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Biofilm viscoelasticity and nutrient 
source location control biofilm 
growth rate, migration rate, 
and morphology in shear flow
Hoa Nguyen1, Abraham Ybarra1, Hakan Başağaoğlu2 & Orrin Shindell3*

We present a numerical model to simulate the growth and deformation of a viscoelastic biofilm 
in shear flow under different nutrient conditions. The mechanical interaction between the biofilm 
and the fluid is computed using the Immersed Boundary Method with viscoelastic parameters 
determined a priori from measurements reported in the literature. Biofilm growth occurs at the 
biofilm-fluid interface by a stochastic rule that depends on the local nutrient concentration. We 
compare the growth, migration, and morphology of viscoelastic biofilms with a common relaxation 
time of 18 min over the range of elastic moduli 10–1000 Pa in different nearby nutrient source 
configurations. Simulations with shear flow and an upstream or a downstream nutrient source indicate 
that soft biofilms grow more if nutrients are downstream and stiff biofilms grow more if nutrients 
are upstream. Also, soft biofilms migrate faster than stiff biofilms toward a downstream nutrient 
source, and although stiff biofilms migrate toward an upstream nutrient source, soft biofilms do not. 
Simulations without nutrients show that on the time scale of several hours, soft biofilms develop 
irregular structures at the biofilm-fluid interface, but stiff biofilms deform little. Our results agree 
with the biophysical principle that biofilms can adapt to their mechanical and chemical environment 
by modulating their viscoelastic properties. We also compare the behavior of a purely elastic biofilm 
to a viscoelastic biofilm with the same elastic modulus of 50 Pa. We find that the elastic biofilm 
underestimates growth rates and downstream migration rates if the nutrient source is downstream, 
and it overestimates growth rates and upstream migration rates if the nutrient source is upstream. 
Future modeling can use our comparison to identify errors that can occur by simulating biofilms as 
purely elastic structures.

Biofilms are ubiquitous in nature but could be detrimental in industrial and medical applications. When plank-
tonic microorganisms attach to a solid surface immersed in a fluid flow, they become sessile and develop into 
biofilms1. Corrosion in pipelines due to biofilm formation is costly to the oil and gas industry, water utilities, and 
power plants2. In water transported to consumers through pipelines, biofilms growing on pipe walls release bacte-
rial cells that deteriorate water quality and alter the drinking water microbiome3. The metal surfaces of vascular 
stents used to increase the diameter of arteries and improve blood flow in medical patients4 are susceptible to 
biofilm formation, which could lead to inflammation, necrosis, and vessel rupture5. In the dairy industry, biofilms 
that form on the stainless steel surfaces of milk storage tanks and process lines increase the risk of microbial 
contamination of processed dairy products6. In all these industrial settings, biofilms grow in a fluid environment 
under different nutrient supply and flow conditions.

Biofilms are composed of microorganisms bound together by a matrix of extracellular polymeric substances 
(EPS) that are secreted by the cells7,8. The matrix responds to mechanical stress by exhibiting elastic strain and 
viscous creep9–12 and its chemical composition facilitates nutrient capture13. By modulating their viscoelasticity 
and chemical composition through genetic expression, biofilms are capable of adapting to their mechanical and 
chemical environments14–17. For example, biofilms are able to resist mechanical clearance in the lungs of cystic 
fibrosis patients by adjusting their polysaccharide production18 and resist the immune response in chronic 
wound patients by producing rhamnolipids from quorum sensing cells19. Numerical models that incorporate 
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realistic biofilm properties have the potential to make quantitative predictions about the mechanical and chemi-
cal behavior of biofilms in complex environmental conditions. Such predictions could suggest ways to mitigate 
biofilm growth in industrial and medical settings.

Mathematical models with different levels of complexity have been developed to simulate biofilm growth 
and deformation in fluid environments (for comprehensive reviews, see Refs.20–22 and references therein). The 
models can be generally classified into two groups22: those that simulate deformation, and those that simulate 
growth. The Immersed Boundary Method23 (IBM) has been a popular method of simulating biofilm deformation 
because it easily captures mechanical interactions between immersed structures and fluids. Some of the IBM 
models represented biofilms as purely elastic structures of nodes connected by Stokes elements24,25. Other models 
accounted for biofilm viscosity by changing the fluid viscosity near elastic biofilms26,27 or by representing bio-
films as nodes connected by viscoelastic Kelvin–Voigt elements28. However, none of these IBM models included 
growth. Furthermore, those that included viscosity did not exhibit a constant strain rate at long times, hence, they 
could not reproduce the viscoelastic relaxation times measured in experiments9,10. Another set of models used 
discrete stochastic rules to simulate growing biofilms as they consume nutrients from their environment29–38. 
These models, however, did not include biofilm deformation. For large-scale simulations of biofilm processes, 
continuum models are utilized to simulate the fluid flow, nutrient distribution, and the spatial expansion of bio-
mass. Examples include phase-field approaches that simulate the growth of non-elastic viscous biofilms39 or the 
deformation of viscoelastic biofilms that do not grow40. Even though these continuum models can produce results 
that match elaborate experiments quantitatively, their formulations tend to be complicated and computation-
ally challenging22. Hybrid models that combine discrete biofilm structures and stochastic growth schemes with 
continuum formulations of nutrient and fluid dynamics can be easy-to-implement and computationally efficient.

In this paper, we present a novel hybrid biofilm model to study how the mechanical properties of biofilms 
affect their interactions with different nutrient supply and fluid flow conditions in a microchannel. The Reynolds 
number (Re) ranges from 0 to 8× 10−4 due to low shear velocities in our simulations . The magnitude of Re 
in our simulations is comparable to slow flow conditions in some of the earlier biolfim studies41,42. The biofilm 
is represented as a structure of nodes connected by viscoelastic Maxwell elements with viscoelastic parameter 
values determined a priori from experimental measurements of shear modulus and relaxation time10,43. The 2D 
simulation is based on the IBM and utilizes the IBM solver in the open source IB2d software44–46. An advection-
diffusion-reaction equation, coupled with the IBM, governs the nutrient concentration in the fluid. As the biofilm 
consumes nutrients, new nodes and viscoelastic elements are added to the biofilm-fluid interface by a stochastic 
rule that is based on local concentration values. Our model can be used to predict the growth rate, migration 
rate, and morphology of viscoelastic biofilms that result from the interplay between viscoelastic deformation 
from fluid shear stress and growth from nutrient consumption over several hours.

Our paper is organized into three sections. In the Methods section, we discuss our approach to IBM that ena-
bles an a priori determination of parameter values, and we describe our biofilm growth and reaction algorithm. In 
the Results section, we present results from simulations with biofilms in shear flow with different flow velocities 
and nutrient source configurations. First we compare the results between a purely elastic biofilm and a viscoe-
lastic biofilm with the same elastic modulus. Then we present the results for viscoelastic biofilms with a common 
relaxation time of 18 min10 over the range of elastic moduli 10–1000 Pa10,43. In the Discussion, we summarize 
the significance of our methods for future modeling work and interpret our results in a biophysical context.

