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Brazil’s sugarcane embitters 
the EU‑Mercosur trade talks
Marco Follador1*, Britaldo Silveira Soares‑Filho2, George Philippidis3,4, Juliana Leroy Davis2, 
Amanda Ribeiro de Oliveira2 & Raoni Rajão2,5

The Brazilian government’s decision to open the Amazon biome to sugarcane expansion reignited 
EU concerns regarding the sustainability of Brazil’s sugar sector, hindering the ratification of the 
EU-Mercosur trade agreement. Meanwhile, in the EU, certain conventional biofuels face stricter 
controls, whilst uncertainty surrounding the commercialisation of more sustainable advanced-
biofuels renders bioethanol as a short- to medium-term fix. This paper examines Brazil’s land-use 
changes and associated greenhouse gas emissions arising from an EU driven ethanol import policy and 
projections for other 13 biocommodities. Results suggest that Brazil’s sugarcane could satisfy growing 
ethanol demand and comply with EU environmental criteria, since almost all sugarcane expansion is 
expected to occur on long-established pasturelands in the South and Midwest. However, expansion 
of sugarcane is also driven by competition for viable lands with other relevant commodities, mainly 
soy and beef. As a result, deforestation trends in the Amazon and Cerrado biomes linked to soy and 
beef production could jeopardize Brazil’s contribution to the Paris agreement with an additional 1 ± 0.3 
billion CO2eq tonnes above its First NDC target by 2030. Trade talks with a narrow focus on a single 
commodity could thus risk unsustainable outcomes, calling for systemic sustainability benchmarks, 
should the deal be ratified.

European Union (EU) efforts to maintain the safe operating space of our planet include (inter alia) the trans-
formative capacity of its bioeconomy—a highly diverse collection of activities covering food, feed, industry, and 
energy applications. The EU bioeconomy strategy1 is an ambitious initiative to convert biodegradable renewable 
sources of biomass into desirable market (i.e., value added and employment) and non-market (i.e., ecosystems 
services, carbon sinks) outputs, with a view to establishing a sustainable twenty-first century model of devel-
opment. To ensure sufficient biomass availability to meet this goal, the EU will inevitably require reliable and 
sustained access to third country supplies, as a means to bypass the limits of domestic biomass production that 
must comply with its environmental and climate targets2. In this context, tropical agriculture could play an 
important role in promoting the EU’s energy transition away from fossil fuels and towards biofuels, given its 
ability to grow crops that are highly energy efficient. Of particular note, Brazil’s first-generation ethanol avoids 
between 69–89% of CO2e emissions in comparison with regular fossil fuels, while sugar-beet ethanol avoids only 
between 35–56% and corn-based ethanol emits up to 38% more than regular fossil fuels3,4. International trade 
agreements have therefore emerged as a potential policy platform to guarantee the stability of EU supply chains. 
However, the EU’s growing demand for biofuels may lead to spillovers5, such as increasing deforestation due 
to feedstock production together with high greenhouse gas (GHG) emissions that could jeopardise the climate 
benefits stemming from the energy transition6. A priority of the EU Green Deal7—the new action plan to make 
the EU’s economy sustainable—is thus to consider the implications of imports, while establishing trade regula-
tions that may mitigate the risks related to the imports of biofuels8.

The EU–Mercosur trade deal, agreed in principle on June 28th 2019, promotes efforts to pave a common 
road towards sustainable growth across its global value chains through a green alliance with its trading partners, 
though it still lacks a clear mechanism to trace and monitor commodity origin and production2,9. The deal is to 
grant preferential EU market access to South American bio-commodities through tariff rate quotas (TRQs) on 
sensitive agricultural products, such as sugar and ethanol, conditional on environmental and social standards.

