly indicating the role of the propagator eigenvalues, parametrized 
by the intrinsic and experimental parameters.

The evolution of µ (the magnetization difference from the steady state) in three dimensions is illustrated in 
Fig. 2a,d for a specific propagator and particular experimental conditions: the propagator consists of a single 
excitation with α flip angle, a phase evolution β accumulated during TR time during the repetition time (TR) 
due to off-resonance. The 2D projection over the detection plane is shown Fig. 2b,e, and the detected signal 
resembling the free induction decay (FID)3 is shown in Fig. 2c,f.

Figures a, b and c are in off-resonance condition4 and figures d, e and f are in on-resonance condition5,8.

Experimental design
There are three conceptual aspects of our experimental design that render our technique viable in terms of the 
applicability of a single species model and the sensitivity to intrinsic parameters: (a) Information content of the 
signal, (b) Single species description, (c) Eigenvalues of the propagator.

(a) Information content of signal—resonance condition.  The description of the motion of µ  allows 
the physical analogy of three independent, linear and damped oscillators, linked to each other only by the initial 
condition9,23. Although n1 , n2 and n3 span the space that holds the trajectory of the magnetization, they do not 
necessarily form a complete basis in 3D. In Fig. 2, the trajectories of µ are depicted in the rotating frame of reso-
nance, where the propagator consists of a single excitation. The case of off-resonance ( β  = 0 ) and on-resonance 
( β = 0 ) are shown, where β is the phase accumulated during a TR. In practice, B0 can not be fully controlled 
in an imaging volume, and β can take any value in [0, 2π] . In the on-resonance case, the last term in Eq. (11) 
vanishes because n3 = 0 , therefore the signal evolution carries no information about the real eigenvalue η . The 
information loss on-resonance can not be avoided with a block containing only one excitation. Hence, a special 
composite propagator is required.

(b) Single species model.  Equation (11) describes the temporal evolution of the magnetization in a voxel 
under the assumption that it can be characterized as a single species. There are arguably two reasons why this 
assumption is not valid: (1) Related to limitations of the imaging technology: Multiple distinct tissue properties 
in one voxel due to the finite size of voxels or due to experimental imperfections in magnetic and RF fields ( B0 
and B1 inhomogeneities). (2) Related to the limitations of the Bloch equations, which are an approximation of 
the complex microscopic behavior of spin relaxation1, excluding multiple-pools for magnetization transfer, dif-
fusion etc. In our experimental design we limit the B1 imperfections with an appropriate slice profile, and the 
imperfections in B0 homogeneity on a more conceptual level in the following section.

(c) Eigenvalues of the propagator.  An important aspect of adopting an analytically described signal 
evolution is to estimate intrinsic and experimental parameters. As described in Eqs. (11) and (12), the theoretical 
description relies on the eigenvalues of the propagator.

The propagator can also be viewed as a mapping between the parameter space (T2,β)   (Fig. 3a) and the 
space of one of the complex eigenvalues (ρ,ϕ) . As a minimal requirement, this mapping should preserve topol-
ogy, i.e. it should maintain proximity between points and should be single valued. Otherwise, it would result in 
indistinguible signal behaviours for distinct (T2,β) species and, consequently, the MR experiment would loose 
sensitivity to some particular combinations of T2 and β.

Design of a pulse sequence—composite propagator.  The propagator that facilitates parametric map-
ping should fulfill the following requirements:

Figure 3.   (a) T2 − β species: parameter space, (b–e) are the eigenvalue maps on the complex plane where 
three eigenvalues belong to each parameter species: red and blue are the complex eigenvalues, green represents 
the real eigenvalue. Eigenvalues of the repeated αx  propagator are shown in (b). The αx − αy  propagator with 
excitation flip angle α = 30◦  is shown in (c), and  in (d) “ αx − αx+δ ” scheme with α = 150◦ and δ = 75◦ . The 
eigenvalue space for αx − γy − αy − γx  with α = 30◦ and γ = 175◦  is shown in (e). For all maps T1=878 ms 
and TR=12 ms. In (c) one eigenvalue point belongs to the two β and β+ 180◦ species.
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•	 The effect of variation of B0 on the eigenvalues is limited in order to allow the single species description
•	 The 3D trajectory of µ is maintained at any value of B0 B0 in order to avoid loss of information (none of the 

normal mode vectors vanish)
•	 The mapping between parameter space and eigenvalue space preserves topology in order to distinguish 