Methods
Numerical model.  Biofilms immersed in fluid and attached to a surface deform in response to fluid flow 
as they grow by consuming nutrients from the fluid environment. The deformation response of the EPS matrix 
and embedded cells can be described by bulk viscoelastic material properties, and the nutrient response by spa-
tiotemporal chemical kinetics. Here, we present a biofilm model to simulate the growth of a viscoelastic biofilm 
attached to the wall of a microchannel with fluid flowing through the channel and a nutrient source located 
along the wall.

We use the Immersed Boundary Method (IBM)47 to simulate the hydrodynamic interactions between water 
and a growing viscoelastic biofilm, with viscoelastic simulation parameters determined a priori from experimen-
tal data. The fluid is defined in fixed Eulerian Cartesian coordinates x =

(

x, y
)

 and coupled to the viscoelastic 
biofilm dynamics defined in variable Lagrangian Cartesian coordinates X(t) = (X(t),Y(t)) . The Lagrangian 
coordinates of the biofilm are treated as nodes in a triangular mesh where the connections represent viscoe-
lastic elements that exert forces F∗(X, t) on the nodes. In IBM, the forces exerted on the Lagrangian nodes are 
transformed into body forces f(x, t) exerted on the surrounding fluid particles in the Eulerian coordinates. The 
fluid attains velocity u(x, t) as a result of its interactions with the immersed structure and other external forces. 
The fluid velocity is then interpolated to the Lagrangian nodes of the biofilm giving them velocities U(X, t) that 
match the local fluid velocities so that the no-slip boundary condition is imposed at the immersed structure-
fluid interface.

The dynamics of the concentration c(x, t) of a nutrient affecting biofilm growth is governed by an advection-
diffusion-reaction equation solved in the Eulerian coordinates with a reaction term r(x, t) describing the nutrient 
uptake by the biofilm. As the biofilm consumes nutrients from the surrounding fluid environment, it grows by 
adding nodes and triangles to the Lagrangian structure via a stochastic rule based on local growth rates that 
are determined by local nutrient concentrations. The new nodes are connected by viscoelastic elements with 
mechanical properties that represent cells embedded in the EPS matrix. In the following subsections, we outline 
the details of our approach.
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Immersed boundary method.  The motion of an incompressible Newtonian fluid that interacts with 
immersed structures is governed by the Navier Stokes equations

where u is the fluid velocity, p is the pressure, ρ is the fluid density, µ is the dynamic viscosity, x is position in the 
Eulerian coordinates, and t is time. The net body force exerted on the fluid has a contribution f  from the interac-
tion between the immersed structure and the fluid and a contribution fext arising from all other external forces.

The density of forces acting on the biofilm due to internal stresses, described in Lagrangian coordinates as 
F(X, t) at a position X , is expressed in Eulerian coordinates through the equation

where the integral is taken over the Lagrangian domain L . The integral in Eq. (3) with the Dirac delta function 
kernal δ(x − X) transforms the force density distributed on the immersed Lagrangian structure into body forces 
that are distributed on the surrounding fluid in the Eulerian domain. When the no-slip boundary condition is 
enforced at the immersed structure-fluid interface, the immersed structure must move at the local fluid velocity. 
In this case, the velocity of the immersed structure is given by

where the integral is taken over the Eulerian fluid domain E . The integral transform in Eq. (4) interpolates the 
velocity of the fluid in the Eulerian domain to the immersed structure in the Lagrangian domain.

We use the open-source software IB2d44–46 to solve Eqs. (1), (2), (3) and (4) with periodic boundary condi-
tions imposed at the inlet and outlet of the fluid domain. The Eulerian domain is discretized into a set of points 
xij = (xi , yj) defined on a square grid with grid spacing h. The Lagrangian structure is discretized into a set of 
points Xm(t) = (Xm(t),Ym(t)) where the distance between points may change at each time step. Equations (3) 
and (4) are implemented numerically by using the regularized delta function47

which has compact support within a square of side length 2h.

Viscoelastic biofilm‑wall structure.  The biofilm in our model consists of set of Lagrangian nodes con-
nected as a triangular mesh. To model the mechanics of the biofilm, the connections between nodes are treated 
as viscoelastic elements. The elements may be either a Stokes element, which is a linear spring that obeys Hooke’s 
law, or a Maxwell element, which consists of a Hookean spring and a dashpot in series. The force acting on the 
Lagrangian node Xm due to the element connecting it to Lagrangian node Xm′ is given by

where E is the elastic (Young’s) modulus of the biofilm and dmm′(t) is the resting length of the element. If the 
elements are purely elastic springs, the resting length, dmm′(t) , in Eq. (7) is set equal to the initial resting length, 
dmm′(0).

For viscoelastic elements, the resting length of the element, dmm′(t) , varies in time as the dashpot stretches 
or compresses. The rate of change of the resting length, ḋmm(t) , is proportional to the magnitude of the spring 
force48 and is given by

where η is the dashpot viscosity. In the limit η → ∞ at finite E, ḋmm′(t) → 0 , thus the element connecting Xm 
and Xm′ becomes a purely elastic spring.

The walls of the simulation channel are each composed of a linear chain of Lagrangian nodes of initially equal 
spacing. Neighboring nodes are connected by stiff springs and each node is tethered to its original position by a 
stiff spring. The strong spring forces act to hold the nodes in place and thus impose a no-slip boundary condition 
at the wall. The force exerted on wall node Xw by the spring connecting it to its neighbor Xw′ is

(1)ρ

(

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)

= −∇p(x, t)+ µ∇2
u(x, t)+ fext(x, t)+ f(x, t),

(2)∇ · u(x, t) = 0,

(3)f(x, t) =

∫

L

F(X, t)δ(x − X) dL ,

(4)U(X, t) =

∫

E

u(x, t)δ(x − X) dE ,

(5)δh(x) =
1

h2
φ

(x

h

)

φ

( y

h

)

,

(6)φ(r̃) =















1
8

�

3− 2|r̃| +
�

1+ 4|r̃| − 4|r̃|2
�

|r̃| ≤ 1,

1
8

�

5− 2|r̃| −
�

−7+ 12|r̃| − 4|r̃|2
�

1 ≤ |r̃| ≤ 2,

0 2 ≤ |r̃|,

(7)F
∗
mm′ = dmm′(0)2E

(

||Xm′ − Xm||

dmm′(t)
− 1

)

Xm′ − Xm

||Xm′ − Xm||
,

(8)ḋmm′(t) =
Edmm′(0)

η

(

||Xm′ − Xm||

dmm′(t)
− 1

)

,
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where dw is the initial spacing between the wall nodes. The force exerted on a wall node Xw by the spring tether-
ing it to its fixed initial position X0w is

The biofilm nodes at the bottom of the biofilm are initially placed along the wall co-linearly with the wall 
nodes. For the node Xm located initially along the wall, a stiff tether force connects it to its initial position X0m

In the simulation of the biofilm in fluid flow, the flow is allowed to develop into a steady-state before allowing 
the biofilm to deform. This is accomplished by temporarily tethering each biofilm node Xm to its initial position 
X0m with a stiff force

Once the flow has fully developed, the tethering force (Eq. 12) is released, thereby allowing the biofilm to 
deform.