Brazil, the most important member of Mercosur, in terms of its economy and agricultural output, managed 
to reduce deforestation in the Amazon by 84%, while increasing agricultural production from 2004 to 201210. 
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Zoning laws banning subsidies to sugar and ethanol production and a deforestation moratorium for soy in the 
Amazon have sent strong signals that Brazil was on the right track to become an important source of sustain-
able biofuels. However, since 2012 deforestation has been on the rise again with 2020’s rate increased by 140% 
in relation to that of 201211. In 2019 Brazil unexpectedly revoked the Agro-Ecological Zoning (AEZ) decree 
for sugarcane that forbade its expansion into the Amazon and other sensitive biomes12, thereby reigniting EU 
concerns regarding the sustainability of Brazil’s sugarcane production. In addition, the controversial dismantling 
of Brazil’s environmental policies together with the revelation that a large share of EU imports of beef and soy 
from the country were produced on illegally deforested lands13 has complicated the ratification process of the 
EU-Mercosur trade deal14.

Given uncertainties surrounding the potential mass-scale commercialisation of more sustainable advanced 
generation of biofuels, there is a renewed interest in first generation bioethanol as a short to medium-term fix to 
achieve EU decarbonisation targets. Nonetheless, public policy support for conventional liquid biofuels has also 
courted considerable controversy on GHG emissions leakages from direct (LUC) and indirect land-use change 
(iLUC), as well as feed and food security. To tackle these concerns, the EU launched a series of measures and 
initiatives. The Fuel Quality Directive laid out a roadmap for a set of credible criteria for the exclusive adoption 
of sustainable biofuel usage15. Subsequently, the EU revised the Renewable Energy Directive (REDII) and devised 
new environmental criteria for biofuel feedstock, limiting the use of highly iLUC-risk biofuels, specifically due 
to conversion of native vegetation to croplands8. Most recently, under the auspices of the Green Deal, the EU 
plans to bind its sustainability criteria to its trade relations with external partners. As part of this process the 
REDII will set the EU-wide renewable energy target to a minimum of 32%, while imposing restrictions on the 
use of palm-oil-based biofuels. In particular, after identifying that between 2008–2015, 45% of the expansion 
of palm oil took place in areas of high carbon stocks16, the EU is phasing-out biofuels linked to deforestation by 
2030. Hence, palm oil biofuels (with some exceptions) will be disqualified as eligible for EU subsidy support and 
so treated as a regular fossil fuel17. As a key player in global bioethanol markets, Brazil could feature as a major 
replacement supplier. The compliance of Brazilian bioethanol with REDII criteria is therefore the prerequisite 
for allowing Brazilian producers to take full advantage of the EU-Mercosur trade rate quotas and a significant 
step forward in the ratification process of the trade agreement. To shed light on this issue, here we examine the 
future sustainability of EU imports of Brazilian bioethanol by quantitatively assessing the impacts of increased 
EU demand for bioethanol in terms of its implications for sugarcane expansion and associated land-use change 
in Brazil. A key issue is whether the direct and indirect land-use changes arising from such a demand increase 
would comply with EU environmental and sustainability criteria.

Our study assesses a scenario in which to meet its first-generation biofuel mandate, the EU substitutes all 
biodiesel with bioethanol by 2030. To do so, we employ a state-of-the-art global trade simulation market model 
with a biobased focus, called MAGNET, to estimate the EU import demand for Brazilian bioethanol. The import 
demand trends from MAGNET are then inputted into a spatially-explicit land-use model of Brazil (Otimizagro) 
to forecast the resulting land-use changes. The use of a national model at a high spatial resolution (6.25 ha) is 
key to properly represent the diversity and complexity of Brazil’s territory, including climates, socioeconomic 
conditions and regional governance systems. With a coverage of fourteen main crops, Otimizagro18 simulates 
detailed land-use spatial patterns resulting from the expansion of sugarcane and other crops, forest plantation, 
secondary vegetation regrowth and deforestation trends together with resultant GHG emissions, thus reducing 
uncertainties surrounding potential LUC and iLUC19 in Brazil.