between species by their signal evolution

Figure 3 illustrates the problem of non-preserved topology and also demonstrates proper choices of the 
scheme, which we use for a set of propagators fulfilling the properties for a better estimation. Also, the inspec-
tion of the eigenvalue space provides immediate insight into the signal evolution: the radial distance from the 
origin determines the decay rate, and the angular position determines the oscillation frequency in the signal 
along the train of acquisition blocks. Figure 3a shows the grid of (T2,β) pairs that are evaluated with fixed T1 
and excitation flip angle. Figure 3b–e show the resulting eigenvalue space in the complex plane for four different 
schemes. Figure 3b shows the “ αx ” scheme, in which a block consists of a single excitation with 30° flip angle 
and readout. Figure 3c shows the “ αx − αy ” scheme that consists of two equally spaced excitations along x and 
y axis with α = 30 . Figure 3d shows the “ αx − αx+δ ” scheme consisting of two excitations along the x axis and 
x + 75

◦ axis with flip angle α = 150 . Figure 3e shows the “ αx − γy − αy − γx ” scheme consisting of four equally 
spaced excitations with alternating x and y axis and α = 30 and γ = 175.

Both the “ αx − αy ” scheme (with large flip angle) and the “ αx − γy − αy − γx ” scheme preserve topology 
and also limit the effect of β.

Due to the alternating excitation axis, these composite propagators enforce a 3D trajectory of µ (see Eq. 11) 
for any β . In order to maintain the 3D trajectory for every possible β value, a minimum two RF excitations are 
necessary with different excitation phases. The large excitation angle for the “ αx − αy ” scheme may not be 
practical due to high demand on RF peak power when a sharp slice profile is used. A split of flip angles into two 
excitations can be realized in the “ αx − γy − αy − γx ” scheme: one of sharp slice profile, α , and one with no or 
very weak slice select gradients, γ.

Numerical optimization—choice of parameters in the selected scheme.  The schemes were com-
pared and the parameters of the schemes optimized with a Cramér-Rao lower bound (CRLB) analysis15.

Specifically, we evaluated the CRLB for all ten unique k = 4 schemes differing in the axis around which the 
RF pulses are played out, using two alternating flip angles α ∈ [20◦, 180◦], γ ∈ [10◦, 190◦] , with steps of 5◦ . The 
simulation used the actual RF profiles as played out on the MR scanner scaled to the nominal flip angle.

For all evaluated settings, the coefficient of variation (CV) of the T1 and T2 was evaluated as the division of 
the square root of the CRLB by the nominal T1 (800 and 1100 ms) or T2 (50 and 200 ms) values for β ∈ [0, 2π ] . 
These T1 and T2 values approximately span most of the commonly quantified tissues24.

It was observed that for the schemes with low CV, the CV depended only weakly on B0 . However, for some 
schemes strong dependence on FA was observed close to the minimum CV. Avoiding those situations, overall 
the “ αx − γy − αy − γx ” scheme with α = 30o and γ = 175o was considered to provide the best compromise 
over the range of T1 , T2 , and B0.

Hence this scheme is the building block of the new sequence that we named “Multi-Phase balanced, non-
Steady State Free Precession” (MP-b-nSSFP).

Acquisitions.  The IRB (ethics committee name: “Medische Ethische Toetsings Commissie Erasmus MC”, 
https://​www.​erasm​usmc.​nl/​nl-​nl/​pages/​metc) approved the in-vivo study (protocol 2014-096) and the acquisi-
tion was carried out after obtaining the informed consent from the volunteers. All experiments were performed 
in accordance with relevant guidelines and regulations. Only one representative volunteer is presented in this 
work to show the outcomes obtained. The acquisitions were performed on a 1.5 T clinical scanner (GE Optima 
MR450w, General Electric Medical Systems, Waukesha, WI) with a 16 channel head and neck coil.

The reference map were obtained with a multiparametric method that currently is a product for different 
vendors (MAGIC—Magnetic Resonance Image Compilation—for GE scanners). It is based on QRAPMASTER25 
that uses a multi-echo acquisition of a saturation-recovery sequence combined with a Fast Spin-Echo (FSE) as 
readout to obtain quantitative maps of T1, T2, and Proton Density (PD). Once the quantitative maps have been 
obtained, weighted images are synthesized from these maps. The acquisition was performed in axial orientation 
(AC-PC) with a TR of 4.7, FOV of 31 cm, and voxel-resolution of 1.2 × 1.2 × 5.0 mm. The total acquisition time 
of 20 slices covering all the brain was 5 min and 34 s. The phantom was scanned with the same protocol.

Additionally, reference B1 and B0 maps were obtained for the phantom, in order to compare them from those 
derived from the method poposed in this work. The B1 map is a two-dimensional gradient echo based pulse 
sequence as described in26. B0 map is based on 2D GRE pulse sequence repeated two times with different TE as 
described in27,28 .