The spring constants appearing in Eqs. (9), (10), (11), and (12) are much stiffer than the springs connecting 
the biofilm nodes, i.e., A, B, C, D ≫ Ed with d a typical biofilm spring resting length.

The forces acting on the biofilm and wall nodes can be used to define a force denstity function on the biofilm-
wall Lagrangian structure. With F∗m the net viscoelastic force acting on biofilm node Xm (from Eqs. 7, 11, and 
12) and F∗w the net spring force acting on wall node Xw (from Eqs. 9, 10), the force density on the immersed 
structure is

where the Dirac delta functions distribute the forces to the Lagrangian nodes at which they act. Inserting Eq. (13) 
into Eq. (3) gives the total body force acting on the fluid due to its interaction with the biofilm-wall structure as26

which may be regularized on the discrete Eulerian grid via Eq. (5).
In Supplementary Information-1, we discuss the origin of Eq. (13) and the calculation that leads to Eq. (14) 

via Eq. (3). We also show the connection between this formalism, which allows an a priori determination of the 
viscoelastic parameter values E and η , and other approaches that define a force density on the immersed struc-
ture through a “stiffness constant” with dimensions of force density. In Supplementary Information-2 and -3, we 
verify the accuracy of Eq. (14) by simulating a creep test on the biofilm structure where the elastic modulus E 
and dashpot viscosity η were derived directly from measured values of the shear modulus and relaxation time in 
biofilm experiments10. The creep test analysis indicates that the simulated elastic shear modulus and relaxation 
time are consistent with chosen experimental values.

Chemical dynamics and biofilm growth model.  The spatiotemporal dynamics of the nutrient concen-
tration in a fluid enivronment is governed by an advection-diffusion-reaction equation,

where c is the concentration of a single nutrient expressed in Eulerian coordinates x and Dc is the homogeneous 
diffusion constant assumed to be the same within and outside the biofilm. In the present model, the reaction 
term r accounts for the uptake of nutrient concentration defined in the Eulerian domain by the biofilm described 
as a Lagrangian immersed structure.

Bacterial growth resulting from nutrient consumption can be modeled using Monod kinetics49,50, which 
defines a specific bacterial growth rate as a function of nutrient concentration,

where µmax is the maximum specific growth rate, C is the local nutrient concentration expressed in the Lagran-
gian coordinates, and K is the half saturation constant. The time scale of our simulations is much shorter than 
the characteristic time of bacterial cell death51, thus a decay term is not included in Eq. (16). The net biofilm 
mass increases in time according to

where M is the total biomass and

(9)F
∗
ww′ = A(�Xw′ − Xw� − dw)

Xw′ − Xw

�Xw′ − Xw�
,

(10)F
∗
ww = B(X0w − Xw).

(11)F
∗(w)
mm = C(X0m − Xm).

(12)F
∗
mm = D(X0m − Xm).

(13)F(X, t) =
∑

m

F
∗
mδ(X − Xm)+

∑

w

F
∗
wδ(X − Xw),

(14)f(x, t) =
∑

m

F
∗
mδ(x − Xm)+

∑

w

F
∗
wδ(x − Xw),

(15)
∂c(x, t)

∂t
= −u(x, t) · ∇c(x, t)+ Dc∇

2c(x, t)+ r(x, t),

(16)Ŵ(X, t) = µmax
C(X, t)

K + C(X, t)
,

(17)
dM

dt
= Ŵ̄(t)M,
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is the specific growth rate averaged over the Lagrangian biofilm structure. The biomass accumulated during bio-
film growth is distributed along the biofilm boundary according to a probability density function proportional 
to the local specific growth rate,

where B is the portion of the Lagrangian biofilm boundary in contact with the surrounding fluid. As the biofilm 
grows it consumes nutrients within a region Er of the Eulerian domain that coincides with the Lagrangian biofilm 
structure. The reaction term in Eq. (15) is thus given by

where dmdt  is the net rate of change in nutrient mass due to consumption by the biofilm and

is the local specific growth rate expressed in Eulerian coordinates. Finally, the net rate of biomass accumulation 
is proportional to the net rate of nutrient consumption,

where 0 ≤ Y ≤ 1 is the yield coefficient. In the next subsection we describe our implementation of the Eqs. 
(15)–(22) within the IB2d software, where we modified the advection-diffusion upwind scheme to accommodate 
the reaction term.

Growth and reaction algorithm.  The growth and reaction algorithm begins by initializing the Lagran-
gian biofilm structure and the nutrient concentration values defined in the Eulerian fluid domain. The biofilm is 
constructed by specifying the semicircular shape of the biofilm with radius rc and the distance between biofilm 
nodes ds. Then the software package DistMesh52 is used to create a triangular mesh25 that consists of Q = Q0 
nodes, N = N0 triangles of average area a0 , and S = S0 connections (or edges). DistMesh uses the Delaunay tri-
angulation algorithm to produce a mesh that contains mostly equilateral and uniform triangles. Existing nodes 
and the connections between them are maintained throughout the simulation, and additional nodes and con-
nections are added during the biofilm growth as discussed below. The two-dimensional biofilm is taken to rep-
resent a χ = 1µm-thick slice of a three-dimensional biofilm. Thus, the bacterial biomass assigned to an average 
triangle is m0 = �v0n0χa0 where � is the mass density of a bacterium, v0 is the volume of a bacterium, and n0 is 
the number density of bacteria in a three-dimensional biofilm. The mth node of the biofilm Lagrangian structure 
has the coordinate Xm = (Xm,Ym).

The concentration values are defined in the Eulerian fluid domain, which is discretized into a square grid 
with side length h. The grid point xij = (xi , yj) has the concentration value cij . The concentration value Cm at 
each Lagrangian biofilm node Xm is determined by averaging the concentrations at the corners of the Eulerian 
grid square containing Xm,

where Im ≡ [max {xi < Xm}, max {xi < Xm} + h]×
[

max
{

yj < Ym

}

, max
{

yj < Ym

}

+ h
]

.
The concentration values on the Lagrangian biofilm structure can be used to compute the increase of biomass. 