Results
EU demand for Brazilian ethanol by 2030.  The MAGNET model is used to simulate by 2030 the 
assumed phasing out of EU biodiesel production (POB-Phase Out of Biodiesel scenario) with compensating 
rises in its bioethanol capacity in order to hit first-generation biofuel mandate targets (Supplementary Table S1). 
The POB scenario is built directly upon the bioeconomy-baseline in MAGNET, as described in the Supple-
mentary Information (Supplementary Information S1). The main model drivers behind this medium-term sce-
nario are worldwide country projections of economic growth and population, biophysical (land productivities) 
and energy related drivers (fossil fuel prices, energy consumption and production trends) and the progressive 
expected implementation of EU first-and advanced-generation biofuel mandates20,21. In accordance with this 
scenario, EU imports of ethanol rise rapidly after 2020, leading to a larger EU reliance on imports from Brazil22. 
By 2030, the EU share of Brazilian bioethanol exports is expected to be 30% (1.13 billion litres), well above the 
0.18 billion litres projected from a baseline scenario (Supplementary Figure S1). Total POB ethanol production 
reaches 52.24 billion litres in 2030. From a trade policy perspective, EU bioethanol imports rise above the TRQ 
limit set by the EU-Mercosur deal (650 thousand tonnes) in 2027. The Brazilian production of sugar achieves 
52.1 million tonnes in 203023. The total area of sugarcane to meet the demand for ethanol and sugar is 14.8 mil-
lion hectares (Supplementary Figure S2), hence an increase of 45% (4.6 million hectares). Our figures, derived 
from projections of sugarcane productivity from the Brazilian Ministry of Agriculture23 and ethanol/sugar con-
version factors from the National Company of Supplying24–31 (Section S2.1), differ by about 6 billion litres from 
the recently updated official calculations of the Brazilian Ministry of Mines and Energy (46 billion litres32) for a 
scenario of intermediate growth of sugar-energy sector, due to the implementation of the new national biofuel 
policy, namely the RenovaBio programme32.

Countrywide land‑use changes and sugarcane expansion.  Land-use changes due to sugarcane pro-
duction are also driven by competition with other commodities for viable agricultural lands. Therefore, the allo-
cation of sugarcane areas takes place simultaneously with the expansion (or reduction) of the other croplands, 
forest plantation along with the forest restoration needed to attain the compliance to the Forest Code, the prin-
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cipal law regulating forest conservation on private properties33. As a result, Otimizagro fully represents direct 
and indirect land use changes due to sugarcane expansion, including the displacement of marginal farming and 
ranching systems in favour of more lucrative crops (Fig. 1).

The projections to 2030 for the main crops (Supplementary Table S2) follow the official estimates of the 
Brazilian Ministry of Agriculture23. Soybean production rises rapidly from 114 million tonnes in 2019 to 163 
million tonnes by 2030, with exports representing more than 60% of total production. Double cropping sys-
tems that combine first-crop soybeans and second-crop corn account for total corn expansion, with a gradual 
reduction of first-crop corn. Soybean, sugarcane and second-crop corn areas, which represented more than 60% 
of the country’s total cropland in 2019, are responsible for the largest increments by 2030—i.e., 34% (12 mil-
lion hectares), 44% (4.5 million hectares) and 62% (8 million hectares), respectively. Wood consumption from 
plantations increases from 192 million cubic meters in 2012 to 256 million cubic meters by 2030. As a result, 
forest plantations expand at a commensurate rate of about 138 thousand hectares (ha) per year in the period 
2019–2025, and 159 thousand ha afterwards, reaching 9 million ha by 203034. Deforestation rate trajectories 
have been derived from an intermediate environmental governance scenario10 (Supplementary Information S2.3 

Figure 1.   Major land-use transitions. (a) Large-scale soybean expansion will take place in the Midwest and 
Southern Amazon. (b) Sugarcane will continue expanding mainly onto pasturelands in the southeast. (c) 
Long-established pasturelands in the Midwest will shrink due to crop expansion. (d) Deforestation will advance 
toward northern regions. Map created using Dinamica EGO 5 (https://​dinam​icaego.​com/).

https://dinamicaego.com/
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and Supplementary Figure S3), which considers a growing political support for predatory agriculture practices, 
land-grabbing and a progressive dismantling of the country environmental legislation including the Forest Code. 
This scenario follows closely the rising deforestation trend since 2012 (Supplementary Figure S4). Nevertheless, 
we also compare GHG emissions from the former scenario with those from a worst-case governance scenario 
that models the full reversal of the past environmental achievements in Brazil10. Regarding forest restoration, 
we included the targets of the National Plan for Native Vegetation Recovery, which aims at 12.5 million ha of 
forest restoration by 203534. As a result, there is a gradual increase of secondary forests from 2.6 million hectares 
in 2019 to 7 million hectares in 2030.

