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A unifying nonlinear probabilistic 
epidemic model in space and time
Roberto Beneduci1,2*, Eleonora Bilotta1 & Pietro Pantano1

Covid-19 epidemic dramatically relaunched the importance of mathematical modelling in supporting 
governments decisions to slow down the disease propagation. On the other hand, it remains a 
challenging task for mathematical modelling. The interplay between different models could be 
a key element in the modelling strategies. Here we propose a continuous space-time non-linear 
probabilistic model from which we can derive many of the existing models both deterministic and 
stochastic as for example SI, SIR, SIR stochastic, continuous-time stochastic models, discrete 
stochastic models, Fisher–Kolmogorov model. A partial analogy with the statistical interpretation 
of quantum mechanics provides an interpretation of the model. Epidemic forecasting is one of its 
possible applications; in principle, the model can be used in order to locate those regions of space 
where the infection probability is going to increase. The connection between non-linear probabilistic 
and non-linear deterministic models is analyzed. In particular, it is shown that the Fisher–Kolmogorov 
equation is connected to linear probabilistic models. On the other hand, a generalized version of the 
Fisher–Kolmogorov equation is derived from the non-linear probabilistic model and is shown to be 
characterized by a non-homogeneous time-dependent diffusion coefficient (anomalous diffusion) 
which encodes information about the non-linearity of the probabilistic model.

In December 2019, the novel SARS-CoV-2 (that shaped the Covid-19 disease) was detected in a patient working 
in the fish reservoir of Wuhan (Hubei, China). The virus has produced 118268575 infected and 2624677 deaths 
(World Health Center, 12 March 2021), thus creating a pandemic spread worldwide. While national govern-
ments took steps to protect people with extreme safety measures, it was soon understood that the SARS-CoV-2 
virus is characterized by a peculiar behaviour compared with previous coronaviruses1, 2, 4 opening several sci-
entific questions about how to model the SARS-CoV-2 virus. Some of its peculiarities are connected with: long 
incubation period, role of the asymptomatic individuals3, intensity of transmission5, 6 possible role of kids in 
the contagion. That dramatically called attention to the relevance of mathematical modeling for the description 
and the forecasting of the epidemic and, most importantly, relaunched its relevance in supporting governments 
decisions about the kind of measures to be activated and the right choice of their timing in order to slow down 
the disease propagation.

Several factors should play a role in modelling epidemics in general. Some of those factors becomes par-
ticularly relevant in the case of the Covid-19 epidemic as for example spatial heterogeneity7–9, heterogeneity of 
population10 (age, health conditions, etc.) and role of susceptible3. In particular, spatial heterogeneity assumes a 
key role in coping with COVID-19 epidemic. Indeed, mathematical models are being used by governments to 
make decisions about the quarantine measures to be adopted in order to slow down the epidemic evolution. In 
its turn, quarantine is inevitably connected to the economic dynamics of nations and regions and the world is 
witnessing the enormous damages that the lockdown (which has been necessary in order to stop the epidemic 
evolution) has caused. In this framework, spatial models assume a key role since they can be used to differentiate 
the lockdown measures in the different regions (and/or cities) of a given country. That would potentially reduce 
the economic damages.

Scientific studies on Epidemics started from the ground-breaking works of Bernoulli11 (1760), En’ko (1889), 
(reported in Dietz12), Ross13 (1911), Lotka (1923), Kostitzin (1934), Volterra (1938) (reported in Scudo14), Ker-
mack and McKendrick15 (1927) and then a lot of mathematical models ranging from stochastic to deterministic 
models (see Bauer16; Bailey17; Diekmann18; Isham19; Keeling and Rohani20; Riley21 for systematic expositions).

Despite the increasing number of important papers5, 22–32 (just to cite some of them) on the mathematical 
modelling of the novel COVID-19 pandemic, a general theoretical framework to model and forecast the epi-
demic evolution is still lacking. It has been pointed out that the choice of a model (for example, deterministic 
or stochastic) depends, among others, on the epidemic under investigation, on the scale one decides to focus 
on as well as on the evolution step of the epidemic. Recently31 it has been suggested that a good strategy in 
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the modelling of Covid-19 epidemics would be to use different types of parsimonious models at the different 
steps of the epidemic. That would require an understanding of the relationships between the different models. 
Several efforts have been devoted to this problem33–35. Moreover, it has been observed that understanding the 
limit of a model is a very important aspect of mathematical modelling and that a model too rich in details is not 
helpful if data are uncertain and/or the model assumptions are not adequate to the phenomenology it aims to 
describe36, 37. All of that underlines the relevance of a unified approach to epidemic modelling. Here we propose 
a novel approach which is inspired by the statistical interpretation of quantum mechanics39 and that goes in this 
direction. In particular we propose a continuous non-linear space-time model of the epidemic embodied into a 
probability transition kernel that includes as particular cases several of the most important epidemic models as 
for example SIR, SI, time-continuous stochastic models, time-discrete stochastic models, SIR stochastic model 
and diffusion models. In particular a generalized version of the Fisher–Kolmogorov model displaying anomalous 
diffusion is derived.