The local specific growth rate, Eq. (16), is approximated as

while the average specific growth rate, Eq. (18), becomes

During a given time step of size δt , the incremental increase in biofilm mass δM is found by solving Eq. (17) 
with Ŵ̄ from Eq. (25) using the forward Euler method,

(18)Ŵ̄(t) =
1

∫

L

dL

∫

L

Ŵ(X, t)dL ,

(19)ψ(X, t) =











Ŵ(X, t)
�

B

Ŵ(X, t)dB
for X ∈ B ,

0 otherwise,

(20)r(x, t) =











dm

dt

γ (x, t)
�

Er

γ (x, t)dE
for x ∈ Er ,

0 otherwise,

(21)γ (x, t) = µmax
c(x, t)

K + c(x, t)

(22)
dM

dt
= Y

∣

∣

∣

∣

dm

dt

∣
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∣

,

(23)Cm =
1

4

∑

xij∈Im

cij ,

(24)Ŵm = µmax
Cm

K + Cm
,
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where Nm0 = M is the mass of the biofilm at the beginning of the time step.
As the biofilm mass increases, the numbers of nodes and triangles increase. For each increase of biofilm mass 

δM , the increase in the triangle number is δN = δM/m0 . At the end of each time step, the change in triangle 
number accumulates from �N  to �N + δN  . A number N ′ = ⌊�N + δN⌋ new triangles of area a0 are then 
spawned at the boundary of the biofilm and the triangle accumulation is reset to the residue �N + δN − N ′ . 
The growth of new triangles involves the addition of Q′ new nodes. Each new triangle is added to the biofilm 
boundary using the probabilistic growth rule, Eq. (19), discretized as

where pm is the probability the new triangle will be spawned at Xm . A position Xm′ is chosen as one vertex of 
a candidate triangle (which is checked against conditions discussed below) by generating a random number ξ 
distributed uniformly on the interval (0, 1) and choosing an integer m′ to satisfy

Once the position Xm′ is selected, a second boundary point Xm′′ adjacent to Xm′ in the clockwise direction is 
selected (unless Xm′ is the last clockwise boundary node, then Xm′′ is adjacent in the counterclockwise direction). 
A third point X′ is then computed as the point located along the bisector to the line joining Xm′ and Xm′′ such that 
the area of the isosceles triangle joining Xm′ , Xm′′ , and X′ is a0 . If X′ is within a small distance ε from an existing 
biofilm boundary point Xm′′′ , then a new triangle is formed by connecting Xm′ , Xm′′ , and Xm′′′ . If the candidate 
triangle overlaps the existing biofilm but the third point X′ is not within ε of an existing point, or if the triangle 
overlaps the wall, a different position is chosen as the vertex of a new candidate triangle via Eq. (28). If neither 
of the former two conditions hold, a point XQ+n = X

′ , where n = 1, · · · ,Q′ , is spawned and connected to the 
two boundary points Xm′ and Xm′′ to form a new triangle.

After each time step, the biofilm mass increases by an incremental amount δM and it consumes an incremental 
mass of nutrient δm = δM

Y  . The nutrient is consumed within the region Er , which is computed as a polygonal 
region of the Eulerian domain that tightly encloses the biofilm Lagrangian structure using the MATLAB function 
‘polyshape’. The local specific growth rate defined in the Eulerian domain is discretized as

The discrete form of the reaction term Eq. (20) is thus

where h is the Eulerian grid size and δt is the time step.
The growth and reaction algorithm can be summarized as follows: At the initial time t = t0 , the biofilm 

structure is discretized as a triangular mesh containing Q = Q0 nodes located at positions {Xm} = {X0m} , S = S0 
connections, and N = N0 triangles with the triangle accumulation �N = 0 and the biomass assigned to an aver-
age triangle m0 . The concentration field cij is also initialized in the Eulerian domain at the coordinates xij . To 
update the biofilm mass and reaction term at time t, we perform the following process: 

1.	 Given Q, {Xm} , S, N, �N , and cij , use Eqs. (23)–(26) to compute the incremental increase in biofilm mass 
δM , and Eqs. (29) and (30) to calculate the reaction term rij .

2.	 Due to the increase of the biomass, a growing biofilm is formed by adding N ′ = ⌊�N + δM
m0

⌋ new triangles, 
Q′ new nodes located at points 

{

XQ+n

}

 , and S′ new connections. Equations (27)–(28) present the strategy 
in forming these additional triangles.

3.	 Set t ← t + δt , Q ← Q + Q′ , {Xm} ← {Xm}
⋃
{

XQ+n

}

 , S ← S + S′ , N ← N + N ′ , �N ← �N + δM
m0

− N ′ , 
and cij ← cij + rijδt . Return to Step 1 or end the simulation when the maximum number of time steps is 
reached.

The MATLAB code that couples our growth and reaction algorithm with the IBM solver in IB2d44–46 is 
included in the open source software package listed in the Supplementary Information-6. This package contains 
full implementation of the simulations presented in the next section and the creep tests.

(26)δM = Ŵ̄Nm0δt,

(27)pm =











Ŵm
�

Xm∈B

Ŵm
for Xm ∈ B ,

0 otherwise,

(28)
m′−1
∑
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pm < ξ <

m′
∑

m=1

pm.

(29)γij = µmax
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.
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δt
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�
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γij
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Results
Numerical simulations.  We simulate the deformation and growth of elastic and viscoelastic biofilms of a 
single species biofilm already in the adhesion or proliferation stage53 in fluid flow with a nutrient source. The bio-
films are attached to the wall of a 2D microchannel, which has two walls parallel to the x-axis constructed from 
Lagrangian wall nodes. The length of the channel walls is Lx and the distance between the walls is Ly . A no-slip 
boundary condition on the walls is imposed by connecting adjacent nodes to each other and tethering each node 
to its initial position with stiff Stokes elements (Eqs. 9 and 10). Periodic boundary conditions are imposed at 
the inlet and outlet of the channel. The biofilm is initialized as a semicircular triangular-mesh structure located 
at the lower wall with Q0 Lagrangian nodes, S0 viscoelastic elements, and N0 triangles. To anchor the biofilm to 
the channel wall, the biofilm nodes initially co-linear with the wall are tethered to their initial position with stiff 
Stokes elements (Eq. 11). The simulation set up is shown in Fig. 1a. The semicircular initial shape of the biolfim 
in Fig. 1 is consistent with the semicircular fan shape of P. aerugionasa biofilms on the polydimethylsiloxane 
template above the inoculation point observed from macroscopic scans54.

We compute the deformation of each biofilm over a range of fluid flow rates. The fluid flows are simulated on 
a square-grid Eulerian fluid domain with the grid size h. Each flow is imposed by applying an external body force 
Fext = ρg x̂ to each fluid node, where ρ is the fluid density, g is an acceleration constant, and x̂ is the x-direction 
unit vector. The acceleration constant g is determined using the steady-state 2D Poiseuille flow solution such 
that a desired maximum fluid velocity umax occurs along the midchannel:

To determine the accuracy of our flow, we first perform simulations in the microchannel without the biofilm 
structure by applying Fext to each fluid node with g determined from Eq. (31). The simulated maximum fluid 
velocity reaches its steady state after 20 seconds and matches the desired maximum fluid velocity umax (listed in 
Table 1) within 2%. Therefore, in simulations with the biofilm structure present, the biofilm is tethered in place 
for the first 20 s of the simulation by stiff Stokes elements (Eq. 12) as the flow evolves into a steady-state. Then 
the tethers are released allowing the biofilm to deform in response to the shear flow.

