
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16133  | https://doi.org/10.1038/s41598-021-95401-z

www.nature.com/scientificreports

Lateral hypothalamus involvement 
in control of stress response 
by bed nucleus of the stria 
terminalis endocannabinoid 
neurotransmission in male rats
Lucas Gomes‑de‑Souza1,2, Willian Costa‑Ferreira1,2, Michelle M. Mendonça3, 
Carlos H. Xavier3 & Carlos C. Crestani1,2,4*

The endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the 
stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional 
stress. However, the neural network related to this control is poorly understood. In this sense, the 
lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely 
innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological 
responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic 
neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the 
BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST 
decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint 
stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, 
arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint 
was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on 
restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor 
antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to 
stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present 
data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved 
in LH neuronal activation during stressful events.

The bed nucleus of the stria terminalis (BNST) has been implicated in physiological and behavioral responses 
to stress1–3. Regarding the cardiovascular responses, previous studies demonstrated that BNST modulates the 
blood pressure and heart rate (HR) increases caused by both unconditioned and conditioned stressfull stimuli, 
as well as by non-aversive environmental challenges (e.g., exercise)4–6.

Several neurochemical mechanisms have been implicated in the BNST control of stress responses1,7, includ-
ing the endocannabinoid system8. Indeed, the presence of endocannabinoid receptors and enzymes involved 
in endocannabinoid synthesis and degradation were identified within the BNST9–15. Activation of BNST endo-
cannabinoid neurotransmission during aversive threats was first evidenced by demonstration that systemic 
administration of a selective CB1 receptor antagonist enhanced BNST neuronal activation evoked by stress16,17. 
Accordingly, recent studies identified a role of BNST CB1 receptors in anxiogenic responses to stress11,18. We 
also reported an inhibitory influence of CB1 receptors present in the BNST in tachycardia observed during acute 
restraint stress13. Taken together, these results indicated the BNST endocannabinoid neurotransmission as part 
of the neural pathway regulating stress responses. However, the neural circuit related to this control is unknown.
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The BNST is proposed as an important site connecting corticolimbic structures with effector nuclei of physi-
ological and behavioral responses in the hypothalamus and brainstem1–3,7. In this sense, the BNST sends dense 
projections to the lateral hypothalamus (LH)19,20. Such as BSNT, the LH also plays a role in physiological and 
behavioral responses to emotional stress2,21–24. Regarding the stress-evoked cardiovascular responses, previous 
studies documented a role of this diencephalic region controlling cardiovascular responses evoked by both con-
ditioned and unconditioned aversive stimuli25–27. The LH has an inhibitory influence in cardiovascular responses 
to unconditioned stress27, which is mediated by a balance of local excitatory and inhibitory inputs. Indeed, 
local LH treatment with a selective NMDA glutamatergic receptor antagonist enhanced the HR response to 
restraint stress27, whereas opposite effect was observed following LH treatment with a selective GABAA recep-
tor antagonist28.

The majority of neurons within the BNST present a GABAergic phenotype29–32. Accordingly, some studies 
provided evidence of GABAergic inputs within the LH arising from the BNST33,34. These morphofunctional 
evidence, taken together with evidence stated above of an inhibitory role of LH in tachycardia to restraint27, 
supported the idea that the LH might be part of the neural pathway related to the inhibitory control of restraint-
evoked tachycardia by BNST endocannabinoid neurotransmission. In this sense, considering recent evidence 
that regulation of restraint-evoked tachycardia by BNST CB1 receptor is mediated by inhibition of local gluta-
matergic neurotransmission35, we investigated the hypothesis that the antagonism of CB1 receptor within the 
BNST decreases local neuronal activation within the LH as resulted of increased activation of BNST GABAergic 
neurons projecting to the HL, which in turn increases HR response to stress.

Results
Effect of CB1 receptor blockade within the BNST on number of Fos‑positive neurons in the 
LH of stressed animals.  Bilateral microinjection of the selective CB1 receptor antagonist AM251 
(100 pmol/100 nL/side, n = 11) into the BNST decreased the number of Fos-positive cells in the LH following 
exposure to restraint stress (t = 4.59; df = 17, P = 0.0003), when compared to vehicle-treated animals (100 nL/side, 
n = 8) (Fig. 1). Figure 1 also presents representative coronal sections of the LH region showing Fos-positive cells 
of animals subjected to restraint stress that received vehicle or AM251 into the BNST, as well as a representative 
section indicating the LH location.