The approach we propose in the present paper should be interesting in itself from the theoretical viewpoint 
since all those models are shown to be particular cases of a “mother model” from which they are derived under 
precise assumptions but it could also be relevant to epidemic forecasting (see next section) and in order to deal 
with the problems we outlined above, i.e., using different models simultaneously, choosing the appropriate model 
to be used at the different steps of the epidemic (the choice being linked to the approximation needed to derive 
the model from the “mother model”), pinpointing the limit of the various models. Those are problems deserv-
ing a future work; here we limit ourselves to present the model and its potentialities and to show how several 
other models can be derived from it. For example, we provide a connection between diffusion and probabilistic 
models and show that more general versions of the Fisher–Kolmogorov equation are connected to probabilistic 
non-linear models. Moreover, the two-dimensional Fisher–Kolmogorov equation is derived from a linear version 
of the probabilistic mother model (which is obtained by assuming the probability density of susceptible to be 
constant). This last result confirms and extends the results in Mollison34 where it is shown that the non-linearity 
of the Fisher–Kolmogorov model is not sufficient to fully encode the non-linearity of the stochastic model it 
aims to emulate33. Anyway it seems to be relevant that more general version of the Fisher–Kolmogorov equation 
are connected to non-linear probabilistic models. Later (see the comment after Eq. (15)) the time dependence 
of the diffusion coefficient is shown to play a role in encoding the non-linearity. That is of general physical 
interest. We recall that the lack of an exact and clear derivation of the Fisher–Kolmogorov equation has been 
pointed out33. Finally, it has been observed34 that in order to justify the use of deterministic models, the latter 
should be interpreted as approximations of stochastic models and not the other way around. Our results should 
be relevant to this problems as well. Although the present work suggests a general theoretical framework for 
epidemic modelling, it has been motivated by the Covid-19 emergency that we use as a reference point for our 
argumentation. Potential applications of the model concern the localization of those regions of space where the 
infection probability is going to increase (see next section); that will be the topic of a future work.

Results
The probabilistic model.  In order to illustrate the rationale of the model we can look at Fig. 1 which shows 
the spread of the COVID-19 on a global scale from the 22th of February to the 20th of May 2020. A logarithm 
density plot of the number of infected people using a geo-referenced map is shown in Fig. 1 which highlights 
the east-west direction of the virus propagation from China to Europe and then to America, with an increasing 
propagation of the outbreak. Let � be the surface of the earth we focus on. A point in the surface is denoted by 
x = (x, y) ∈ � . We assume there are positive definite functions ψ I

t (x),ψ
R
t (x),ψ

S
t (x),∈ L1(�, d2x) representing 

sub-probability densities and describing the state of the epidemic at time t. In particular, ψ I
t (x) is the sub-probabil-

ity density for the infected, ψR
t (x) the sub-probability density for the recovered (infected which turn into immune) 

and ψS
t (x) the sub-probability density for the susceptible. The probability density functions are assumed to be 

derivable with respect to the time variable. Moreover, we assume ψS
0 (x)+ ψ I

0(x) = ψS
t (x)+ ψ I

t (x)+ ψR
t (x) for 

every t and 
∫
�
(ψS

0 (x)+ ψ I
0(x)) dx = 1 . As a consequence we are not considering births and deaths. It is worth 

noticing that the existence of ψ I
t  , ψR

t  and ψS
t  is a theoretical assumption; the actual infected distribution is just 

an instantiation of the random process associated to the infected distribution. Anyway, an approximation of ψ I
t  , 

ψR
t  and ψS

t  can be obtained through density estimation methods as for example the kernel density estimation38 
(KDE) which provides a differentiable probability density function.

We suggest a partial analogy with the interpretation of quantum mechanics39 where the state of a particle is 
described by a probability cloud which is given by the square of the modulo of the wave function � . In particular, 
|�(t, x)|2 ∈ L2(R) is a probability density function and 

∫
�
|�(t, x)|2 dx is interpreted as the probability that the 

particle is found to be in � at time t. No further specification is required. Analogously, the state of the epidemic 
is defined by three probability clouds (ψ I ,ψS,ψR) and 

∫
�
ψ I
t (x) d

2x is interpreted as the probability that an 
infected is in the region � ⊂ � at time t. No further specification will be required in the present approach. The 
statistical interpretation of quantum mechanics39 introduces the concept of ensemble of identical copies of the 
particle in order to explain the meaning of the function � . To be more precise, � describes an infinite ensemble 
of copies of the particle; each copy being prepared by the same experimental arrangement. The function |�|2 
then gives the statistical distribution of the position of the particle among the copies of the conceptual ensem-
ble. We can adapt such an interpretation in the present context by interpreting ψ I as follows: suppose there is a 
mechanism which encodes the nature of the epidemic as well as the contingent circumstances it is determined 
from; suppose such a mechanism can be used to produce an individual; he/she will be an infected with probability ∫
�
ψ I
t (x) , a susceptible with probability 

∫
�
ψS
t (x) and a recovered with probability 

∫
�
ψR
t (x) ; think of an infinite 

ensemble of copies of the same production mechanism each one producing an individual. Then ψ I , ψS , ψR give 
respectively the space distribution of the infected, susceptible and recovered among the copies of the ensemble 
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and 
∫
�
ψ I
t (x d

2x is interpreted as the probability that a copy of the ensemble is made of an infected located in 
the set � . That provides a possible interpretation of the state of the epidemic as we have defined it and is helpful, 
we think, in order to explains the role that ψ I plays in the present paper.