Land-use conversions to new sugarcane areas from 2019 to 2030 mainly occur in the Southeast and Midwest 
of the country (Fig. 2). The largest sugarcane expansion in absolute terms is expected to occur in the State of Sao 
Paulo (2 million ha), followed by the states of Mato Grosso do Sul (0.9 million ha) and Minas Gerais (0.7 million 
ha). Mato Grosso do Sul (115%), Minas Gerais (80%) and Goiás (63.5%) are also responsible for the highest rates 
of increase (Supplementary Table S3).

Most of the sugarcane croplands in 2019 continue to be productive in 2030, representing 69% of the total 
sugarcane area (Supplementary Table S4). The conversion of native vegetation and other croplands (including 
food crops) to sugarcane is limited to less than 1% of the total area, resulting in a small loss of forested lands and 
displacement of other crops. Sugarcane expansion onto pasture accounts for more than 30% of the cumulative 
expansion of the country’s agriculture from 2019 to 2030 (Supplementary Table S5).

The decision of the Brazilian government to revoke the sugarcane zoning decree does not appear to influ-
ence sugarcane expansion into the Amazon. Indeed, the results show that only 2% of the total sugarcane area in 
2030 (307 thousand ha) is within the AEZ restricted zone, most of which was already sugarcane in 2019 (74%). 
Similarly, new sugarcane croplands from forest clearance are marginal (Fig. 3).

GHG emissions from land use, land‑use change and forestry (LULUCF).  Roughly 75% of current 
agricultural land remains so in 2030. The need for new cropland (14 million hectares) expands mainly onto 
current pastureland (91% of expansion), whilst only 5% and 4% comes from conversion of forest and savannah, 
respectively (Supplementary Table S5). Clearance of forests and savannahs (39 million ha) is largely linked to 
land speculation via predatory land-grabbing with subsequent cattle ranching occupation35. New land conver-
sion to soybean mainly takes place in the Midwest and northern states (Fig. 1a), with about 7% of total expan-
sion into high carbon forested lands with resultant high GHG emissions, hence a potential threat to the Amazon 
forest and Cerrado native vegetation13. Yet, the extent to which deforestation is due to pasture displacement as 
a result of large-scale expansion of soybean remains uncertain given the complexity of iLUC domino effects19. 

Figure 2.   Land use transitions to sugarcane from 2019 to 2030. The vast majority of sugarcane expansion 
occurs onto pasturelands in the Southeast and Midwest of Brazil. Map created using Dinamica EGO 5 (https://​
dinam​icaego.​com/).

https://dinamicaego.com/
https://dinamicaego.com/
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Accounting for all land-use changes, the country’s annual net LULUCF emission balance rises steeply between 
2019 and 2030, from 428 ± 172 to 921 ± 293 million CO2eq tonnes (Supplementary Table S6). The difference 
between LULUCF emissions by 2030 stipulated by Brazil’s First Nationally Determined Contribution (NDC)36 
(− 131 million CO2eq tonnes)37 and our results is an additional 1 ± 0.3 billion tonnes. But this gap could be even 
larger, reaching 1.7 ± 0.4 billion tonnes, if the environmental governance in Brazil further wans (Supplementary 
Table S6).

With most sugarcane cropland expansion expected to occur on long-established pasturelands, the GHG 
emissions from land-use change are limited (48% of total emissions), due to the pasture low carbon content38. 
However, cultivating degraded pasture requires the use of fertilizer (90 kg N/ha, on average) and limestone (2 
tonne/ha) to achieve the expected sugarcane productivity per hectare34, representing an additional source of 
GHG emissions (46% of total emissions). In addition, some regions of Brazil, notably the northern states, rely on 
burning sugarcane straw to facilitate manual harvesting (5% of total emissions). Even though the AEZ envisaged 
to moderate this practice, only the state of Sao Paulo enacted a law in 2002 that aims to completely phase out 
the burning of sugarcane straw by 2021. Figure 4 and Supplementary Table S7 show the total sugarcane area and 
associated GHG emissions from 2019 to 2030. On average, the GHG emission is ca. 1.7 ± 0.17 tonnes of CO2eq 
ha−1 year−1 (total 24.7 ± 2.3 Mt CO2eq year−1).