Effect of GABAA receptor antagonism in the LH in changes on arterial pressure and HR 
reactivity to acute restraint stress evoked by CB1 receptor blockade in the BNST.  Analysis 
of basal parameters (i.e., pre-stress values) indicated that bilateral microinjections of the GABAA receptor 
antagonist SR95531 (1  pmol/100  nL/side) into the LH and/or the selective CB1 receptor antagonist AM251 
(100 pmol/100 nL/side) into the BNST affected mean arterial pressure (MAP) (F(3,24) = 3.3, P = 0.0376), but with-
out changing HR (F(3,24) = 0.5, P = 0.7259) (Table 1). Nevertheless, post-hoc analysis of MAP basal values did not 
reveal specific differences between the experimental groups (P > 0.05) (Table 1).

Analysis of the time-course curves indicated that acute restraint stress caused a sustained increase on both 
MAP (time factor: F(35,840) = 54, P < 0.0001) and HR (time factor: F(35,840) = 56, P < 0.0001), (Fig. 2). Two-way 
ANOVA also indicated effect of BNST and/or LH pharmacological treatments on restraint-evoked HR increase 
(F(3,24) = 4.0, P = 0.0198), but without affecting MAP (F(3,24) = 0.4, P = 0.7551) (Fig. 2). A treatment × time interac-
tion for HR (F(105,840) = 2.4, P < 0.0001) and MAP (F(105,840) = 1.5, P = 0.0042) was also evidenced. Post-hoc analysis 
revealed that AM251 into the BNST (saline LH + AM251 BNST group) increased restraint-evoked tachycar-
diac response (P = 0.0077) (Fig. 2). The effect of AM251 within the BNST on HR increase to restraint stress 
was inhibited by LH pretreatment with the GABAA receptor antagonist (SR95531 LH + AM251 BNST group) 
(P = 0.5898) (Fig. 2). Post-hoc analyisis did not reveal specific differences between the experimental groups on 
MAP response (P > 0.05) (Fig. 2).

Analysis of the mean change during the entire restraint period indicated effect of pharmacological treatments 
on HR increase (F(3,24) = 4.7, P = 0.0103), but without affecting MAP response (F(3,24) = 0.4, P = 0.7553) (Fig. 2). 
Post-hoc analysis revealed that AM251 into the BNST (sal LH + AM251 BNST group) increased the tachycardia 
to restraint stress (P = 0.0042), and such potentiation effect was absent in animals pretreated with the GABAA 
receptor antagonist into the LH (SR95531 LH + AM251 BNST group) (P = 0.4760) (Fig. 2).

Figure 2 presents representative experimental recordings showing the effect of restraint stress in MAP and 
HR in animals that received vehicle or the selective GABAA receptor antagonist into the LH, followed by micro-
injection of vehicle or the CB1 receptor antagonist into the BNST.

Effect of GABAA receptor antagonism in the LH in changes on tail skin temperature reactivity 
to acute restraint stress evoked by CB1 receptor blockade in the BNST.  Bilateral microinjections 
of the GABAA receptor antagonist SR95531 (1 pmol/100 nL/side) into the LH and/or the selective CB1 recep-
tor antagonist AM251 (100 pmol/100 nL/side) did not affect the basal values (i.e., pre-stress level) of tail skin 
temperature (F(3,24) = 1.9, P = 0.1656) (Table 1). However, analysis of the time-course curves indicated that acute 
restraint stress decreased the skin temperature (time factor: F(6,144) = 53, P < 0.0001) (Fig. 3). Two-way ANOVA 
did not indicate effect of BNST and/or LH pharmacological treatments on restraint-evoked decrease in tail skin 
temperature (F(3,24) = 1.8, P = 0.1847) (Fig. 3), but a treatment x time interaction was evidenced (F(18,144) = 3.1, 
P = 0.0059). Nevertheless, post-hoc analysis did not reveal difference between the experimental groups in 
restraint-evoked drop in tail skin temperature (P > 0.05) (Fig. 3). Analysis of the mean change during the entire 
restraint period also did not indicate effect of pharmacological treatments on tail skin temperature response 
(F(3,24) = 2.9, P = 0.0515) (Fig. 3). Figure 3 presents representative images showing the tail skin temperature before 
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Figure 1.   Effect of bed nucleus of the stria terminalis (BNST) treatment with the CB1 receptor antagonist 
AM251 in the number of Fos-immunoreactive (IR) cells in the LH following exposure to a 60-min session of 
restraint stress. (Top) Representative coronal sections showing Fos-IR cells in the LH following restraint stress 
exposure in animals that received bilateral microinjection of vehicle or AM251 into the BNST (bottom), as well 
as a representative section indicating the LH location (top). 3V third ventricle, LH lateral hypothalamus, PVN 
paraventricular nucleus of the hypothalamus. (Bottom) Number of Fos-IR cells in the LH following exposure to 
acute restraint stress in animals treated with vehicle [solution of saline containing 30% of DMSO (DMSO), 100 
nL, n = 8] (white bar) or the selective CB1 receptor antagonist AM251 (100 pmol/100 nL, n = 11) (green bar) into 
the BNST. The bars represent the mean ± SEM. * P < 0.05, Student’s t test.