In quantum mechanics, the dynamics of the system is determined by a deterministic evolution equations for 
� (the Schroedinger equation). Pushing further the analogy with quantum mechanics, the dynamics of the epi-
demic is given by the evolution equations for ψ I and ψS [see Eq. (6) and (8)]. Note that a deterministic evolution 
for the probability density does not mean that the epidemic evolves deterministically. It is a probabilistic process.

One could ask what is the connection between the state of the epidemic as we have defined it and the actual 
observation of the epidemic. Suppose we are able to generate an individual as many times as we want as we 
discussed previously. Suppose we use such a generation procedure to provide a family of ensembles E1, . . . Ek 
each one made of N copies of the individual according to the state ( ψ I

t  , ψS
t  , ψR

t  ). The ensembles Ei can be con-
sidered as instantiations of the epidemic with N individuals. The distribution of the infected, σ I

j  (number of 
infected over surface), corresponding to the instantiation Ej is in general different from the distribution of the 
infected σ I

i  corresponding to Ei . Despite the number of infected (susceptible) in a given region will be different 
in any instantiation, the expected number of infected (susceptible) in a given region � is meaningful from the 
statistical viewpoint and is given by N

∫
�
ψ I
t (x) d

2x ( N
∫
�
ψS
t (x) d

2x ). By the law of large numbers, the prob-
ability that the number of infected in Ei differs from N

∫
�
ψ I
t (x) d

2x can be made arbitrarily small by choosing 
N sufficiently large.

We remark that in the present paper the focus is on the probability density functions ψ I
t  , ψS

t  , ψR
t  which, by 

analogy with quantum mechanics, define the state of the epidemic. The approach is then phenomenological as 
opposed to mechanistic; we assume the existence of probability density functions describing the probabilistic 
distribution of infected, susceptible, and recovered (the state of the epidemic) and limit ourselves to describe 
their time evolution for which we postulate a deterministic law (see below). The main aim of the present paper 
is to show that this approach defines a non-linear probabilistic model from which many of the existing models 
can be derived providing at the same time a unifying framework.

Moreover, the model could be used to describe the evolution of the infected spatial probability density in 
order to locate those regions of space where the probability of infection is going to increase or to decrease. That 
could be very helpful to governments as we remarked in the introduction and will be the topic of a future paper.

Now, we proceed to define the evolution equation for the state of the epidemic. We provide a non-linear 
evolution for the sub-probability distributions.

In the following, α(t) denotes the probability rate that infected turn to immune; it is assumed to be con-
tinuous and such that, 

∫ t
0
α(τ) dτ = p(t) ≤ 1 , for all t ∈ R

+ , where p(t) is the probability that an infected 
turns into immune during the time interval [0, t]. The probability rate α can be used to connect ψR and ψ I : 
ψR
t (x2) =

∫ t
0
α(τ)ψ I

τ (x2)dτ . The space dependence of α can also be included if necessary. Moreover we assume 
there are no births and deaths and no displacements of the individuals (see the comments after Eq. (3) and before 

Figure 1.   Qualitative illustration of the spatio-temporal evolution of COVID-19. The software Wolfram 
Mathematica (version 11.3) has been used to estimate ψ I from the data about the space distribution of the 
infected. The software uses the kernel density estimation method38 to estimate ψ I . Then, the same software 
has been used in order to generate a sampling, i.e., a set of points on the surface � distributed according to ψ I . 
That has been done at several instant of time. The image illustrates qualitatively the expansion of the infected 
population. The infected cloud on the ocean is an artifact.
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Eq. (5) for further details). The epidemic propagation is encoded into a kernel W(t, x2, x1) which describes the 
transition probability rate of the infection from x1 to x2 at time t. In particular,

is interpreted as the conditional probability that a susceptible in the neighbourhood centered in x2 with radius 
d2x2 gets infected during the time interval [τ , τ + dτ ] if an infected is present in x1 at time τ . Then,

is interpreted as the probability that a susceptible in the neighbourhood centered in x2 with radius d2x2 gets 
infected by the infected contained in the neighbourhood centered in x1 with radius d2x1 during the time interval 
[τ , τ + dτ ] . Hence,

gives the probability of new infected in the neighbourhood centered in x2 with radius d2x2 during the time 
interval [0, t]. Since in the same time interval there is a probability that the infected turn into recovered, we have

where ψR
t (x2) =

∫ t
0
α(τ)ψ I

τ (x2)dτ . The previous probabilities can be interpreted by resorting to the idea of con-
ceptual ensemble we introduced above. In particular, one can think of the ensemble of infinite copies of a single 
individual with each copy generated according to the state of the epidemic by the procedure described above; each 
individual being fixed in his/her position with the susceptible that can become infected and the infected that can 
become recovered according to the probabilities introduced above. In the case of an instantiation of the epidemic 
with N individuals fixed in their positions and supposing N sufficiently large, the evolution of the population 
densities ( σ I , σ S , σR ) can be approximated by using the previous probabilities (see also Fig. 3 on this last point).