We simulate the growth of each biofilm in different nutrient concentration configurations shown in Fig. 1b–e 
to account for the combined effect of the shear flow and nutrient source location on the growth of a viscoelas-
tic or elastic biofilm. At 20 seconds the concentration is initialized as c0 at the Eulerian grid points within the 

(31)g =
8µumax

ρLy
2

.

Figure 1.   Initial simulation set up. (a) The initial configuration is a semicircular biofilm located at the bottom 
of the microchannel with a triangular mesh (inset) with Q0 = 637 nodes, S0 = 1819 viscoelastic elements, 
and N0 = 1183 triangles. The periodic boundary condition is imposed at the inlet and outlet, and the no-slip 
boundary condition is implemented along the walls. (b) The base case of no-concentration used to simulate 
biofilm deformation in fluid flow without growth. (c)–(e) The test cases of concentration (yellow strip) to 
simulate growth under different nutrient conditions in the presence of fluid flow. During the simulation, the 
concentration within the yellow strip, which is one Eulerian grid width thick, is held constant at c0 to simulate a 
continuous supply of nutrient.
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highlighted region of height h as indicated in Fig. 1c–e. During the simulation, the concentration is held constant 
at c0 on the same Eulerian grid points to represent a continuous supply of nutrient. The base case of zero nutrient 
configuration Fig. 1b is used to test the deformation of the biofilm in the presence of flow but in the absence of 
growth. Then the growth and deformation of the biofilms are tested under the full-stream Fig. 1c, downstream 
Fig. 1d, and upstream Fig. 1e nutrient configurations. The numerical values of all simulation parameters are 
displayed in Table 1.

Elastic versus viscoelastic biofilms.  We use our model to compare the behavior of a purely elastic bio-
film composed of Stokes elements to a more biologically realistic viscoelastic biofilm composed of Maxwell 
elements in a shear flow. The elastic modulus is chosen to be E = 50 Pa in both cases. The viscoelastic biofilm 
has a dashpot viscosity η = 5× 104 Pa.s, which is chosen to give a relaxation time near the 18 min that is com-
mon in biofilms over a wide range of elastic moduli10. In Supplementary Information-3, the creep test on the 
viscoelastic biofilm structure is presented to show how the elastic modulus, dashpot parameter, and relaxation 
time are related.

We first test the response of the elastic and viscoelastic biofilms to shear flow at various values of umax . A 
comparison of the deformation of the two biofilm structures is shown in Fig. 2 for values of umax = 1, 3, 5× 10−6 
m/s after 2.5 h in shear flow. The biofilm shapes indicate that the strain of the viscoelastic biofilm (Fig. 2d–f) 
exceeds that of the elastic one (Fig. 2a–c) and the difference in the strains of the two biofilms is greater at higher 
flow rates. Greater strains in viscoelastic materials are expected because they exhibit time-dependent stress-
strain behavior and potentially undergo permanent deformation under stress. Additionally, at higher flow rates 
protrusions appear in the viscoelastic biofilm that are absent in the elastic biofilm62.

To quantify the extent of the biofilm deformation, we compute the x- and y-coordinates of the centers of mass, 
which are plotted versus time in Fig. 2g, h. After a few hundred seconds, the x-coordinate (Fig. 2g) of the elastic 

Table 1.   Parameters used in numerical simulations. (*) The calculation of the drag coefficient bd is shown at 
the end of Supplementary Information-2: Viscoelastic Parameters. (†) These values are chosen within the range 
of the values reported in the corresponding references.

Parameter Symbol Value Unit Reference

Dynamic viscosity of the fluid µ 9.31× 10−4 Pa.s

Density of the fluid ρ 1000 kg/ m3

Length of channel Lx 1× 10−2 m

Width of channel Ly 3× 10−3 m

Eulerian grid size dx = dy = h 4.17× 10−5 m

Grid size on biofilm ds dx/5 m

Time step δt 1× 10−3 s

Elastic modulus of biofilm in Section: E 10,43

Elastic versus Viscoelastic Biofilms 50 Pa

Viscoelastic Biofilms 10, 50, 100, 500, 1000 Pa

Dashpot viscosity (Stokes spring) η ∞ Pa.s

Dashpot viscosity (Maxwell element) in Section: η

Elastic versus Viscoelastic Biofilms 5× 104 Pa.s

Viscoelastic Biofilms bd/ds Pa.s (*)

Stiffness constant for connecting springs on wall A 8.33× 10−2 N/m

Tethered-spring stiffness on wall B 6.25× 10−2 N/m

Tethered-spring stiffness on biofilm bottom nodes C 6.25× 10−2 N/m

Tethered-spring stiffness to freeze biofilm (first 20 s) D 8.33× 10−2 N/m

Radius of initial biofilm semi-circle rc 1.5× 10−4 m

Maximum shear velocity umax 0, 1× 10−6, . . . , 5× 10−6 m/s 35

Reynolds number ( ρrcumax/µ) Re 0, . . . , 8× 10−4

Initial concentration of nutrient c0 1.0× 10−3 kg/m3 35

Diffusion rate of nutrient Dc 1.0× 10−10 m2/s 55

Maximum specific growth rate of bacteria µmax 2× 10−4 s−1 35,56†

Bacterial yield coefficient Y 0.553 - 57,58†

Half saturation constant K 1× 10−4 kg/m3 33,59

Bacterial mass density � 1.12 g/ml 60

Volume of bacterium v0 1.75 µm3

Biofilm bacteria number density n0 0.21 µm−3 61

Average area of initial triangles a0 2.99× 10−11 m2
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biofilm changes little as the Stokes elements are nearly in equilibrium with the fluid flow, while the x-coordinate 
of the viscoelastic biofilm moves downstream at a nearly constant speed as the dashpots in the Maxwell elements 
continually increase in length. Relative to the x-coordinate, the y-coordinate (Fig. 2h) of both biofilms changes 
little over 2.5 h. The change in the y-coordinate is about an order of magnitude smaller than the x-coordinate, 
which indicates the flow acts primarily to shear the biofilms.

Next, we test the growth of the elastic biofilm and the viscoelastic biofilm in the presence of the four nutrient 
configurations shown in Fig. 1b–e for values of umax = 0, 1, 2, 3, 4, 5× 10−6 m/s. The results of the simulation 
for the four concentration configurations under a flow value of umax = 5× 10−6 m/s at 2.5 h are shown in Fig. 3. 
In each case, the viscoelastic biofilm grows further downstream than the elastic one. Zoomed-in snapshots of 
the biofilm shapes in Fig. 3 are shown in Supplementary Information-4.