Table 1.   Basal parameters of mean arterial pressure (MAP), heart rate (HR) and tail skin temperature (T) after 
pharmacological treatment of the BNST with the selective CB1 receptor antagonist AM251 (or vehicle) and/or 
the LH with the selective GABAA receptor antagonist SR95531 (or vehicle). Values are mean ± SEM, one-way 
ANOVA. DMSO saline containing 30% of DMSO, SAL saline, SR SR95531.

Groups n MAP (mmHg) HR (bpm) T (ºC)

SAL LH + DMSO BNST 7 109 ± 2 392 ± 8 28.7 ± 0.2

SAL LH + AM251 BNST 7 111 ± 3 389 ± 11 29.1 ± 0.1

SR LH + DMSO BNST 7 104 ± 1 398 ± 8 29.6 ± 0.2

SR LH + AM251 BNST 7 104 ± 2 406 ± 16 28.9 ± 0.5
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and during restraint stress in animals that received vehicle or the selective GABAA receptor antagonist into the 
LH, followed by microinjection of vehicle or the CB1 receptor antagonist into the BNST.

Discussion
The present results indicate for the first the LH as part of the neural pathway regulating physiological responses 
during stressful events by the BNST. In fact, we observed that BNST treatment with the selective CB1 receptor 
antagonist AM251 into the BNST facilitated the tachycardia evoked by restraint stress, but without affecting the 
pressor and sympathetically-mediated cutaneous vasoconstriction. The facilitatory influence of CB1 receptor 
antagonism within the BNST on restraint-evoked tachycardia was completely inhibited in animals pretreated in 
the LH with the selective GABAA receptor antagonist SR95531. Besides, we identified that bilateral microinjec-
tion of AM251 into the BNST decreased the number of Fos-immunoreactive cells in the LH of animals subjected 
to restraint stress.

Figure 2.   Effect of lateral hypothalamus (LH) treatment with the selective GABAA receptor antagonist SR95531 
and/or microinjection of the CB1 receptor antagonist AM251 into the bed nucleus of the stria terminalis 
(BNST) in arterial pressure and heart rate (HR) changes evoked by an acute session of restraint stress. (Top, left) 
Time-course curves of changes on mean arterial pressure (Δ MAP) and HR (Δ HR) evoked by acute restraint 
stress in animals treated bilaterally into the LH with saline (SAL, 100 nL) or the selective GABAA receptor 
antagonist SR95531 (1 pmol/100 nL), followed by a second microinjection into the BNST of vehicle [solution 
of saline containing 30% of DMSO (DMSO), 100 nL] or the selective CB1 receptor antagonist AM251 (AM251, 
100 pmol/100 nL). Circles represent the mean ± SEM. #P < 0.05 over the entire restraint period compared to 
SAL LH + DMSO BNST group. Two-way ANOVA accompanied by Bonferroni post-hoc test (n = 7/group). 
(Top, right) Mean Δ MAP and Δ HR during the entire restraint stress period in animals treated bilaterally into 
the LH with SAL (100 nL) or SR95531 (1 pmol/100 nL), followed by a second microinjection into the BNST 
of DMSO (100 nL) or AM251 (100 pmol/100 nL). Columns represent the mean and bars the SEM. *P < 0.05 in 
relation to SAL LH + DMSO BNST group. One-way ANOVA accompanied by Bonferroni post-hoc test (n = 7/
group). (Bottom) Pulsatile arterial pressure (PAP), MAP and HR recordings before and during restraint stress 
of representative rats illustrating the effect of local LH treatment with saline (SAL) or the selective GABAA 
receptor antagonist SR95531, followed by a second microinjection into the BNST of vehicle (DMSO) or the 
selective CB1 receptor antagonist AM251 (AM251). The arrows indicate the microinjection into the LH and 
BNST, respectively. Note the increase in restraint-evoked tachycardia in SAL LH + AM251 BNST group, which 
was inhibited when the LH was pretreated with the GABAA receptor antagonist (SR95531 LH + AM251 BNST 
group).
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We reported previously that microinjection of the selective CB1 receptor antagonist AM251 into the BNST 
dose-dependently enhanced the tachycardia (without affecting blood pressure and tail skin temperature 
responses) observed during acute restraint stress13. Conversely, increase in either anandamide or 2-arachidonoyl-
glycerol levels in the BNST decreased HR response to restraint stress, and the effect of both endocannabinoids 
were inhibited in animals pretreated in the BNST with AM25113. These previous results support the present 
findings indicating an inhibitory role of CB1 receptors in restraint-evoked tachycardia.