Note that, at variance with the second member of Eq. (3), the first member does not depend on α . The role of 
α is to give the probability that infected turn into recovered while the first member gives the probability of new 
infected which depends on α only indirectly: a higher α means a lower ψ I

τ . The flux diagram in Fig. 2 illustrates 
the variation of the sub-probability distributions during an infinitesimal time interval dτ.

By (3) we obtain,

with,

One can think of

as the transition probability that a susceptible in �2 gets infected during the time interval (τ , τ + dτ) if in x1 
there is an infected. Note that µ(·)(τ , x1) is absolutely continuous with respect to 

∫
(·) ψ

S
τ (x2) dx2 and W(τ , x2, x1) 

is the the Radon-Nikodym derivative of µ(·)(τ , x1) with respect to 
∫
(·) ψ

S
τ (x2) dx2 . That seems quite natural since ∫

�2
ψS
τ (x2) dx2 = 0 implies that no susceptible can be infected inside �2 . Moreover, it provides an interpretation 

[d2x2ψ
S
τ (x2)W(τ , x2, x1)dτ ]

(1)[d2x2ψ
S
τ (x2)W(τ , x2, x1)dτ ](ψ

I
τ (x1) d

2x1)

(2)d2x2

∫

�

∫ t

0

ψS
τ (x2)W(τ , x2, x1)ψ

I
τ (x1) dτ d

2x1

(3)d2x2

∫

�

∫ t

0

ψS
τ (x2)W(τ , x2, x1)ψ

I
τ (x1) dτ d

2x1 = d2x2[ψ
I
t (x2)− ψ I

0(x2)+ ψR
t (x2)].

(4)
ψ I
t (x2) = ψ I

0(x2)− ψR
t (x2)+

∫

�

∫ t

0

ψS
τ (x2)W(τ , x2, x1)ψ

I
τ (x1) dτ d

2x1

= ψ I
0(x2)−

∫ t

0

α(τ)ψ I
τ (x2) dτ +

∫

�

∫ t

0

ψS
τ (x2)W(τ , x2, x1)ψ

I
τ (x1) dτ d

2x1

ψS
0 (x)+ ψ I

0(x) = ψS
t (x)+ ψ I

t (x)+ ψR
t (x)∫

�

(
ψS
0 (x)+ ψ I

0(x) = ψS
t (x)+ ψ I

t (x)+ ψR
t (x)

)
d2x = 1.

µ�2
(τ , x1) dτ :=

∫

�2

[W(τ , x2, x1)dτ ]ψ
S
τ (x2)d

2x2

Figure 2.   Evolution of the sub-probability densities during an infinitesimal time interval dτ . Here, 
a dτ =

∫
�
ψS
τ (x2)W(τ , x2, x1)ψ

I
τ (x1)d

2x1 dτ and b dτ = α(τ)ψ I
τ (x2)dτ . The arrows represent the direction of 

the probability fluxes.
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in terms of transition probability and explains the role that the susceptible probability density ψS plays in the 
definition of W.

It is worth remarking that the kernel is intended to provide a phenomenological description of the evolution. 
We are assuming there are no displacement of the individuals. We just assume the existence of the transition 
probability (1).

Supposing ǫ sufficiently small, we can use (4) to derive the evolution from the state at time t to the state at 
time t + ǫ,

Then, we can derive an integro-differential equation for the infected sub-probability density ψ I
t  . Indeed 

ψ I
t+ǫ(x2) = ψ I

t (x2)+ ǫ
∂ψ I

t (x2)
∂t + o(ǫ) so that

In order to derive the differential equation for the susceptible sub-probability density we write the susceptible 
sub-probability density at time t + ǫ as a function of the susceptible sub-probability density at time t,

where the first term in the second member is the sub-probability density at time t and the second term is the 
probability density of the new infected produced in x2 in the time interval [t, t + ǫ] . Then, by using the Taylor 
expansion for ψS

t+ǫ(x2) , we obtain

It is interesting to note that an equation similar to Eq. (6) and describing the evolution of the total size of 
an infective population I(t, ξ) in a deterministic framework can be found in Diekmann18 (see exercise 
8.21, page 219). It is derived in a different framework where I(t, x) =

∫ t
−∞ e−α(x)(t−τ)i(τ , x) dτ and i is the 

expected number of new infected per unit of time. The kernel A(t, x, y) defines the evolution of i. In particular, 
i(t, x) = S(t, x)

∫∞
0

∫
�
A(τ , x, y)i(t − τ , y) dy dτ where S denotes the density of susceptible and a particular 

form of the kernel is assumed, A(t, x, y) = β(x, y)e−ατ . Note that in the present paper i assumes the form 

(5)

ψ I
t+ǫ(x2) =

∫

�

∫ t+ǫ

0

K(τ , x2, x1)ψ
I
τ (x1) dτ d

2x1

=

∫

�

∫ t

0

K(τ , x2, x1)ψ
I
τ (x1) dτ d

2x1 +

∫

�

∫ t+ǫ

t
K(τ , x2, x1)ψ

I
τ (x1) dτ d

2x1

= ψ I
t (x2)− α(t)ψ I

t (x2) ǫ + ǫψS
t (x2)

∫

�

W(t, x2, x1)ψ
I
t (x1) d

2x1

(6)
∂ψ I

t (x2)

∂t
= −α(t)ψ I

t (x2)+ ψS
t (x2)

∫

�

W(t, x2, x1)ψ
I
t (x1) d

2x1

(7)ψS
t+ǫ(x2) = ψS

t (x2)−

∫

�

∫ t+ǫ

t
ψS
τ (x2)W(τ , x2, x1) ψ

I
τ (x1) d

2x1dτ

(8)
∂ψS

t (x2)

∂t
= −ψS

t (x2)

∫

�

W(t, x2, x1)ψ
I
t (x1)d

2x1.