The difference between the amount of growth of the elastic biofilm and the viscoelastic biofilm in our simula-
tions is caused by the interplay between their growth toward the nutrient source and their downstream deforma-
tion in response to the shear flow. To quantify the difference in the net growth between the two biofilms, we take 
the ratio of their biomass at 2.5 h for each of the four nutrient configurations under each flow speed. The results, 
shown in Fig. 4a, indicate the simulations with the elastic biofilm overestimate the growth when the nutrient 
source is located upstream and underestimate the growth when the nutrient source is located downstream. This is 
an intuitive result because the shear flow tends to push the viscoelastic biofilm into the vicinity of the downstream 
nutrient source more than the elastic biofilm (Fig. 3c,g), while the elastic biofilm resists moving downstream and 
remains in the vicinity of the upstream nutrient source more than the viscoelastic biofilm (Fig. 3d,h). The greater 
growth of the elastic biofilm in the upstream configuration and the greater growth of the viscoelastic biofilm in 
the downstream configuration tend to cancel each other when the nutrient source is distributed symmetrically 
in the full-stream (Fig. 3b,f) and in the no-concentration case (Figs. 3a,e), giving a ratio near unity (Fig. 4a).

The growth and deformation of the biofilms results in the net migration of their centers of mass along the bot-
tom of the channel. To measure the migration rate, we fit a least squares line to the x- coordinate of the center of 
mass versus time, shown in Fig. 4b, and a least squares line to the y-coordinate of the center of mass versus time, 
shown in Fig. 4c. In Supplementary Information-4 we show the linear fits over 2.5 h with the residuals displayed 
to verify their accuracy. The results for the x-direction migration rate (Fig. 4b) indicate the viscoelastic biofilm 

Figure 2.   Comparison of deformation in shear flow between an elastic biofilm ( E = 50 Pa) and a viscoelastic 
biofilm ( E = 50 Pa, η = 5× 104 Pa.s). (a)–(f) From top to bottom: elastic to viscoelastic; from left to right: 
umax = 1, 3, 5× 10−6 m/s. Protrusions appear in viscoelastic biofilm at flow rates that are absent in the 
elastic biofilm. (g) The x-coordinate of center of mass versus time. The x-coordinate of the viscoelastic 
biofilm continues to increase in time as the dashpots in the Maxwell elements continue to increase in length. 
The x-coordinate of the elastic biofilm reaches equilibrium when the springs in the Stokes elements reach 
equilibrium. (h) The y-coordinate of center of mass versus time. Relative to the change in the x-coordinate, 
the change of the y-coordinate is an order of magnitude smaller, indicating the flow acts primarily to shear the 
biofilms.
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always migrates further downstream than the elastic biofilm. This result is intuitive because the viscoelastic 
biofilm always tends to deform more downstream in response to the fluid flow more than the elastic biofilm. In 
the case where the nutrient source is located upstream, the net migration of the biofilm can be in the upstream 
direction. At small flow speeds the viscoelastic biofilm migrates upstream, while at high flow speeds it migrates 
downstream. The transition from upstream to downstream migration in the upstream configuration does not 
occur for the elastic biofilm, as it migrates upstream at each flow rate. The migration rate of the two biofilms 

Figure 3.   Comparison of growth and deformation in nutrient configurations and shear flow between an 
elastic biofilm ( E = 50 Pa) and a viscoelastic biofilm ( E = 50 Pa, η = 5× 104 Pa s) after 2.5 h. The red lines 
indicate the boundary of the biofilm determined with the MATLAB function polyshape. (a)–(h) Top to bottom: 
no-concentration, full-stream concentration, downstream concentration, upstream concentration. (a)-(d) 
Elastic biofilm. (e)-(h) Viscoelastic biofilm. The viscoelastic biofilm grows further downstream than the elastic 
biofilm in each nutrient configuration.
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is also different in the full-stream nutrient configuration even though their net growth is approximately equal 
(Fig. 4a).

The fact that the x-direction migration rate downstream appears graphically as an approximately vertical 
shift from the x-direction migration rate upstream for both biofilms in 4b suggests that the migration rate due 
to growth and the migration rate due to shear deformation is approximately additive, and the migration rate 
due to growth is approximately constant. Assuming the upstream velocity is Uup ≈ −Ugrowth + Ushear and the 
downstream velocity is Udown ≈ Ugrowth + Ushear , where Ugrowth and Ushear are the magnitude of the contribution 
to the migration rate due to growth and the shear flow respectively, then Ugrowth ≈ (1/2)(Udown − Uup) . Thus, 
taking the mean value of Ugrowth over the range of umax for the viscoelastic and elastic biofilm gives a measure of 
for the migration rate due to growth: Ugrowth = (0.021± 0.002) mm/hr where the reported error is the standard 
deviation of Ugrowth . The migration speed due to the shear flow, Ushear , can also be estimated from the data as 
Ushear ≈ (1/2)(Udown + Uup) ≈ Ufull , where Ufull is the migration speed of the biofilm in the full-stream nutrient 
configuration. The migration speed due to the shear flow at umax = 5× 10−6 m/s is Ushear ≈ 0.056 mm/h for the 
viscoelastic biofilm and Ushear ≈ 0.016 mm/h for the elastic biofilm. The y-coordinate migration rate, shown in 
Fig. 4c, is similar for both biofilms at small flow rates, while at large flow rates, the elastic biofilm overestimates 
the y-direction migration rate.

Viscoelastic biofilms.  Measurements of biofilms reported in the literature indicate that over eight orders 
of magnitude of the elastic shear modulus ( 10−2 − 106 Pa) biofilms have a common viscoelastic relaxation time 
of about 18  min10. We use our model to compare the growth and deformation of viscoelastic biofilms with 
relaxation times near 18 min over a range of two orders of magnitude in elastic modulus: 10− 1000 Pa. The 
range was chosen to give reasonable numerical results for the values of shear flow used in our simulations, 
umax = 0, 1, 2, 3, 4, 5× 10−6 m/s over 2.5 hour-duration. For these flow rates, biofilms softer than 10 Pa have 
strains so large that numerical errors could become significant, while biofilms stiffer than 1000 Pa have strains 
so small that differences between biofilms became negligible. Moreover, large strains in our simulations are 
undesirable because biofilms are known to exhibit strain hardening at large strain values43, which our model 
does not capture. Nevertheless, the range of elastic moduli we simulate reliably capture a typical range of 70-700 
Pa measured in microfluidic experiments43.

The relaxation time of the biofilm τ is related to the elastic modulus E and the axial viscosity η̃axial (i.e., the 
viscosity measured from axial stress versus axial strain) as

where

In the Supplementary Information-2, we derive equations Eqs. (32) and (33) and discuss the quantity 
ηwater = 1.02× 103 Pa.s, which is the drag coefficient of a fluid node in the simulation divided by the discretiza-
tion length of the Lagrangian biofilm structure. In earlier studies24,28, the viscosity of the water alone was used 
to simulate the viscous response of biofilms without accounting for viscosity in the biofilm structure. We note 

(32)τ =
η̃axial

E
,

(33)η̃axial = η

(

1+
ηwater

2η

)

.