CB1 receptors are expressed predominantly in presynaptic terminals36–38. Accordingly, CB1 receptor was 
identified in both excitatory and inhibitory terminals onto BNST neurons, and its activation inhibited local 
glutamatergic and GABAergic inputs14,15. However, CB1 receptor activation present in glutamatergic terminals 
seem to be prominent during aversive threats within the BNST. For instance, previous findings identified that 
CB1 receptor blockade enhanced stress-evoked c-fos mRNA in the BNST16,17. Besides, we reported recently 
that the facilitated tachycardia to restraint stress following BNST treatment with AM251 was inhibited by local 
NMDA glutamate receptor antagonism within the BNST35. The idea that control of cardiovascular responses to 
restraint by BNST CB1 receptor is mediated by interaction with local glutamatergic neurotransmission is further 
supported by evidence that BNST NMDA glutamate receptor plays a facilitatory influence in restraint-evoked 
HR response without affecting pressor and tail skin temperature changes39,40.

Figure 3.   Effect of lateral hypothalamus (LH) treatment with the selective GABAA receptor antagonist SR95531 
and/or microinjection of the CB1 receptor antagonist AM251 into the bed nucleus of the stria terminalis 
(BNST) in drop in tail skin temperature evoked by an acute session of restraint stress. (Top, left) Time-course 
curves of changes in tail skin temperature (Δ tail temperature) evoked by acute restraint stress in animals 
treated bilaterally into the LH with saline (SAL, 100 nL) or the selective GABAA receptor antagonist SR95531 
(1 pmol/100 nL), followed by a second microinjection into the BNST of vehicle [solution of saline containing 
30% of DMSO (DMSO), 100 nL] or the selective CB1 receptor antagonist AM251 (AM251, 100 pmol/100 nL). 
Circles represent the mean ± SEM. Two-way ANOVA (n = 7/group). (Top, right) Mean Δ tail temperature 
during the entire restraint stress period in animals treated bilaterally into the LH with SAL (100 nL) or 
SR95531 (1 pmol/100 nL), followed by a second microinjection into the BNST of DMSO (100 nL) or AM251 
(100 pmol/100 nL). Columns represent the mean and bars the SEM. One-way ANOVA (n = 7/group). (Bottom) 
Images of representative rats showing the tail skin temperature before and at first and last minute of restraint 
stress in animals treated with saline (SAL) or the selective GABAA receptor antagonist SR95531 into the 
LH, followed by a second microinjection of vehicle (DMSO) or the selective CB1 receptor antagonist AM251 
(AM251) into the BNST. Note the absence of effect of the pharmacological treatments.
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Current data provide evidence regarding the neural circuit related to the control of tachycardia to restraint 
stress by BNST CB1 receptor by indicating a prominent role of projections to the LH. As stated in the Introduc-
tion, previous studies provided evidence of GABAergic inputs within the LH arising from the BNST33,34. These 
neuroanatomical evidence, taken together with results mentioned above that CB1 receptor activation during 
aversive threats acts mainly inhibiting glutamatergic terminals during aversive threats16,17,35 indicate that the 
decrease in number of Fos-immunoreactive cells in the LH observed in the present study in animals treated with 
the CB1 receptor antagonist in the BNST might be the resulted of an increased local glutamatergic neurotransmis-
sion, which in turn increase activation of BNST GABAergic neurons projecting to the LH. The hypothesis that 
GABAergic connection with the LH mediates the inhibitory control of BNST CB1 receptor was further supported 
by demonstration that LH pretreatment with the GABAA receptor antagonist SR95531 completely inhibited the 
facilitation of HR increase to restraint stress caused by BNST treatment with the CB1 receptor antagonist AM251. 
Therefore, the amplitude of the tachycardia evoked by acute stress exposure rely on CB1 receptor within the 
BNST governing reduction in GABAergic influence exerted by BNST upon LH neurons, which in turn increase 
activity of LH neurons inhibiting heartbeat during stressful event. This idea is in line with recent report that 
GABAA receptor antagonism within the LH decreased restraint-evoked tachycardia28. Besides, a previous study 
documented that inhibition of BNST GABAergic terminals within the LH caused increase in local postsynaptic 
neuronal activity34. Figure 4 shows schematic representation illustrating the proposed mechanism involving 
BNST endocannabinoid neurotransmission and LH GABAergic mechanism for the control of HR response 
during stressful events.