+△

x x

⍴ ⍴ +△

x x

△

△

△ △

△△

Figure 3.   The upper part of the figure illustrates a hypothetical evolution of the normalized density of infected 
ρI = σ I/N (density of infected over the total number of individuals) from time t to time t +�t and shows 
that during the time interval �t it can evolve in different possible ways because of the probabilistic nature 
of the system. That is not the case of the sub-probability density ψ I whose evolution is unique (lower part 
of the figure). Note also that N

∫
�
ψ I
t (x) dx can be very different from the number of infected contained in 

� at time t (compare, for example, the yellow curve in the upper part of the figure with the red curve in the 
lower part). Only in the case N is very large (deterministic limit of the model) the evolution of the normalized 
density ρI follows, with a high probability, the evolution of the probability density ψ I and the probability that 
N
∫
�
ψ I
t (x) dx coincides with the number of infected in the region � at time t is high. Going back to the upper 

part of the figure, it is worth remarking that the deterministic models choose one of the possible evolutions for 
the normalized density of infected, ρI . For example, in the Kendall model40 a system of differential equations 
for ρI

t  is postulated; it is equivalent (up to some restrictions on the structure of the kernel: the kernel is not 
time dependent and depends on the difference x − y ) to the system of differential equations for the probability 
density ψ I

t  we derived in the present work; such a postulate is sound only if N is sufficiently large.
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∫
�
ψS
τ (x)W(τ , x, y)ψ I

τ (y) d
2y . An equivalent, less general, system of differential equations for the evolution 

of the normalized densities ρI
t = σ I/N and ρS

t = σ S/N of infected and the susceptible (density over the total 
number of individuals) in a deterministic model can be found in Kendall40. For N very large we recover a general-
ized version of the Kendall model since ρI , ρI , ρR provide an approximation of the sub-probability densities ψ I , 
ψS and ψR . Therefore, Kendall’s model can be considered as a particular deterministic limit of the probabilistic 
model we suggest (see Fig. 3 for more details). An equation similar to Eq. (8) can be found in the deterministic 
model proposed by Thieme41 which is based on a different approach and where the kernel k̂ differs from W and 
assumes a different meaning. In particular, i(t, x) =

∫
�

∫ t
0

∫∞
0

I(t − τ , c, y) k̂(x; dy dc dτ) where i is defined as 
the infective influence, I is the density of the infected and c denotes the age class. Then, the differential equation 
for the susceptible takes the form ∂ψ

S
t (x)
∂t = η(ψ I

t (x)) i(t, x) which compared with Eq. (8) shows the differences 
between k̂ and W. We remark that, at variance with the space models just cited, in the present paper, Eqs. (6) 
and (8) refer to a probabilistic model and take on a particular meaning which is connected to the evolution of 
the sub-probability density functions describing the epidemic. They are assumed to grasp the law governing the 
evolution of the epidemic and then to provide the exact description of its evolution. We are assuming the exist-
ence of such a law which is encoded into the kernel W. Moreover, the integro-differential Eqs. (6) and (8) are 
derived in a probabilistic framework based on conditional probabilities. The probabilistic nature of the model 
and the differences with deterministic models is depicted in Fig. 3 below.

Extending further the analogy with quantum mechanics we can think of W as the analogous of the Hamil-
tonian operator in quantum mechanics which describes the interaction between the different particles of the 
system. Here W takes into account the interaction between infected and susceptible.

Note that Eqs. (6) and (8) define a non linear system of differential equations. The probabilistic framework 
we introduced is very general and is shown to contain several well known models that can be derived from it. 
We start with a generalized version of the Fisher–Kolmogorov model (Eq. (14)). Next we discretize the space 
coordinate and obtain a model which is continuous in time and discrete in space (Eqs. (16) and (18)). By 
neglecting the space effects, we derive the SIR and SI models (Eqs. (29) and (31)). By discretization of the time 
coordinate we obtain a general time-discrete stochastic model (Eq. (20)) from which the SIR stochastic model 
can be derived (Eq. 22).

Derivation of a generalized version of the Fisher–Kolmogorov model.  The Fisher–Kolmogorov 
equation

where ρt(x) denotes the density (or frequency) of a population is a particular kind of drift-diffusion equa-
tion that has been used in order to describe the frequency of a mutant gene in a population42 (Fisher 1937). 
Later, a more general version has been studied by Kolmogorov43 et al. (1937). We derive a generalization of the 
Fisher–Kolmogorov equation for the infected probability density ψ I that, assuming the stochastic fluctuations 
can be neglected, can be used to derive the evolution of the infected density of a population of N individuals. 
Then, under some stronger hypothesis, we derive the 2-dimensional version of Eq. (9).