Discussion
Our study shows that sugarcane croplands could meet domestic and international bioethanol demand without 
further deforestation. Indeed, most sugarcane expansion would occur at the expense of pasturelands in the 
Southeast and Midwest regions, given the concentration of sugar and ethanol mills, especially in Sao Paulo State, 
together with the well-developed system for transportation of ethanol, thereby reduced transportation and pro-
duction costs. In addition, in this region ranching is, in general, economically less competitive than sugarcane. 
Converting pasture to sugarcane and achieving commercially viable yields require a substantial application of 
lime and fertilizers, which represents about 50% of GHG emission from sugarcane cultivation. However, these 
emissions are far lower than those from deforestation linked to crop expansion. Consequently, this strategy could 
represent an opportunity for the Brazilian sugarcane industry to meet the rising demand for ethanol and sugar 
while achieving the country’s sectoral mitigation objectives (i.e., the NDC and Low Carbon Agriculture39 targets) 
along with the compliance with national and international environmental standards (i.e., REDII and RenovaBio 
environmental criteria). To this end, taking a long-term perspective, the amendment of more sustainable supplies, 
such as biochar, could further increase soil proprieties and agricultural productivity of degraded pasturelands, 
while contributing to lower emissions40,41. The potential conversion of the Amazon and Cerrado native vegeta-
tion to sugarcane could be marginal, resulting in limited LULUCF emissions. Indirect land use changes are also 

Figure 3.   Sugarcane area compliance with the AEZ limits by 2030. Permanence and expansion from 2019 to 
2030. Only 2% of the sugarcane area does not comply with the AEZ restrictions (illegal area). Most of this area 
was already sugarcane in 2019.
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far from certain, since cattle ranching intensification has been the most cost-effective solution to yield land for 
sugarcane expansion in the southeast of Brazil, especially in regions with easy access to grain production42–44.

Even though revoking the AEZ for sugarcane meant a further step toward the weakening of environmental 
governance in Brazil, its consequence could manifest itself more in terms of tarnishing the image of Brazilian 
ethanol rather than resulting in a real expansion of sugarcane crops into the Amazon and Cerrado native vegeta-
tion. The 2018/2019 sugarcane production in the Amazonian states was less than 1% of country production45, 
and in the absence of restrictions, the sugarcane area is likely to double within the biome by 2030. Nevertheless, 
more than 97% of production is poised to occur in the mid- and southern Cerrado and Atlantic Forest biomes, 
with potentially little direct conversion from forests and savannah. This trend is expected to continue in the near 
future, since most of the projects for new ethanol plants are located near road infrastructure in the southern 
regions32. Moreover, the RenovaBio programme already incorporates sustainability criteria to avoid the use of 
biofuels grown on lands deforested after December 2017. Together with the Forest Code, these measures—if 
properly enforced—represent an effective legal tool to ensure that the ethanol supply chain remains deforestation-
free. The displacement of other crops could be negligible, thereby avoiding potential concerns about regional 
food security and market stability.

On the other hand, the country’s agricultural expansion as a whole, raises sustainability concerns. If Brazil’s 
need for new cropland (14 million ha) could be met solely on existing pastureland (91%), the main driver of 
deforestation continues to be significant losses of native forest and savannah vegetation (39 million ha) due to 
land speculation via predatory land-grabbing, with subsequent cattle ranching occupation46. The extent to which 
this is due to pasture displacement as a result of large-scale expansion of soybean onto already cleared areas 
remains uncertain given the complexity of iLUC domino effects19. However, there exists evidence that a share of 
agricultural commodities employing illegally deforested land is exported from Brazil to the EU market13. All of 
this not only tarnishes the reputation of Brazil’s agribusiness, it also places an additional burden on other coun-
tries to mitigate climate change, if Brazil ultimately fails to fulfil its NDC contribution to the Paris agreement10.