GABAergic projections from the BNST to the LH have been previously implicated in behavioral responses, 
including feeding and anxiety-like behavior34,41. However, this pathway seem not to be related to the control of 
cocaine conditioned place preference by LH orexin neurons42. Besides, the decrease in anxiety-like behaviors 
evoked by stimulation of BNST-LH projection was not followed by changes in respiratory rate, which indi-
cated that this neural network was not involved in physiological changes related to this behavioral response41. 

Figure 4.   Schematic representation illustrating the proposed mechanism of interaction between BNST 
endocannabinoid neurotransmission acting via local CB1 receptor and GABAergic neurotransmission within 
the LH in the control of tachycardiac response during aversive threats. Activation of CB1 receptor in the BNST 
present in glutamatergic terminals (1) inhibits the local release of glutamate (2), which in turn decreases the 
activity of BNST GABA neurons (3) and, consequently, the release of GABA in the HL (4). The decreased GABA 
release increase activity of local HL neurons (5), which cause an inhibitory influence in HR increase during 
stresstul events (6) (please, see the text for details). 2-AG 2-arachidonoylglycerol, AEA anandamide, BNST bed 
nucleus of the stria terminalis. Glu glutamate, HR heart rate.
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Therefore, to the best of our knowledge, our findings are the first to indicate an involvement of the BNST-LH 
pathway in physiological responses during aversive threats7,43. Besides, in addition to provide evidence of the 
brain network involved in the control of cardiovascular responses by BNST endocannabinoid neurotransmis-
sion, results reported here also indicate a mechanism involved in neuronal activation within the LH during 
aversive threats.

GABAergic projections from the BSNT targets glutamatergic neurons within the LH34. Previous studies identi-
fied inputs from the LH in parasympathetic brainstem nuclei44,45. Indeed, Deolindo et al.27 reported that cardiac 
parasympathetic activity governs the inhibitory control of restraint-evoked HR increase by the LH. Control of 
tachycardia to restraint by the BNST was also documented to be mediated by facilitation of parasympathetic nerv-
ous system5. Based on these pieces of evidence, it is possible that the inhibitory control of restraint-evoked HR 
increase by BNST CB1 receptor occouring via inhibition of GABAergic inputs within the LH is mediated by an 
increase in activity of LH glutamatergic neurons projecting to parasympathetic centers in the medulla. However, 
BNST projections also target neurons expressing orexin and melanin concentrating hormone (MCH) within the 
LH7,20. Although evidence that BNST GABAergic neurons inhibits MCH cells within the LH20, these neurons 
are inhibited by aversive stimuli20, which preclude the idea of a role of MCH cells in control of stress responses 
by BNST CB1 receptors. Orexin neurons also seem not to be part of the pathway proposed in the present study 
once this neurochemical mechanism in the brain plays a facilitatory influence in stress-evoked cardiovascular 
changes46–48, so that increased activity of LH orexin neurons would increase rather than decrease restraint-evoked 
HR increase. The absence of an involvement of orexin neurons is further supported by evidence that orexinergic 
mechanisms are not involved in cardiovascular changes caused by restraint47.

The idea that control of tachycardia to stress by BNST CB1 receptors is mediated by direct GABAergic projec-
tions to the LH is supported by evidence of the BNST as a prominent source of GABAergic inputs in the LH20,33. 
Besides, previous studies have indicated that optogenetic activation of BNST GABAergic terminals within the 
LH affected feeding and anxiety-like behaviors34,41. However, we cannot exclude the possibility that involvement 
of LH GABAergic neurotransmission in BNST CB1 receptor control of tachycardia to restraint stress is medi-
ated by recruitment of intermediate brain regions. In fact, previous studies identified LH-projecting GABAergic 
neurons in brain regions that receive BNST inputs49–52 and are involved in control of stress-evoked cardiovascular 
responses53–55, such as amygdala and lateral preoptic area. Therefore, further studies are necessary to directly 
assess if control of cardiovascular responses to stress by BNST CB1 receptors are mediated by direct or indirect 
connections with the LH.

In summary, the results reported in the present study provide evidence of the LH as part of the neural network 
regulating the cardiovascular responses to aversive threats by BNST endocannabinoid neurotransmission. In fact, 
our data indicate that the inhibitory control related to CB1 receptors activation within the BNST in tachycardia 
to stress is mediated by LH GABAergic neurotransmission acting via local GABAA receptors. Findings reported 
here also provide evidence that BNST endocannabinoid neurotransmission is potentially involved in activation 
of LH neurons during aversive threats.

