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Entropy optimized dissipative flow 
of hybrid nanofluid in the presence 
of non‑linear thermal radiation 
and Joule heating
Wei‑Feng Xia1, M. U. Hafeez2, M. Ijaz Khan3,4, Nehad Ali Shah5,6* & Jae Dong Chung5

Present article reads three dimensional flow analysis of incompressible viscous hybrid nanofluid in a 
rotating frame. Ethylene glycol is used as a base liquid while nanoparticles are of copper and silver. 
Fluid is bounded between two parallel surfaces in which the lower surface stretches linearly. Fluid 
is conducting hence uniform magnetic field is applied. Effects of non-linear thermal radiation, Joule 
heating and viscous dissipation are entertained. Interesting quantities namely surface drag force and 
Nusselt number are discussed. Rate of entropy generation is examined. Bvp4c numerical scheme is 
used for the solution of transformed O.D.Es. Results regarding various flow parameters are obtained 
via bvp4c technique in MATLAB Software version 2019, and displayed through different plots. Our 
obtained results presents that velocity field decreases with respect to higher values of magnetic 
parameter, Reynolds number and rotation parameter. It is also observed that the temperature field 
boots subject to radiation parameter. Results are compared with Ishak et al. (Nonlinear Anal R World 
Appl 10:2909–2913, 2009) and found very good agreement with them. This agreement shows that the 
results are 99.99% match with each other.

Boundary layer flow over a stretched surface has a key importance in both experimental and theoretical point 
of views. When surface stretches with certain velocity, it develops an in viscid flow immediately, but the viscous 
flow near the sheet improves slowly, and it takes a certain instant of time to become a fully developed steady flow. 
Hayat et al.1 studied the flow of Maxwell fluid over a stretching surface. Andersson et al.2 examined the viscoe-
lastic and electrically conducting flow over a stretching sheet. Kabeir et al.3 discussed the mechanism of heat and 
mass transfer of power law fluid past a stretching sheet in the presence of chemical reaction and radiation effects.

Fastest mode of thermal transport is radiation in which heat transfers in the form of electromagnetic waves 
without any dependency of medium. Hayat et al.4 analyzed the effects of non-linear thermal radiation on the 
entropy optimized flow. Shehzad et al.5 addressed the thermal transport mechanism of Jeffrey nanofluid flow in 
the presence of non-linear thermal radiation. Waqas et al.6 investigated the flow on slandering stretching surface 
by encountering the effects of thermophoresis, Brownain diffusion and non-linear radiation. Kumar et al.7 studied 
the flow of nanofluid over a stretched surface with non-linear radiation and chemical reaction.

Presence of shear forces reasons the work done by the fluid on its adjacent layers and in irreversible processes 
this work done transfers into heat. This whole thermodynamic process is termed as viscous dissipation. Gebhart 
et al.8 analyzed the dissipative effects in natural convection. Koo et al.9 explored the impact of viscous dissipa-
tion in micro channels and tubes. Flow of magneto-nanofluid in the presence of viscous dissipation is carried 
out by Hayat et al.10. Mustafa et al.11 presented the study of Jeffrey fluid near the stagnation point by considering 
the dissipative effects.

A thermodynamic term highly associated with irreversible processes is called entropy. This term is deducted 
from second law of thermodynamics. Entropy calculates the rate disorder and randomness of the system. Bejan 
et al.12 investigated the role of entropy in thermal transport mechanism. Rashidi et al.13 presented entropy 
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optimized flow of electrically conducting nanofluid. Hayat et al.14 explained entropy impact on flow containing 
copper and silver nanoparticles.

Heat transfer fluids have very important applications at industrial sides. Since base liquid are bad conductors 
of heat due to their weak thermal properties hence the heat transfer devices were less efficient. Here nanotech-
nology played a key role; Choi15 was the first to utilize the term nanofluid. He prepared it by inserting nano-
particles in ordinary liquid and he proved the enhancement in thermal transport process. After that, many of 
the researchers adopted that technique and many experimental and theoretical work were done in this regard. 
Prasher et al.16 presented the brief study of thermal and viscous properties of nanofluid. Sheikholeslami et al.17 
discussed MFD viscosity effects of mixed convective magneto-nanofluid. New classification of nanotechnology 
is hybrid nanofluid with enhanced thermal properties. This nanomaterial is consists of two or more than two 
nanoparticles in ordinary liquid and the obtained results are more powerful than that of nanofluid. Khan et al.18 
explored the MHD containing rotating flow of hybrid nanofluid with entropy generation. Chamkha et al.19 pre-
sented the study of hybrid nanofluid in the presence of radiation and Joule heating. Hayat et al.20 studied heat 
transfer enhancement in the flow of hybrid nanofluid.