Conclusion
Access to the EU single market for third country commodities is subjected to compliance with the EU sustain-
ability criteria. However, to date, only the imports of a few commodities have been clearly regulated, for which 
compliance can be assessed. Among them, biofuels must comply with the environmental standards set by the 
updated EU Renewable Energy Directive (REDII), which limits biofuel feedstock expansion onto lands with high 
carbon stocks. The decision of the Brazilian government to open the Amazon and Pantanal biomes to sugarcane 
plantations thus reignited EU concerns about the sustainability of Brazilian ethanol—which has long been a 
sticking point in the 20 years’ trade negotiations—complicating the ratification of the EU-Mercosur deal. Our 
study shows that the Brazilian sugarcane sector could meet the soaring domestic and international demand for 
ethanol without further deforestation. Nevertheless, this will require proper agricultural practices along with a 
sustainable intensification of ranching to free up land for agricultural expansion and as a result avoid iLUC in 
the form of pasture-displacement into distant forest areas.

Although the increase of Brazilian ethanol production would still comply with the REDII environmental 
criteria, the recent high deforestation rates in the Amazon and Cerrado biomes could further undermine the 
ratification of the EU-Mercosur trade deal. The difference between the country’s First NDC stipulated LULUCF 
emissions by 2030 and our results is an additional 1 ± 0.3 billion CO2eq tonnes, placing Brazil’s contribution to 
the Paris Agreement at risk. Deforestation linked to production of other commodities exported to the EU, such as 
soybeans or meat, are not regulated by clear EU sustainability criteria, leading to potential disputes between the 
parties. Trade policy based on narrow attention to single commodities therefore risks unsustainable outcomes and 
could aim at the wrong target. The EU should negotiate responsive international agreements based on enforceable 

Figure 4.   GHG emissions from sugarcane production. LULUCF emissions (from biomass and soil carbon 
stock changes) represent about 50% of the total, whilst the remaining emissions are due to agricultural practices 
(fertilizer and lime application and straw burning).
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environmental criteria for all traded key commodities within a systemic, science-based understanding to halt 
EU-driven deforestation47 and meet the Green Deal objectives of promoting sustainability across the whole sup-
ply chain, whose effectiveness has been recently questioned2. This must be bolstered, in parallel, by diplomatic 
efforts to support socioeconomic growth built upon Brazil’s past history of strong environmental achievements48.

Methods
Modelling framework.  Global Computable General Equilibrium (CGE) models have emerged as a tool for 
international impact assessment. Due to their considerable geographical coverage and trade connected macro-
economic systems, they are suitable for assessing the synergies and trade-offs, both domestic and internationally, 
arising from public policy. In this context, various CGE studies have examined the impacts of direct and indirect 
land-use change due to biofuel policies49,50. On the other hand, the lack of a fine spatial resolution in multi-
region CGE modelling justifies a soft-coupling with a spatially-explicit land-use model. A high spatial resolution 
of land-use models allows the inclusion of detailed geographic features, such as terrain, soils, land tenure, land 
use zoning and other features, in order to provide a realistic picture of land use trends across the country as 
well as associated GHG emissions. Thus, we established a comprehensive methodological procedure by loosely 
coupling the global economic market simulation model, MAGNET, and the spatially explicit land-use model 
Otimizagro. This allows moving from a regional outlook on socioeconomic trends to a subnational analysis of 
land use patterns, with the proper spatial resolution (6.25 ha) to assess the compliance with EU environmental 
criteria for biofuels production.

MAGNET model.  MAGNET51 is a class of CGE global market simulation model calibrated to an in-house 
developed biobased derivative of the publicly available Global Trade Analysis Project (GTAP) database52. With 
a base year of 2011 and 141 regions of the world, GTAP version 9 data provides detailed information on the 
structure of demand at pre- and post-tax prices for 57 activities, and private and public purchases. In addition, 
the data are complemented with gross bilateral trade flow data between all regions and trade protection instru-
ments and transport costs. The GTAP data also capture interregional savings and investment flows. An in-house 
MAGNET variant of the GTAP database extends considerably the coverage of biobased activities, incorporating 
(inter alia) an explicit separation of conventional liquid biofuel activities21,53. Consequently, it serves as an ideal 
platform upon which to analyse changes in EU biofuel policy on third countries.