Figure 4.   Comparison of net growth and migration in full-stream, downstream, and upstream nutrient 
configurations over a range of shear flow values between an elastic biofilm ( E = 50 Pa) and a viscoelastic 
biofilm ( E = 50 Pa, η = 5× 104 Pa.s). (a) The ratio of the biomass of the viscoelastic biofilm to the biomass of 
the elastic biofilm at 2.5 h. The elastic biofilm tends to overestimate the growth in the upstream configuration 
and underestimate the growth in the downstream configuration. (b) The migration rate in the x-direction, i.e., 
the velocity of the x-coordinate of the center of mass. The nearly constant offset between the migration rate in 
graphs of the downstream and upstream configurations provides a measure of the migration rate toward the 
nutrient source. The full-stream configuration is approximately the average of the downstream and upstream 
migration rate, which provides a measure of the migration rate in response to shear flow. (c) The migration rate 
in the y-direction, i.e., the velocity of the y-coordinate of the center of mass. The elastic biofilm overestimates the 
vertical migration rate at large values of umax.
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that for a value of η = 5× 104 Pa.s, ηwater accounts for a 10% correction to η̃axial . Thus, for values of E > 50 Pa, 
the viscosity of the water contributes less than 10% percent to the dashpot viscosity η determined by requiring 
τ = 18 min.

We test the deformation of the viscoelastic biofilms in the response to shear flow without nutrient present 
(Fig. 1b) for the range of elastic modulus values E = 10, 50, 100, 500 Pa, at a flow rate of umax = 5× 10−6 m/s. 
A comparison of the deformation of the biofilms is shown in Fig. 5. The results indicate that softer viscoelastic 
biofilms undergo larger strains and develop larger protrusions than stiffer biofilms (Fig. 5a–d). For each biofilm, 
the x-coordinate of the center of mass moves in the direction of the fluid flow (Fig. 5e). The closer to zero the 
asymptotic slope of the x-coordinate versus time becomes, the larger the elastic modulus is. It is expected that 
viscoelastic biofilms with large values of E behave like rigid biofilms with near zero strain rates (Fig. 2g). Increas-
ing E at a given shear stress reduces the strain of the biofilm (Eq. 7), and reducing the strain at fixed relaxation 
time ( τ ∼ η/E for large E) reduces the strain rate of the biofilm (Eq. 8). The change in the y-coordinate of the 
center of mass over 2.5 h is about an order of magnitude smaller then the x-coordinate of the center of mass for 
all the viscoelastic biofilms (Fig. 5f), which indicates the flow acts primarily to shear the biofilms.

Next, we simulate the growth and deformation of the viscoelastic biofilms in the presence of the three nutri-
ent configurations shown in Fig. 1c–e for values of E = 10, 50, 100, 500, 1000 Pa at umax = 5× 10−6 m/s. For 
other parameter values, see Table 1. Images of the results are shown in Fig. 6 for the full-stream, downstream, and 
upstream configurations. Figure 6a–d suggest all viscoelastic biofilms grow a similar amount in the full-stream 

Figure 5.   Comparison of deformation in shear flow between viscoelastic biofilms with relaxations time of 
18 min at a flow rate of umax = 5× 10−6 m/s. (a)-(d) From left to right, top to bottom: E = 10, 50, 100, 500 Pa. 
In shear flow, soft biofilms deform more and develop larger protrusions than stiff biofilms. (e) The x-coordinate 
of center of mass versus time. All the biofilms have a relaxation time near 18 min, which requires the viscosity 
increase in proportion to the elastic modulus. Thus, the asymptotic slope approaches zero in the limit of large 
elastic modulus. (f) The y-coordinate of center of mass versus time. Relative to the change in the x-coordinate, 
the change of the y-coordinate is an order of magnitude smaller, indicating the flow acts primarily to shear the 
biofilms.
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nutrient configuration. The softest biofilm appears to grow more in the downstream configuration Fig. 6e as 
compared to the upstream configuration Fig. 6i, while the stiffest biofilm appears to grow more in the upstream 
configuration Fig. 6l as compared to the downstream configuration Fig. 6h. Zoomed-in snapshots of the biofilms 
in Fig. 6 are shown in Supplementary Fig. 3.

To compare how the nutrient configuration affects the growth of the different viscoelastic biofilms in shear 
flow, we compute the biomass of each biofilm at 2.5 h relative to the initial biomass for umax = 5× 10−6 m/s. 
The results, shown in Fig. 7a, indicate that soft biofilms grow more in a downstream nutrient configuration 
while stiff biofilms grow more in an upstream configuration. Thus, there is a crossover, which occurs at E ≈ 80 
Pa, shown as the vertical dashed line in Fig. 7a. The crossover value of E is not universal but depends on the 
specific values of flow rate umax and the nutrient source concentration c0 . The greater growth of soft bioflims in 
the downstream case and the greater growth of the stiff biofilms in the upstream case tend to cancel when the 
nutrient is symmetrically distributed as in the full-stream and no-concentration configurations, which leads to 
equal net growth over the full range of elastic moduli.

As seen in Fig. 6, when the viscoelastic biofilms grow, they migrate horizontally along the bottom of the 
channel and vertically away from the wall. To measure the horizontal and vertical migration rates, we fit least 
squares lines to the x-coordinate of the center of mass versus time and the y-coordinate of the center of mass 
versus time respectively for each biofilm in each nutrient configuration. In Fig. 7b, the horizontal migration rate 
is plotted versus E in the downstream, full-stream, and upstream configurations. The results can be understood 
intuitively in terms of the downstream migration rate Udown ≈ Ugrowth + Ushear , the upstream migration rate 
Uup ≈ −Ugrowth + Ushear , and the full-stream migration rate Ufull ≈ Ushear as discussed in the previous section. 
For all values of E, the difference between the downstream rate and the upstream rate gives a measure of the speed 
with which the biofilm migrates toward the nutrient, Ugrowth ≈ (1/2)(Udown − Uup) = (0.024± 0.002) mm/h, 

Figure 6.   Comparison of growth and deformation of viscoelastic biofilms with three nutrient source 
configurations and at a shear flow value umax = 5× 10−6 m/s. The red lines indicate the boundary of the biofilm 
determined with the MATLAB function polyshape. (a)-(l) Left to right: full-stream concentration, downstream 
concentration, upstream concentration; top to bottom: E = 10, 50, 100, 500 Pa. Softer biofilms grow further 
downstream than the stiffer biofilms in each nutrient configuration.
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which agrees with the result in the last section obtained by averaging Ugrowth over the range of umax . At the 
elastic modulus value E = 10 Pa for the softest biofilm, Ushear ≈ 0.112 mm/h, and at E = 1000 Pa for the stiffest 
biofilm, Ushear ≈ 0.009 mm/h. In the limit of large values of E, the biofilm undergoes negligible strains due to 
the shear flow and thus Ushear → 0 and the migration rate is dominated by Ugrowth : in the upstream configura-
tion Uup → −Ugrowth , in the downstream configuration Udown → Ugrowth , and in the symmetric full-stream 
configuration Ufull → 0.