The images with our sequence—MP-b-nSSFP—were acquired with a Field of View 24 cm, reconstruction 
matrix 256 × 256, slice thickness 5 mm and 64 rewinded spiral out arms with 512 samples per arm for complete 
data collection. The images were reconstructed by density compensated non-uniform fast Fourier transform 
(FFT).

For the proposed MP-b-bSSFP, we acquired 25 repeats of the αx − γy − αy − γx scheme (Fig. 3e) α = 30º, 
γ = 175º, four readouts per block and TR = 120 ms per block with a delay of 3 s between blocks that acquire 
different spiral arms. The total acquisition time was 6 m and 40 s in this proof of concept study in which no 
acceleration was used. Due to radiofrequency specific absorption rate (SAR) and time restrictions, the γ pulses 
were not slice selective and instead surrounded by crushers to suppress out-of-slice signals.

The maps were obtained by for each voxel fitting

https://www.erasmusmc.nl/nl-nl/pages/metc
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where S is a vector with the complex valued signal of all 100 echoes, Bloch(θ) is a single species bloch simulation 
using hard RF pulses, E1 = e−TR/T1 , E2 = e−TR/T2 model the longitudinal, respectively transversal magnetization 
decay, β the offresonance induced phase evolution,  B1 a scaling factor for the RF pulses and S0 is proportional 
to proton density and contains the transmit-receive phase.

After fitting, the T1 and T2 were computed from E1 and E2.
The non-linear optimization was started from the best 5 out of 1000 candidate points, pseudo-randomly 

selected in the range E1 ∈ [0.91] , E2 ∈ [0.31] , β ∈ [−ππ] , B1 ∈ [0.51.5] , with linear least squares solution for 
S0 . The non-linear optimization was performed with a custom trust region quasi Newton method implemented 
in MATLAB and the final fit with the lowest cost was returned29. The entire fitting procedure took 0.56s/voxel 
at our workstation (i7-8700 CPU).

An evaluation of the applicability of the model to the acquired data in the presence of intra-voxel B0 disper-
sion is presented in the supplementary material.

Demonstration of the signal evolution on a clinical scanner.  Figure 4 shows the typical banding 
artifact present in balanced sequence and how the theoretical model (see Eq. 1) closely matches the data points 
despite the presence of external field ( B0 ) inhomogeneities.

θ = argmin
θ

|S− Bloch(θ)|2withθ = [Re(S0), Im(S0), E1, E2,β , B1]
T

Figure 4.   Images in the first row show the transient contrast at time points 1, 3, 5, 7 along the acquisition in a 
balanced pulse sequence in a “ αx scheme”. The second row shows for this sequence the signal as it evolves along 
the echo train for three voxels (depicted on the anatomical image). The left and right subfigures shows are from 
the blue and green voxels, where the spins are on-resonance. The middle subfigure (red voxel) shows a spiral 
in the complex signal plane. This clearly shows the regularity of the evolution. On the right subfigure middle 
and bottom the orthogonal real and imaginary components are depicted. The frequency of the oscillations is 
constant, the decay of the amplitudes is exponential. The steady state is not zero. The fitted curves show the fitted 
harmonic oscillator model.
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Figure 5 shows images and different time points of the signal evolution and the signal evolution for three 
different tissues using as propagator the “ αx − γy − αy − γx ”scheme in a balanced pulse sequence. The banding 
artifact is gone and the signal evolution is also described by the same theoretical model (see Eq. 1).

Standardized phantom and parametric maps.  In order to evaluate the accuracy and precision, 12 
vials from the Eurospin phantom (https://​www.​leeds​testo​bjects.​com/​index.​php/​phant​om/​t1-​t2-​gels/) with 
known T1 and T2 values were scanned with both methodsMAGIC and MP-b-nSSFP.

Next figure shows the T1 and T2 maps from the MP-b-nSSFP and MAGIC (Fig. 6).
Figure 7 shows a Bland–Altman comparison between MAGIC and MP-b-nSSFP.

In‑vivo parametric and synthetic maps.  Figure 8 shows the results from the MP-b-nSSFP in-vivo scan 
including the HO maps explained above. Additionally, Fig. 6 shows synthetic weighted images25. The T1-weighted 
image was simulated with TE = 20 ms and TR = 300 ms. The T2-weighted image was simulated with TE = 120 ms 
and TR = 4500 ms. The T2-FLAIR images were simulated with TE = 120 ms, TR = 15,000 ms and inversion time 
(TI) equal to 3000 ms. In order to provide a fair comparison we have used with the same protocol described 
above.