Our main target in this research work is to examine the transport characteristics of three different types of 
hybrid nanoparticles i.e., Ethylene Glycol, Copper and Silver in magnetohydrodynamic flow of viscous fluid 
between two parallel moving surfaces. The considered fluid is electrical conducting subject to applied magnetic 
field and bounded between two parallel surfaces in which lower surface linearly stretches. Whole system obeys 
uniform rotation along specified direction. Energy equation includes conduction, non-linear radiation, Ohmic 
heating and viscous dissipation. According to author observation, no such attempt is yet done on such topic in 
literature. Entropy rate is calculated. Graphical analysis of surface drag force and Nusselt number are addressed. 
Transformations are used to convert the non-linear PDEs to ODEs. Bvp4c Numerical approach is used for the 
solution of transformed system. Table 1 shows the thermo-physical values of base liquid and nanoparticles. 
Table 2 presents the comparative result of present work with Ishak et al.21.

Some latest literature on fluid flow behavior towards a different geometries is listed in Refs.24–30.

Problem statement
Here we are considering incompressible, steady and viscous flow of hybrid nanofluid bounded between two 
parallel surfaces which are D distant apart. In hybrid nanomixture, Ethylene glycol (EG) act as a base liquid while 
copper (Cu) and silver (Ag) as nanoparticles. Since fluid is electromagnetically conducting, hence constant mag-
netic field B0 is applied along y direction by ignoring the electric field effects. There is linear stretching surface 
at y = 0 with stretching velocity cx . The considered system is rotating with constant angular velocity � along y 
direction. Figure 1 shows the physical appearance of the problem.

Mathematical form of the modeled problem is23:
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Table 1.   Transport characteristics of base fluid and nanoparticles22,23.

Nanoparticles/base fluid k(W/mK) ρ(kg/m3) σ(s/m) cp(J/kgM)

Silver (Ag) 429 10,500 6.30 ∗ 107 235

Copper (Cu) 401 8933 5.96 ∗ 107 385

Ethylene glycol (EG) 0.253 1115 1.10 ∗ 10−4 2430

Table 2.   Comparative analysis of Nusselt number for different values of Prandtl number when remaining 
parameters of temperature equation is zero.

Pr Ishak et al.21 Present work

0.72 0.809 0.806

1.0 1.000 1.000

3.0 1.924 1.923

10.0 3.721 3.720
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On the R.H.S of Eq. (5), first term is due to conduction, second term is due to radiation, third term is due 
to Joule heating and last term represents the viscous dissipation. By Rosseland’s approximation, the non-linear 
radiative heat flux qr is given as,

The boundary conditions for the present flow satisfy

Here x, y highlights Cartesian coordinates, u, v, w the velocity components, c the stretching rate, p pressure, ρhnf  
density, T temperature, σhnf  electrical conductivity, σ ∗ Stefan Boltzmann constant, µhnf  dynamic viscosity, k∗ 
mean absorption coefficient, � angular frequency, 

(

ρcp
)

hnf
 heat capacity, khnf  thermal conductivity. Due to net 

crossflow along z − axis, ∂p
∂z is absent in Eq. (4). The subscript hnf  represents hybrid nanofluid.

Thermo-physical aspects of hybrid nanofluid
Hybrid nanofluid dynamic viscosity is given by

Density of hybrid nanofluid obeys

Heat capacity of hybrid nanofluid satisfies

Thermal conductivity of hybrid nanofluid is
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Figure 1.   Graphical abstract.
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Hybrid nanofluid electrical conductivity yield

Here we have used equal volume concentration of nanoparticles (φCu = φAg = 0.5φ).

 Transformation procedure
Here we are considering the following variables

Conservation law of mass (Eq. 1) is trivially satisfied and the other flow equations yield
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 are the Eckert numbers. N1, N2, N3, N4 and N5 are 

mathematically given as

Entropy generation
Rate of entropy generation is defined as

after applying the transformations, entropy generation becomes

where EGo =
(
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)

 is the characteristics entropy generation.