Let us suppose that W(t, x2, x1) depends only on the distance between x2 and x1 and � = R
2 . Then Eq. (5) 

becomes

where z = x2 − x1 . Furthermore suppose that in the time interval ǫ , ǫW is different from zero only for very small 
distances, |z| , and consider the second order Taylor expansion of ψ I

t (x2 − z) around x2,

where Ĥ denotes the Hessian matrix. By replacing ψ I
t (x2 − z) in Eq. (10) by its Taylor expansion and considering 

that W is an even function of the components of the vector z = (z1, z2) , we obtain

where

and

(9)∂ρ

∂t
− D

∂2ρ

∂x2
= η(1− ρ)ρ

(10)
ψ I
t+ǫ(x2) = ψ I

t (x2)− α(t)ψ I
t (x2) ǫ + ǫψS

t (x2)

∫

�

W(|x2 − x1|)ψ
I
t (x1) d

2x1

= ψ I
t (x2)− α(t)ψ I

t (x2) ǫ + ǫψS
t (x2)

∫

�

W(|z|)ψ I
t (x2 − z) d2z

ψ I
t (x2 − z) ≈ ψ I

t (x2)−∇xψ
I
t (x2) · z +

1

2
zT · Ĥ(ψ I

t (x2))z

(11)
ψ I
t+ǫ(x2) = ψ I

t (x2)− α(t)ψ I
t (x2) ǫ+

+ ǫψS
t (x2)

∫

�

W(|z|)
[
ψ I
t (x2))+∇xψ

I
t (x2) · z +

1

2
zT · Ĥ(ψ I

t (x2))z
]
d2z

(12)= ψ I
t (x2)− ǫα(t)ψ I

t (x2)+ ǫaψS
t (x2)ψ

I
t (x2)+ ǫDt(x2)∇

2
xψ

I
t (x2)

a =

∫

�

W(|z|) d2z
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Hence,

Now, supposing the removed can be neglected with respect to the susceptible, we have ψS
t (x2) = ψS

0 (x2)− ψ I
t (x2) 

which, once replaced in the previous equation, gives

By renaming the terms we obtain

where η := (aψS
0 (x2)− α) and µ = a . Equation (14) is a two dimensional drift-diffusion equation which gen-

eralizes the Fisher–Kolmogorov equation and it is worth remarking that it has been derived from a non-linear 
probabilistic model.

A comment is in order since Eq. (14) describes the evolution of a probability density while the Fisher–Kol-
mogorov equation refers to the deterministic evolution of the population density. Nevertheless, assuming that 
the infected population is sufficiently large that the stochastic effects can be neglected, an analogous equation can 
be derived for the infected population density which, in this case, can be approximated by the expected number 
of infected ρI

t (x) = Nψ I
t (x) . One obtains from (14),

where, γ = µ
Nη

.
We obtain the Fisher–Kolmogorov equation by assuming α = 0 (which is equivalent to neglecting the 

removed) and by assuming ψS
t (x2) ( ρS

t (x) ) constant and uniform. Those are reasonable assumptions if one is 
interested to study a single patch for sufficiently small time-intervals during which the susceptible are assumed 
to be uniformly distributed and the infected can be neglected with respect to the susceptible which can therefore 
be considered constant in time (the probabilistic model becomes linear under these hypothesis).

Thus, the Fisher–Kolmogorov equation is derived from a linear probabilistic model (the probability density of 
the susceptible is constant) and this extends previous results obtained by Mollison34 who showed that although 
the Fisher–Kolmogorov model is nonlinear, it is insufficient to grasp the full nonlinearity of the phenomena. In 
our opinion, it is relevant that a generalized version of the Fisher–Kolmogorov equation which is characterized 
by the time dependence of the diffusion coefficient (see Eqs. (14) and 15) is instead derived from a non-linear 
probabilistic model. That indeed suggests that the information about the non-linearity of the epidemic evolu-
tion could be fully encrypted in the time dependence of the diffusion coefficient Dt(x) (anomalous diffusion); 
the latter being necessary for the probabilistic model to be non-linear (see Eq. (13)). It is worth remarking that 
anomalous diffusion has been recognized to be very relevant in many biological and physical systems. For 
example, it has been shown to be characteristic of the motion of single messenger RNA molecule in a living 
Escherichia coli bacterium48. A possible explanation for anomalous diffusion of the kind D ∝ tα in biological 
systems can be given by continuous-time random-walk models. The derivation of Eq. (14) from the non-linear 
probabilistic model seems to suggest another possible reason for anomalous diffusion, i.e., non-linearity of the 
probabilistic model. Moreover, Eqs. (13) seems to suggest that more general kinds of anomalous diffusion are 
possible. Those are problems deserving further investigation.

Discretization of the model.  Now we pass to consider the discretized version of the model. We obtain a 
general stochastic space-discrete model and, by neglecting the space effects, we obtain the SIR and SI models. If 
we discretize the time as well, we obtain a time-discrete stochastic model from which the stochastic SIR model 
can be derived.