The accompanying model employs mathematical functional forms to capture the tenets of neoclassical eco-
nomic theory to motivate the behaviour of agents (firms, consumers, investors). Additional market clearing 
and accounting equations enforce the underlying ‘equilibrium’ conditions of the model database, namely that 
supply equals demand in each market, economic profits remain zero and that the value of output, income and 
expenditure within each macro-economy are balanced. Furthermore, the flow of transactions of goods and 
services within and across national boundaries is supported by price transmission equations. To ensure a model 
solution, the number of equations and endogenous variables (typically prices and quantities) in the model system 
must be equal, known as the model ‘closure’. Remaining variables (i.e., tax rates, technology changes, endowment 
changes) are held exogenous. Imposing ‘shocks’ to key technology or policy variables, through a closed circular 
flow of accounting and market clearing equations, the model arrives at a new vector of prices which ensures a 
new counterfactual equilibrium solution. Further details on model assumptions and limitations in Supplementary 
Information (Supplementary Information S1 and Supplementary Table S1).

Otimizagro model.  Otimizagro is a nationwide, spatially-explicit model that simulates land use, land-use 
change, forestry, deforestation, regrowth, and associated GHG emissions under various scenarios of agricultural 
land demand and deforestation policies for Brazil10,13,18. Otimizagro simulates nine annual crops (i.e. soy, sugar-
cane, corn, cotton, wheat, beans, rice, manioc, and tobacco), including single and double cropping; five perennial 
crops (i.e. arabica coffee, robusta coffee, oranges, bananas, and cocoa); and plantation forests. The model frame-
work, developed using the Dinamica EGO platform54, is structured in four spatial levels: (i) Brazil’s biomes, (ii) 
IBGE micro-regions, (iii) Brazilian municipalities, and (iv) a raster grid with 6.25 ha spatial resolution. Concur-
rent allocation of crops at raster cell resolution is a function of crop aptitude and profitability, calculated using 
regional selling prices, production and transportation costs. When the available land in a given micro-region 
(or other specified spatial unit) is insufficient to meet the specified land allocation, Otimizagro reallocates the 
distribution of remaining land demands to neighbouring regions, creating a spillover effect. Future demand for 
crops, and deforestation and regrowth rates are exogenous to the model10,23,34 (Supplementary Information S2). 
The probability of deforestation is a function of spatial determinants, such as distances to roads and previously 
deforested areas. To account for GHG emissions from land-use, land-use change and forestry (LULUCF), Otimi-
zagro calculates emissions and removals from biomass and soil according to the Third National Communication 
(TNC) of Brazil to the United Nations Framework Convention on Climate Change55,56. TNC database includes a 
biomass map (Supplementary Figure S5), a reference soil carbon stock map (Supplementary Figure S6) and car-
bon emission/removal rates (Supplementary Table S8, Supplementary Table S9 and Supplementary Table S10). 
Biomass parameters include live (aboveground and belowground) and dead carbon pools. In comparison with 
other biomass maps available for Brazil, the aboveground pool has intermediate average values57. For biomass 
calculation, in the initial year, native vegetation categories assume the values of the biomass map. Regrowth is 
assumed to stabilize at 44% of the original vegetation biomass. Biomass values are assigned to anthropic land-
use categories according to Supplementary Table S9. For carbon soil, the model assumes that the stocks begin 
in equilibrium; thenceforth, the reference soil carbon stock is multiplied by soil carbon stock change factors. 
Annual carbon emissions are calculated cell by cell and attributing carbon stock changes according to a set of 
conditions. Soil carbon stock change follows equation Eq. S1. The stabilization threshold is the IPCC default 
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time of 20 years. The model also calculates emissions from fertilizers, limestone and pre-harvest using the TNC 
emission factors (Supplementary Information S5.2, Supplementary Information S5.3 and Supplementary Infor-
mation S5.4). Our estimates of GHG emissions include uncertainty thresholds from sensitivity analyses and 
biomass field measures58 (Supplementary Information S4).

Data availability
Model input and output maps available at maps.csr.ufmg.br.
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