Physical quantities
Surface drag force.  Expression of surface drag force satisfies
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or scalar form is

Nusselt number.  Mathematically one has

where

The final form is

Discussion
Here the dissipative flow of hybrid nanofluid with entropy generation is discussed. Impact of interesting param-
eters namely magnetic parameter Mn, rotation parameter Ro, Reynolds number Re, temperature ratio parameter 
θw , radiation parameter R, and Eckert number Ecx are examined.

Figures 2, 3 and 4 present the influences of rotation parameter Ro , Reynolds number Re and magnetic param-
eter Mn on velocity component f (η), respectively. Here f (η) is decreasing function of all such parameters. Physi-
cally more Mn produces more Lorentz force which offers resistance to flow. Figures 5 and 6 portray the impacts 
of Ro and Mn on velocity profile g(η), higher values of both parameters reasons the enhancement in g(η) , while 
opposite trend is noted for Reynolds number Re, here higher Re declines the velocity g(η) as shown in Fig. 7. 
Figure 8 is plotted to examine the behavior of Eckert number Ecx against temperature θ(η), since Ecx is a relation 
between kinetic energy and enthalpy, increase in Ecx causes increase of kinetic energy which further rises up the 
molecular motion and hence temperature rises. Figure 9 is sketched to see the variation of radiation parameter 
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Figure 2.   Impact of Ro on f(η).
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Figure 3.   Impact of Re on f(η).

Figure 4.   Impact of Mn on f(η).
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Figure 5.   Impact of Ro on g(η).

Figure 6.   Impact of Mn on g(η).
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Figure 7.   Impact of Re on g(η).

Figure 8.   Impact of Ecx on θ(η).
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Figure 9.   Impact of R on θ(η).

Figure 10.   Impact of ϕ on θ(η).
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Figure 11.   Impact of θw on θ(η).

Figure 12.   Impact of Mn on θ(η).
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Figure 13.   Impact of θw on Ng(η).

Figure 14.   Impact of R on Ng(η).
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R on temperature θ(η) . It is observed that θ(η) enhanced versus higher R. Figure 10 plots the temperature θ(η) 
for various percentages of volume fraction of nanoparticles φ. Clearly θ(η) enhances with an increase in φ. From 
Fig. 11 it is observed that for higher estimates of temperature ratio parameter θw , temperature θ(η) inclines near 
the lower surface while declines near upper boundary. Figure 12 shows the effect of magnetic parameter Mn on 
temperature θ(η), since Mn is a resistive body force hence larger Mn causes increment in θ(η). Figures 13, 14 and 
15 exhibit the dimensionless entropy generation Ng(η) for different values of temperature ratio parameter θw , 
radiation parameter R and Eckert number Ecx respectively. An enhancement is observed in Ng(η) versus higher 
values of all parameters. Figure 16 describes the variation in surface drag force Cf (η) due to volume fraction of 
nanoparticles φ. Here higher φ reasons lower Cf (η). Figure 17 demonstrates the impact of Reynolds number 
Re against Cf (η). Clearly Cf (η) shows increasing behavior for larger Re. Figures 18 and 19 explored effects of 
temperature ratio parameter θw and radiation parameter R on Nusselt number Nu(η). Increment in Nu(η) is 
noticed for the higher values of both parameters.

Table 2 is constructed for the comparative analysis of present work with Ishak et al.21 and observed very good 
agreement with them.

Concluding remarks
Here the flow analysis of Ag − Cu/EG hybrid nanofluid is discussed. Key findings are listed below.

•	 Velocity f (η) is the decreasing function of higher Re and Mn.
•	 Velocity g(η) enhances against higher Mn while it decays against the estimation of Re.
•	 Increment in temperature θ(η) is seen for higher R and Mn.
•	 Cf  is enhanced for Re while it declined against φ.
•	 Ng(η) rises versus higher Ecx .
•	 Magnitude of Nu is an increasing function of R and θw .

Figure 15.   Impact of Ecx on Ng(η).
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Figure 16.   Impact of ϕ on Cf(η).

Figure 17.   Impact of Re on Cf(η).
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Data availability
The data that support the findings of this study are available within the article, the data are made by the authors 
themselves and do not involve references of others.
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