Space discretization.  Suppose we can divide � into n subsets (not necessarily of the same size) {�1, . . . ,�n} . We 
will use the symbol � = {1, 2, . . . , n} to denote this family of subsets and σj to denote the area of �j . A meaning-
ful discretization procedure requires that the functions, ψ I , W, etc. are sufficiently regular and the subsets �j suf-
ficiently small that ψ I , W, etc. can be considered constant in each subset �j . The function ψ I

t (x) is then replaced 
by the n-dimensional sub-stochastic vector p̂I (t) = (pI1(t), . . . , p

I
n(t)) where pIj (t) := σjψ

I
t (j) is the probability 

at time t to find an infected in the region �j . An analogous argument applies to the susceptible density which is 
replaced by the sub-stochastic vector (pS1(t), . . . , pSn(t)) . The discretized version of the kernel W is a n× n matrix 
Ŵt = {Wt(j, i)}i,j=1,...,n and the evolution operator is obtained by multiplying Eq. (4) by σj,

(13)Dt(x2) = ψS
t (x2)

∫

�

W(|z|)(z1)2 d2z = ψS
t (x2)

∫

�

W(|z|)(z2)2 d2z.

∂ψ I
t (x2)

∂t
= (aψS

t (x2)− α(t))ψ I
t (x2)+ Dt(x2)∇

2
xψ

I
t (x2).

∂ψ I
t (x2)

∂t
− Dt(x2)∇

2
xψ

I
t (x2) = [(aψS

0 (x2)− α(t))− aψ I
t (x2)]ψ

I
t (x2).

(14)
∂ψ I

t (x2)

∂t
− Dt(x2)∇

2
xψ

I
t (x2)) = η

[
1−

µ

η
ψ I
t (x2)

]
ψ I
t (x2)

(15)∂ρI
t (x2)

∂t
− Dt(x2)∇

2
xρ

I
t (x2)) = η

[
1− γρI

t (x2)
]
ρI
t (x2)
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where Ŵτ is the matrix {Wτ (j, i)}i,j=1,...,n.
The evolution from time t to time t + ǫ is given by

where the second Eq. (17) is obtained by multiplying the discrete version of Eq. (7) by σj . By using again the 
Taylor expansion of pIj (t + ǫ) and pSj (t + ǫ) and assuming ǫ sufficiently small, we obtain

Space‑time discretization and derivation of the SIR stochastic model.  It is worth remarking that the discrete time 
version of Eqs. (17) provides a discrete time stochastic process. By choosing ǫ sufficiently small,

where pSj (t)
∑n

i=1 ǫWt(j, i)p
I
i (t) is interpreted as the probability that a new infected is produced during the time 

interval ǫ . The process in now discrete in time with the time intervals that are multiples of ǫ.
Once we have discretized the time, the SIR stochastic model44–46 (also known as the general stochastic 

epidemic) can be derived. Indeed, if for every region, we neglect the contribution from the other regions, 
Wt(j, i) = δijβi(t) , we obtain

Now, let us denote by nj and sj the number of infected and susceptible in the region j respectively and assume 
ǫ sufficiently small to have nj(t + ǫ)− nj(t) ∈ {−1, 0, 1} . Then, we can give the following interpretation of the 
probabilistic model: for every fixed j, nj and sj are random variables with expected values NpIj  and NpSj  respectively, 
the transition probability from the state (nj(t), sj(t)) to the state (nj(t)+ 1, sj(t)− 1) is given by pSj (t) ǫβj(t)p

I
j (t) 

while the transition probability from the state (nj(t), sj(t)) to the state (nj(t)− 1, sj(t)) is given by ǫαpIj (t) and the 
transition probability from the state (nj(t), sj(t)) to the state (nj(t), sj(t)) is given by 1− pSj (t)ǫβjp

I
j (t)− ǫαpIj (t) . 

Note that the transition probabilities are derived from the general model; they are not assumed by definition.

Derivation of SIR and SI models.  Finally, we note that deterministic SIR and SI models can be obtained by 
neglecting the space effects. In order to show that, we assume N sufficiently large for the stochastic effects to be 
neglected and re-write Eqs. (18) in terms of the number of infected nj(t) = NpIj (t) and the number of susceptible 
sj(t) = NpSj (t) in the j-th region. We obtain,

(16)

pIj (t) = pIj (0)−

∫ t

0

α(t)pIj (τ )dτ +

n∑

i=1

∫ t

0

pSj (τ )Wτ (j, i)p
I
i (τ ) dτ

= pIj (0)−

∫ t

0

α(t)pIj (τ )dτ +

∫ t

0

pSj (τ )(Ŵτ p̂
I (τ ))j dτ

(17)

pIj (t + ǫ) = pIj (t)−

∫ t+ǫ

t
α(t)pIj (t) dt +

∫ t+ǫ

t
pSj (t)

n∑

i=1

Wt(j, i)p
I
i (t) dt

pSj (t + ǫ) = pSj (t)−

∫ t+ǫ

t
pSj (t)

n∑

i=1

Wt(j, i)p
I
i (t) dt

(18)

dpIj (t)

dt
= −α(t)pIj (t)+ pSj (t)

n∑

i=1

Wt(j, i)p
I
i (t)