In Fig. 7c, the vertical migration rate is plotted versus E in the downstream, full-stream, and upstream nutrient 
configurations. For small values of E, the biofilm grows in the downstream configuration similarly to the full-
stream configuration, while for large values of E, the biofilm grows in the downstream configuration similarly 
to the upstream configuration. These behaviors can be understood as follows: For small values of E the biofilm 
is strained most downstream by the shear flow. In the downstream configuration, this large deformation means 
the biofilm is surrounded by the nutrient concentration, thus its local environment is like that of the biofilm in 
the full-stream configuration. In the upstream configuration, the biofilm is pushed out of the region of highest 
concentration, thus it grows more slowly. For large values of E, the biofilm is barely strained by the shear flow, 
thus the biofilm in the upstream configuration and the biofilm in the downstream configuration are surrounded 
by similar amounts of nutrient.

Discussion
In this work, we present a new model to simulate the growth of elastic and viscoelastic biofilms in shear flow 
under different nutrient source configurations. The interaction between the biofilm structure and the fluid is 
computed using the Immersed Boundary Method (IBM) and the growth is simulated using a probabilistic rule 
based on local nutrient concentrations. Simulations are completed using the open source IB2d software44–46, 
which we modified to accommodate a reaction term in the advection-diffusion equation solver and to implement 
the growth scheme. The viscoelastic and chemical kinetic parameters in the simulations are taken directly from 
experimental values reported in the literature (Table 1).

Our method of applying IBM resolves the challenge25 of determining viscoelastic parameter values a priori 
rather than having to perform a parametric search to match simulations to experiments. In IBM, the point forces 
exerted on the nodes of the Lagrangian structure must be transformed into a force density function. Typically 
this is accomplished (for an elastic structure) by defining “stiffness constants” that have dimensions of force per 
generalized Lagrangian volume. The difficulty is that these constants do not have a clear interpretation in terms 
of the actual spring constants or the elastic moduli. In a square lattice, elementary theory gives the interatomic 
spring constant k in terms of the elastic modulus E and the interatomic spacing d as k = Ed , independently of 
the dimensionality of the lattice63. Thus, it should be possible, given a Lagrangian structure with spacing d and 
an elastic modulus E, to a priori determine k. To accomplish this, we define the spring force between nodes 
using the spring constant k = Ed and use Dirac delta functions to define force densities directly from the point 
forces acting on the nodes of the Lagrangian structure. This procedure enables an exact evaluation of the force 
spreading equation (Eq. 3), which results in body forces in the Eulerian domain that take the same form as those 
employed in other computational fluid dynamics methods (Eq. 14), for example in the Method of Regularized 
Stokeslets64. The technical details of our approach are given in Supplementary Information-1 and -2, and the 
resulting simulation is validated in Supplementary Information-3.

Figure 7.   Comparison of growth and migration rate of viscoelastic biofilms in different nutrient source 
configurations and at a shear flow value umax = 5× 10−6 m/s over a range of elastic moduli. (a) Ratio of the 
biomass of the biofilms at 2.5 h to their initial biomass. Below E ≈ 80 Pa biofilms grow more in a downstream 
configuration relative to an upstream configuration. Above E ≈ 80 Pa biofilms grow more in an upstream 
configuration relative to a downstream configuration. In the symmetric full-stream and no-concentration 
configurations, biofilm growth is independent of the elastic modulus. (b) Horizontal migration rate. The nearly 
constant offset between the downstream and upstream configurations provides a measure of the migration rate 
toward the nutrient source. The full-stream configuration provides a measure of the migration rate in response 
to shear flow. In the limit of large elastic modulus, the strain rate becomes negligible and the migration rate is 
due primarily to growth toward the nutrient source. (c) Vertical migration rate. Soft biofilms in the downstream 
and the full-stream configurations have similar migration rates. Stiff biofilms in downstream and upstream 
configurations have similar migration rates.
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Many earlier models treated biofilms as purely elastic structures, though biofilms are known to be viscoelastic. 
Thus, we use our model to find differences between simulations of a purely elastic biofilm and of a viscoelastic 
biofilm with the same elastic modulus of 50 Pa. In simulations with shear flow but without a nutrient source, the 
viscoelastic biofilm develops a morphological structure with protrusions that the purely elastic biofilm does not 
develop. In simulations with shear flow and an asymmetric nutrient source, the elastic biofilm underestimates 
or overestimates growth rates depending on the configuration of the nutrient supply in the channel. With the 
nutrient supply located upstream from the biofilm, the elastic biofilm overestimates the growth rate. With the 
nutrient supply located downstream, the elastic biofilm underestimates the growth rate. In all nutrient configu-
rations, even in the symmetric full-stream and no-concentration configurations, in which the growth rates are 
equal, the viscoelastic biofilm migrates more downstream than the elastic biofilm. In general, the differences 
between the elastic and viscoelastic biofilms are larger for higher flow rates. These results should be useful for 
future efforts to model biofilms using immersed structures because they illustrate some limitations of using a 
purely elastic structure.

Our simulations capture the biological reality that biofilms possess a common viscoelastic relaxation time of 
about 18 min over a wide range of elastic moduli10. We found that an interplay between biofilm deformation due 
to shear flow and biofilm growth toward a nutrient source resulted in a crossover value of the elastic modulus. 
Biofilms with elastic moduli below the crossover value grew faster when the nutrient source was located down-
stream than they did when the nutrient source was located upstream. Conversely, biofilms with elastic moduli 
above the crossover value grew faster when the nutrient source was located upstream than they did when the 
nutrient source was located downstream. We also found that biofilms migrated along the bottom of the channel 
wall. Soft biofilms migrated downstream in all nutrient configurations but migrated faster when the nutrient 
source was located downstream. Stiff biofilms migrated downstream when the nutrient source was located 
downstream but migrated upstream when the nutrient source was located upstream. Our results agree with the 
biophysical principle that by tuning their viscoelastic parameters, perhaps by modulating their polysaccharide 
production7,16,18, biofilms can adapt to their local nutrient conditions in shear flow to maximize their growth 
rate and their migration rate toward a nutrient source. In this work, we focus on the interplay between biofilm 
growth and deformation over a few hours. In the future, to further capture real characteristics and evolution of 
a viscoelastic biofilm, we will extend our model to include spatial porosity and heterogeneous structure and to 
exhibit detachment phenomena.
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