Methods
Animals.  Forty-seven male Wistar rats weighting 240–260 g (60-days-old) were used. Animals were obtained 
from the animal breeding facility of the São Paulo State University (UNESP) (Botucatu, SP, Brazil), and were 
housed according to conditions stablished in our laboratory13,28,56,57. Briefly, the rats were housed in plastic cages 
in a temperature-controlled room at 24 °C in the Animal Facility of the Laboratory of Pharmacology (School 
of Pharmaceutical Sciences/UNESP). They were kept under a 12:12 h light–dark cycle (lights on between 7:00 
am and 7:00 pm) with free access to water and standard laboratory food. Housing conditions and experimental 
procedures were approved by the Ethical Committee for Use of Animals of the School of Pharmaceutical Sci-
ences/UNESP (approval # 61/2015), which complies with Brazilian and international guidelines for animal use 
and welfare. The study was carried out in compliance with the ARRIVE guidelines.

Implant of brain cannulas.  Five days before the trial, rats were anesthetized with tribromoethanol 
(250 mg/kg, i.p.). After scalp anesthesia with 2% lidocaine, the skull was exposed and stainless-steel guide can-
nulas (26 G, 12 mm-long) directed to the LH and/or BNST were bilaterally implanted at a position 1 mm above 
the site of injection, using a stereotaxic apparatus (Stoelting, Wood Dale, IL, USA). Stereotaxic coordinates 
for cannula implantation into the BNST were: antero-posterior =  + 7.8 mm from interaural line; lateral = 4 mm 
from the medial suture; dorso-ventral =  − 5.8 mm from the skull, with a lateral inclination of 23°58. For the LH, 
the stereotaxic coordinates were: antero-posterior =  + 6.2 mm from interaural line; lateral = 1.8 mm from the 
medial suture; dorso-ventral =  − 7.6 mm from the skull; without lateral angulation58. Cannulas were fixed to the 
skull with dental cement and one metal screw. After the surgery, all animals received a poly-antibiotic solution 
containing streptomycins and penicillins (560 mg/ml/kg, i.m.) to prevent infection and the non-steroidal anti-
inflammatory flunixin meglumine (0.5 mg/ml/kg, s.c.) for post-operation analgesia.

Cannulation of femoral artery.  One day before the trial, rats were anesthetized with tribromoethanol 
(250 mg/kg, i.p.), and a catheter (Clay Adams, Parsippany, NJ, USA) filled with a solution of heparin (50UI/ml, 
Hepamax-S, Blausiegel, Cotia, SP, Brazil) diluted in saline (0.9% NaCl) was inserted into the abdominal aorta 
through the femoral artery for cardiovascular recording, according to procedures previously described by our 
group13,57,59,60. After the surgery, the non-steroidal anti-inflammatory flunixin meglumine (0.5 mg/ml/kg, s.c.) 
was administered for post-operation analgesia. The animals were kept in individual cages during the postopera-
tive period and cardiovascular recording.
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Restraint stress.  The acute restraint stress consisted of introducing the animals into plastic cylindrical 
tubes (diameter = 6.5 cm, length = 15 cm), which were ventilated by ½ inch holes that comprised approximately 
20% of the tube, as previously described by us5,13. The animals were maintained for a period of 60 min into the 
restraint tube5,13,27. Each animal was submitted to only one session of stress in order to avoid habituation61–63.

Blood pressure and heart rate recording.  The catheter implanted into the femoral artery was con-
nected to a pressure transducer (DPT100, Utah Medical Products Inc., Midvale, UT, USA), and pulsatile arterial 
pressure (PAP) was recorded using an amplifier (Bridge Amp, ML224, ADInstruments, Australia) and an acqui-
sition board (PowerLab 4/30, ML866/P, ADInstruments, NSW, Australia) connected to a personal computer, 
as previously described by us13,57,64,65. Mean arterial pressure (MAP) and HR values were derived from the PAP 
recording.

Tail cutaneous temperature measurement.  Vasomotor sympathetic activity activation during aver-
sive threats decreases cutaneous blood flow66 that in turn reduces cutaneous temperature67. Therefore, the drop 
in tail cutaneous temperature was evaluated as an indirect measurement of vasomotor sympathetic response in 
cutaneous beds during restraint stress13,35,67.

The tail cutaneous temperature was recorded using a thermal camera (IRI4010, Infra Red Integrated Systems 
Ltd., Northampton, UK). The analysis was performed using a software for thermographic analysis, and tempera-
ture was represented by color intensity variations67,68. For image analysis, the temperature was measured on five 
points along the animal’s tail, and the mean value was calculated for each recording13,35,39,69.

Drug microinjection.  The needles (33G, Small Parts, Miami Lakes, FL, USA) used for microinjection into 
the BNST and/or LH were 1 mm longer than the guide cannulas and were connected to a 2 μL syringe (7002-KH, 
Hamilton Co., Reno, NV, USA) via a PE-10 tubing (Clay Adams, Parsippany, NJ, USA). Intra-cerebral micro-
injections were performed within a 5 s period, and the needle was left in the guide cannula for 1 min after the 
microinjection before being removed. Microinjection was performed without restraining the animals, and drugs 
were administrated into the LH and BNST in a final volume of 100 nL per side5,13,27,28,67.