= −α(t)pIj (t)+ pSj (t)(Ŵt p̂
I (t))j

(19)

dpSj (t)

dt
= −pSj (t)

n∑

i=1

Wt(j, i)p
I
i (t)

= −pSj (t)(Ŵt p̂
I (t))j

(20)pIj (t + ǫ) = (1− ǫα(t))pIj (t)+ pSj (t)

n∑

i=1

ǫWt(j, i)p
I
i (t)

(21)pSj (t + ǫ) = pSj (t)− pSj (t)

n∑

i=1

ǫWt(j, i)p
I
i (t)

(22)pIj (t + ǫ) = (1− ǫα(t))pIj (t)+ pSj (t)ǫβj(t)p
I
j (t)

(23)pSj (t + ǫ) = pSj (t)− pSj (t)ǫβj(t)p
I
j (t)

(24)ṅj(t) =
dnj(t)

dt
= N

dpIj

dt
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where, �t(j, i) =
1
NWt(j, i).

If we neglect the contribution of the other regions, i.e., �t(j, i) ≈ δjicj(t) , (which means that we are neglecting 
the space effects on the evolution of the epidemic), the system of differential equations becomes

which coincides with the equations for infected and susceptible of an SIR model with time-dependent parameters 
cj(t) , α(t) and with birth rate and death rate equal to zero (we assume that deaths and births compensate each 
other). SIR models are particular cases of the stochastic model we have introduced. If moreover, we neglect the 
removed, we obtain an SI model

In particular, the relation between infected and susceptible is sj(t) = sj(0)− nj(t) where sj(0) is the number of 
susceptible at time t = 0 and the equation for the infected becomes

where k = cj(t)sj(0) and a = sj(0) , which is a logistic equation with time-dependent parameters. Assuming cj(t) 
time-independent we obtain the Verhulst logistic Eq. 47 (Verhulst 1838) whose solution is the sigmoid function

where q =
a−nj(0)

nj(0)
 and nj(0) is the number of infected at time t = 0.

Discussion
We have proposed a general space-time continuous probabilistic model where the state of the epidemic is given by 
three sub-probability density functions. The latter are interpreted by analogy with the statistical interpretation of 
quantum mechanics. Then, we showed that many important stochastic and deterministic models can be derived 
as particular cases. That should be helpful from the theoretical viewpoint since it can be used to analyze further 
the relationships between different modelling approaches as well as their limits. For example, it has been shown 
that the non-linearity of the Fisher–Kolmogorov equation is not sufficient to characterize the non-linearity of 
the stochastic phenomena it aims to approximate33, 34. We strengthen and generalize such a result but also show 
that a general version of the equation characterized by anomalous diffusion (the diffusion coefficient is space-
time dependent) is more deeply connected to the non-linearity of the probabilistic model it is derived from. 
That is of general interest from the physical viewpoint as well as for biological applications since it concerns the 
relationships between non-linear stochastic and non-linear deterministic models. Moreover, anomalous diffusion 
plays a relevant role in the diffusion of single messenger RNA molecules in living cells and in many other physi-
cal and biological systems48–51. A possible explanation for anomalous diffusion of the kind D ∝ tα in biological 
systems can be given by continuous-time random-walk models. The derivation of Eq. (14) from the non-linear 
probabilistic model seems to suggest another possible reason for anomalous diffusion, i.e., non-linearity of the 
probabilistic model; it furthermore suggests that more general kinds of anomalous diffusion could be possible. 
A future work will be devoted to push forward such investigations.

Possible applications to Covid-19 epidemic concern the time evolution of the probability density ψ I
t  . The 

density ψ I
t  can be approximated by the kernel density estimation method (KDE) and its evolution is determined 

by Eqs. (6) and (8). The knowledge of such evolution, which is encoded into the kernel W, would allow probabil-
istic epidemic forecasting; it would allow to locate those regions of space where the probability of the infection is 

(25)= −Nα(t)pIt (j)+ NpSj (t)

n∑

i=1

1

N
Wt(j, i)Np

I
t (i)

]

(26)= −αnj + sj

n∑

i=1

�t(j, i)ni

(27)ṡj(t) =
dsj(t)

dt
= N

dpSj

dt

(28)= −sj

n∑

i=1

�t(j, i)ni

(29)ṅj(t) = −αnj(t)+ sj(t)cj(t)nj(t)

(30)ṡj(t) = −sj(t)cj(t)nj(t)

(31)ṅj(t) = sj(t)cj(t)nj(t)

(32)ṡj(t) = −sj(t)cj(t)nj(t)

ṅj(t) = sj(0)cj(t)nj(t)− cj(t)n
2
j (t)

= knj(t)−
k

a
n2j (t)

nj(t) =
a

1+ qe−kt
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going to increase. All of that depends on our capacity to estimate the transition kernel W. It is a kind of inverse 
problem that requires insight into the real scenarios. Concerning this last point, some preliminary work52 that 
could be helpful and some applications53 of the kernel density estimation method based on ideas that could be 
relevant, already exist but much more effort is necessary in order to estimate W starting from data. More math-
ematical work is required as well. That will be the topic of a future work.
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