Figure 9 shows the maps as acquired with MAGIC.
Table 1 summarizes the estimated values of T1 and T2 in gray and white matter with MP-b-nSSFP and MAGIC 

and reference values from DESPOT1 and DESPOT230, PLANET31 and QRAPMASTER25 respectively.

Discussion
In this work, we conceptually addressed several important aspects for enabling quantitative mapping from the 
fast transient response in a balanced pulse sequence. With this we extend previous work in this domain8,14 to 
allow composite propagators. It deviates from MR fingerprinting approaches10,11 in which experimental param-
eters are varied along the transient evolution and relaxation parameters are estimated by dictionary matching. 

Figure 5.   The first row shows the transient contrast at different time points along the acquisition in a balanced 
pulse sequence for the propagator as a composite of pulses according to the “ αx − γy − αy − γx ” MP-b-nSSFP 
scheme. The second and third rows show the signal and fit for three highlighted voxels from three different 
tissues. The observations of the four different echoes in each block of the propagator is shown with different 
symbols (., + , ×,*).

https://www.leedstestobjects.com/index.php/phantom/t1-t2-gels/


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17216  | https://doi.org/10.1038/s41598-021-96791-w

www.nature.com/scientificreports/

Figure 6.   The first row shows the maps from the proposed balanced pulse sequence for the propagator as a 
composite of pulses according to the “ αx − γy − αy − γx ” MP-b-nSSFP scheme ( α = 90; γ = 175) . The second 
row show maps obtained using conventional MAGIC. (a,c) T1 maps. (b,d) T2 maps.

Figure 7.   Bland–Altman plots comparing ROI mean T1 and T2 values of the proposed MP-b-nSSFP sequence 
with the “ αx − γy − αy − γx ” scheme ( α = 90; γ = 175) and MAGIC.
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Instead, we provide an analytical description of the transient response of a balanced sequence with repetitive 
blocks. This comprehensively provides simultaneous mapping as well as maps of the experimental conditions.

We proposed a train of acquisition blocks without variations along the train and without suppression of any 
part of the signal. We showed that a simple and very compact description can be provided for such a sequence. 
To our knowledge, the resulting real-valued expression has not been previously published.

Additionally, there were two separate aspects that we challenged. One was the impracticality or even impos-
sibility to describe the signal in an analytical form in the transient state, especially when no part of the signal 
is suppressed (e.g. spoiling). The second aspect was the unfeasibility of using a single species approximation of 
complex and heterogeneous voxels for the transient evolution of a balanced sequence.

Moreover, we simultaneously addressed a long-standing problem of the balanced Steady State Free Precession 
technique: banding artefacts. By virtue of the conceptual design of the sequence (i.e.: 3D trajectory maintained by 
the composite propagator) every point in the image plane bears the same signal evolution characteristics. Along 
the transient evolution the phase dispersion is limited (see Fig. 3d,e) as the oscillation frequency ( ϕ , Eqs. 11, 
12) is nearly the same for all off-resonance frequencies ( β) . Consequently no (propagating) banding waves in 
the image space will appear at any time point of the transient response (compare Fig. 4 vs Fig. 5), achieving the 
desired artefact-free images from balanced MR sequences. This could also be interpreted as a result of the γ 
pulse which acts as a refocusing pulse, however, the sequence is still sensitive to B0 inhomogeneities across the 
image because the model contains and estimates the intra-voxel phase accrual. To our knowledge, this is a novel 
achievement that is different from the typical phase cycling in different runs32,33.

The resulting signal evolution demonstrates the validity of the single species description despite experimental 
imperfections.

It can be observed in the results from a standardized phantom (Fig. 7) that most of the results for T2 are in 
good agreement with MAGIC. However, the results for T1 are underestimated. Possibly, this is due to slice profile 
imperfections34–37 and finite echo train length as well.

Figure 8.   The parametric maps derived with the proposed model are shown estimated from the MP-b-nSSFP 
sequence with α = 30º, γ = 175º, TR = 30 ms. Top row shows: (a) PD (proton density, a.u.); (b) T1(ms); (c) T2 (ms); 
(d) B+1  (excitation RF field scaling factor); (e)B0 (deviation in static magnetic field; Hz); (f) ρ2η = det(A) = ε22ε1 
(HO harmonic oscillator), (g) synthetic T1-weighted; (h) synthetic T2-weighted; (i) synthetic T2-FLAIR.
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In “In-vivo” experiments, T2 results are also in good agreement wih MAGIC. For T1, there is a substantial 
underestimation as well. There are some additional intra-voxel physiological conditions that could be hindering 
the accuracy in T1: intrinsic intra-voxel assymetries38–41, water molecules exchanges42, diffusion43 and magnetiza-
tion transfer31,44,45. If validated and specific enough, such sensitivity to these other phenomena could be exploited 
for obtaining physiological information such as myelin content. The supplementary material demonstrates that 
in the current implementation intra-voxel B0 dispersion and off-resonance can bias the T1 and T2 estimation. 
However, still the effect of B0 dispersion is limited as the estimated T2 value is substantially above the T∗

2  value 
that would be obtained in, for example, a gradient echo experiment. Addressing these T1 and T2 biases is a topic 
of further research.