Drugs and solutions.  SR95531 (selective GABAA receptor antagonist) (TOCRIS, West-woods Business Park, 
Ellisville, MO, USA; cat. #1262), 2,2,2-tribromoethanol (Sigma-Aldrich, St Louis, Missouri, USA; cat. #T48402) 
and urethane (Sigma-Aldrich; cat. #U2500) were dissolved in saline (NaCl 0.9%). AM251 (N-(piperidin-1-yl)-5-
(4-iodophenyl)-1-(2,4-dichlo-rophenyl)-4-methyl-1H-pyrazole-3 carboxamide) (selective CB1 receptor antago-
nist) (TOCRIS, cat. #1117) was dissolved in a solution of saline containing 30% of DMSO (DMSO). Flunixin 
meglumine (Banamine, Schering Plough, Cotia, SP, Brazil) and the polyantibiotic preparation of streptomycins 
and penicillins (Pentabiotico, Fort Dodge, Campinas, SP, Brazil) were used as provided.

Immunohistochemistry.  Thirty minutes after the end of the stress session, the animals were anesthetized 
with urethane (1.2 g/kg,i.p.) and perfused with saline phosphate (PBS) (1X pH 7.4) accompanied by 4% para-
formaldehyde in solution with phosphate buffer (pH 7.4). Then, the brain was removed and post-fixed in para-
formaldehyde for 2 h and transferred to 30% sucrose solution in PBS at 4 °C. Two days later, the brains were 
frozen in dry ice powder for 1 h, and then stored in freezer at − 80 °C until processing.

Before the imunnohistochemistry procedures, the brains were sectioned in a cryostat (− 20 °C) (CM1900, 
Leica, Germany) with a thickness of 35 μm according to coodinates of Paxinos and Watson58. The slices contain-
ing the LH region were washed 3 times (10 min each wash) in PBS and incubated in blocking solution (3% goat 
serum and 0.25% Triton X-100) dissolved in PBS for one hour at room temperature. After the blockage, the slices 
were incubated with anti- Fos primary antibody (1:2000 dilution; Cell Signaling Technology, Danvers, MA, USA; 
produced in rabbit) for 24 h at 4 °C. After the incubation, the slices were washed with PBS 3 times (10 min each 
wash) and incubated with biotinylated anti-rabbit secondary antibody (dilution 1: 600; Vector Laboratories, 
Burlingame, CA, USA) in PBS-Tx (0.25% Triton X-100) and 3% goat serum for 2 h at room temperature. The 
slices were then washed with PBS 3 times (10 min each wash) and incubated for 1 h in avidin–biotin-peroxidase 
solution (ABC Elite kit, PK-6100; Vector Laboratories, Burlingame, CA, USA), 0.5% Triton X-100 and PBS. The 
slices were then washed 3 times (10 min each wash) and incubated in 3,3′-diaminobenzidine (DAB) for seven 
min. Then, they were washed 4 times (5 min each wash), transferred to PBS solution and mounted on gelatinized 
slides. After drying, the slides were hydrated in distilled water and then gradient dehydrated by increasing ethanol 
titrations (30%, 60%, 90%, 95% and 100%) and xylol (LabSynth, São Paulo, Brazil). Finally, they were covered 
with Permount (Sigma-Aldrich, St. Louis, MA, USA) and coverslips.

Immunostaining of Fos was captured in a microscope coupled to a camera (Zeiss Axioskop 2). Two images 
were captured per slice (right and left hemispheres) and at least two slices were obtained per animal, and the 
counting was performed from a fixed area of the LH. The Fos-positive cells were counted using the ImageJ soft-
ware (version 1.52q; website: https://​imagej.​nih.​gov/​ij/​downl​oad.​html). The results were expressed as mean num-
ber of Fos-positive cells/mm2. The LH was identified according to the atlas of rat`s brain of Paxinos and Watson58.

Experimental design.  Experimental procedures were as previously described by us13,35,70. Briefly, animals 
were brought to the experimental room in their own cages. Animals were allowed at least 60 min to adapt to the 
experimental room conditions, such as sound and illumination, before starting the experiments. The experimen-
tal room was temperature controlled (24 °C) and acoustically isolated from the other rooms.

https://imagej.nih.gov/ij/download.html
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Effect of CB1 receptor blockade within the BNST on number of Fos‑positive neurons in the LH of stressed ani-
mals.  This protocol aimed to test the hypothesis that antagonism of CB1 receptor within the BNST decreases 
the number of Fos-positive neurons in the LH during restraint stress. For this, animals were treated with either 
vehicle (saline containing 30% of DMSO, 100 nL/side, n = 8) or the selective CB1 receptor antagonist AM251 
(100  pmol/100  nL/side, n = 11) into the BNST13,35. Ten min after the treatment, all rats were submitted to a 
60 min session of restraint stress. Thirty minutes after the end of the stress session, the animals were anesthetized 
with urethane (1.2 g/kg,i.p.), perfused, and their brains were processed for immunohistochemistry protocol.