Our method relies on the topological interpretation of an algebraic object (i.e. the propagator: a transforma-
tion between the parameter space and the eigenvalue space). With the proposed propagators preserving the topol-
ogy, the analytical single species description remains valid and allows simultaneous multi-parametric mapping.

It allows the separation of conceptual details of the propagator design and the numerical optimization of the 
nominal experimental parameters. Regarding the propagator, our method allows single species description even 
on the presence of B0 inhomogeneities based on the range of the appropriate eigenvalues without excluding those 
complex (unlike Asslander’s proposal15). Furthermore, the 3D trajectory of μ is maintained at any value of B0 in 
order to avoid loss of information (none of the normal mode vectors vanish). Moreover, the mapping between 
parameter space and eigenvalue space preserves topology in order to distinguish between species by their signal 
evolution. To demonstrate the feasibility on actual scanners, we have selected one of the propagators that fulfills 
these requirements. In addition to the analytical approach, a numerical optimization of parameters such as flip 
angles and phases is carried out for the best estimation of T1, T2, PD, B1, B0. So, our novel approach not only 
enables the estimation of intrinsic parameters, but from the same data and estimation process, one can derive 
the imperfections of the experimental setup. The macroscopic confounding factors (experimental imperfections 
such as B0 inhomogeneities and B1 inaccuracies) are not simply suppressed or excluded in our acquisition, rather 
they are included in the theoretical description as parameters to be determined (see results “d” and “e” in Fig. 6).

Figure 9.   The parametric maps and synthetic images as obtained with MAGIC : (a) PD (proton density, a.u.); 
(b) T1(ms); (c) T2 (ms); (d) synthetic T1-weighted; (e) synthetic T2-weighted; (f) synthetic T2-FLAIR.

Table 1.   T1 and T2 values estimated in gray and white matter from the prosposed method, MP-b-nSSFP 
and MAGIC. Standard deviations are expressed in parenthesis. Reference columns respectively are: (1) Deoni 
et al.30, (2) Shcherbakova et al.31 and (3) Warntjes et al.25.

MP-b-nSSFP MAGIC Reference 1 Reference 2 Reference 3

T1
GM 628 (115) 1082 (231) 1065 (51) 813 (54) 1048 (61)

WM 339 (28) 602 (65) 608 (23) 496 (22) 561 (12)

T2
GM 98 (5) 93 (4) 98 (7) 85(5) 94 (6)

WM 73 (4) 78 (5) 54 (4) 63(22) 63 (2)
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To our knowledge, no other parametric imaging methods provide estimation of this set of intrinsic and 
experimental parameters simultaneously based on an analytical solution describing the transient response of 
the magnetization with using dictionaries.The concurrent estimation of intrinsic and experimental imperfec-
tions based on the proposed comprehensive analytical model makes this new technique less affected by common 
system imperfections and could allow for the development of less demanding MR scanners. Based on the robust-
ness of the synchronized estimation of experimental imperfections and parametric maps, synthetic MR images 
for different clinically relevant contrasts can also be reconstructed without relevant artifacts (see results “g”, “h” 
and “i” in Fig. 8). As a consequence of these features, our method could contribute to the standardization of MR 
imaging based on simultaneous multi-parametric mapping and synthetic weighted MR.

Conclusions
Building on signal-based MR, we provide a complete and comprehensive analytical expression for the signal 
evolution of a balanced sequence. We extend this solution from the continuous Bloch equation to a discrete 
description of an entire imaging sequence. The analytical expression relies on a simple, single species model of 
an imaging voxel which is shown to be appropriate despite the heterogeneity of voxels in-vivo. We demonstrate 
the importance of an analytical approach in the design of the sequence propagator. This theoretical model could 
be fitted to experimental data without requiring a dictionary. We simultaneously derive parametric maps of 
the intrinsic properties (T1, T2, PD) as well as from imperfections of the experimental parameters (B0, B1). We 
demonstrate the feasibility of our method on clinical MRI scanners for in-vivo brain scans.
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