Effect GABAA receptor antagonism in the LH in changes of cardiovascular and tail skin temperature reactivity to 
acute restraint stress evoked by CB1 receptor blockade in the BNST.  The aim of this protocol was to evaluate the 
involvement GABAergic neurotransmission in the LH, acting via local GABAA receptors, in changes of restraint-
evoked MAP and HR increase and drop in tail skin temperature caused by CB1 receptor antagonism in the 
BNST. For this, independent sets of rats were pretreated into the LH with either the selective GABAA receptor 
antagonist SR95531 (1 pmol/100 nL) or vehicle (saline, 100 nL/side)28. Five minutes later, the animals received 
either vehicle (saline containing 30% of DMSO, 100 nL/side) or AM251 (100 pmol/100 nL/side) into the BNST 
(n = 7/group, Table 1)13,35. Five minutes after the second pharmacological treatment, animals in all experimental 
groups underwent a 60 min session of restraint stress.

Blood pressure and HR recording started at least 30 min before the onset of the restraint, and was performed 
throughout the stress session. The tail skin temperature was measured 10, 5 and 0 min before the restraint for 
baseline values, and at 10, 20, 40 and 60 min during restraint13,35. Each animal received a single pharmacological 
treatment and was submitted to one session of restraint. In each protocol, animals were randomly distributed 
among the several experimental groups.

Histological determination of the microinjection sites.  At the end of each experiment, animals were 
anesthetized with urethane (1.2 g/kg, i.p.), and 1% Evan’s blue dye was microinjected into the brain at the same 
volume of drug injection (i.e.,100 nL/side) as a marker of microinjection site. Then, the brains were removed and 
post-fixed in 10% formalin solution for at least 48 h at 4 °C. Afterwards, serial 40 μm thick sections of the BNST 
region were cut using a cryostat (CM1900, Leica, Wetzlar, Germany) for identification of the microinjection sites 
according to Paxinos and Watson58.

Photomicrographs of coronal brain sections depicting bilateral microinjection sites in the LH and BNST of 
representative animals are presented in Fig. 5. Diagrammatic representations based on the brain atlas of Paxinos 
and Watson58 indicating the microinjection sites into the LH and BNST of all animals used in the present study 
are also presented in Fig. 5.

Data analysis.  Data were expressed as mean ± SEM. The number of Fos-positive cells in the LH were com-
pared using the Student’s t-test. The basal values of MAP, HR and tail skin temperature were compared using one-
way ANOVA followed by Bonferroni’s post-hoc test. Restraint-evoked cardiovascular changes were obtained by 

Figure 5.   (A) Photomicrographs of coronal brain sections from representative rats showing bilateral sites 
of microinjection into the lateral hypothalamus (LH) (left) and bed nucleus of the stria terminalis (BNST) 
(right). (B, C) Diagrammatic representations based on the rat brain atlas of Paxinos and Watson58 indicating 
the microinjection sites into the lateral hypothalamus (B) and BNST (C) of all animals used for evaluation of 
the involvement of GABAA receptor within the LH in cardiovascular changes evoked by microinjection of the 
selective CB1 receptor antagonist AM251 into the BNST. White circles: saline LH + DMSO BNST group; black 
circles: saline LH + AM251 BNST group; white squares: SR95531 LH + DMSO BNST group; black squares: 
SR95531 LH + AM251 BNST group. 3V third ventricle, ac anterior commissure, cc corpus callosum, f fornix, IA 
interaural coordinate, ic internal capsule, LV lateral ventricle, opt optic chiasm, st stria terminalis.
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calculating the difference between the values recorded during the restraint stress and the baseline value obtained 
by the mean of points recorded across the 10 min before the restraint onset. The time-course curves of MAP, 
HR and tail skin temperature changes were analyzed using two-way ANOVA, with treatment as main factor and 
time as repeated measurement, followed the by the Bonferroni`s post-hoc test. The mean of the values during the 
entire restraint session was also calculated, and these values were compared using one-way ANOVA followed by 
Bonferroni’s post-hoc test. Results of statistical tests with P < 0.05 were considered significant.

Data availability
Data available on request from the authors.
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