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Long-term vegetation restoration
increases deep soil carbon storage
in the Northern Loess Plateau

Zhilong Lan'?, Ying Zhao%?*, Jianguo Zhang?>*, Rui Jiao?, Muhammad Numan Khan?,
Tanveer Ali Sial? & Bingcheng Sit

Afforestation plays an important role in soil carbon storage and water balance. However, there is

a lack of information on deep soil carbon and water storage. The study investigates the effect of
returning farmland to the forest on soil carbon accumulation and soil water consumption in 20-m deep
soil profile in the hilly and gully region of the Chinese Loess Plateau. Four sampling sites were selected:
Platycladus orientalis (Linn.) Franco forest (PO: oriental arborvitae), Pinus tabulaeformis Carr. Forest
(PT: southern Chinese pine), apple orchard (AO) and farmland (FL, as a control). Soil organic carbon
(SOC) and soil inorganic carbon (SIC) content were measured in 50-cm sampling intervals of 20-m

soil profiles, as well as the associated factors (e.g. soil water content). The mean SOC content of PT
was the highest in the 1-5 m layer and that of FL was the lowest (p <0.05). Compared with FL, the

SOC storages of PO, PT and AO increased by 2.20, 6.33 and 0.90 kg m~2 (p> 0.05), respectively, in

the whole profile. The SIC content was relatively uniform throughout the profile at all land-use types
and SIC storage was 9-10 times higher than SOC storage. The soil water storage of PO, PT and AO
was significantly different from that of FL with a decrease of 1169.32, 1161.60 and 1139.63 mm,
respectively. After the 36-yrs implementation of the “Grain for Green” Project, SOC in 20 m soil
profiles increased as a water depletion cost compared with FL. Further investigation is still needed to
understand the deep soil water and carbon interactions regarding ecological restoration sustainability
in the Northern Loess Plateau.

Environmental problems, such as soil degradation and global climate change, have received increasing attention
in the last few decades'~*. Afforestation is very often used to improve soil degradation for increasing carbon
sequestration and mitigating atmospheric CO, concentration®*. Carbon distribution and water balance are vital
components for the sustainable development of terrestrial ecosystems in the revegetation processes*”.

The soil carbon pool includes soil organic carbon (SOC) and soil inorganic carbon (SIC) pool. The soil carbon
storage in the top 1 m layer is around four times the vegetation carbon pool and three times the atmospheric
carbon pool*®. Notably, even small changes in the soil carbon pool can significantly influence the atmospheric
CO, concentration’. However, the number of existing studies on deep soil carbon storage is limited. According
to Jobbagy and Jackson®, the average global SOC storage in the 0-3 m soil layer is 56% higher than that in the
0-1 m layer. Fearnside and Barbosa’ reported that out of the carbon storage in the 0-8 m soil profile in Ama-
zonia (136 Gt), only 34.56% (47 Gt) is found in the 0-1 m soil layer. Liu et al.!?, investigating the gully region of
the Chinese Loess Plateau, discovered that SIC storage in the 0.4-2 m layer represented around 85% of the total
SIC storage in the 0-2 m layer, implying that massive amounts of SIC may have stored in the relatively deep soil.
Meanwhile, revegetation consumed more than 1500 mm soil water storage (SWS) from the deep soil profile
compared with cropland>!!. Expectedly, implementing the “Grain for Green” Project-one of the most extensive
ecological programs in China on converting cropland to the forest, has had a considerable effect on the SOC,
SIC storage and SWS in the Chinese Loess Plateau'*-13.

Previous studies have unanimously reported that ecological restoration increased SOC storage in the top layer
(0-1 m) and decreased SWS!'***; however, similar investigation concerning SIC has been lacking!>®. SIC is also
an essential part of the soil carbon pool, mainly as carbonate in arid and semiarid regions, where its content has
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Figure 1. Distribution of the sampling sites in the study area (map created using ArcGIS 10.2 software by first
author, http://www.esri.com).

been reported to be 5-10 times that of SOC'>". In China, the north-western arid and semiarid regions were
considered to represent 60% of the SIC of the country'?, and were a potentially large carbon pool'$, which could
play a vital role in alleviating the increasing atmospheric CO, concentration in the global carbon cycle'. Previous
research showed that carbon in deep soil is more stable and provides long-term storage, which may play a more
critical role in soil carbon sequestration®*?!. However, it is not clear how much SOC and SIC storage in a deep
soil and the relationship of SOC and SIC storage with SWS expense below 1 m in the Chinese Loess Plateau?.

Nowadays, the ecological environment of the Chinese Loess Plateau has been dramatically improved with
the natural afforestation and tree plantation'>?. The afforestation of previously cultivated land is potentially
considered to sequester carbon into the soil***; however, previous research was mainly focused on shallow 0-2 m
soil profile regarding the effect of afforestation on the SOC content, despite the importance of SOC and SIC stor-
age at depths below 2 m?***%. Accurate estimation is still challenging due to a lack of information on SOC and
SIC and the difficulty of sampling deep soil?’. Previous studies were reported that different vegetation species
and restoration age might have significantly affected SOC capacity; however, the changes in the SIC following
afforestation have not been well detected in the Chinese Loess Plateau'*!¢. Revegetation in the Chinese Loess
Plateau has remarkably influenced the soil carbon and water processes*?”?%. It is reported that afforestation
in the Loess Plateau is approaching sustainable water resource-use limits and near the maximum potential for
carbon sequestration, thus threatening local/regional water and ecological security*?. Moreover, although few
studies have focused on understanding how land-use change affects water and carbon dynamics, most of these
efforts have focused on shallow soil®. Zhao et al.** have reported negative correlations between SOC and SIC in
the 0-50 cm soil under forestland, shrubland, and grassland. However, the relationship between SOC and SIC
storage with SWS among different tree plantation types remains unclear, particularly how deep soil carbon and
water interact. In deep-rooted ecosystems, sampling at shallow depths results in underestimating soil carbon
stocks, and this inadequate result has misled our understanding of the co-evolution and interaction of deep soil
water and carbon following afforestation®.

This study sought to explore the effects of different vegetation types on deep SOC, SIC and soil water con-
tent to provide a rational basis for sustainable afforestation in the hilly and gully region of the Northern Loess
Plateau. The objectives of the study were (1) to evaluate the effects of afforestation types on both SOC and SIC
distribution; (2) to quantify the change of deep (0-20 m) vs. shallow (0-1 m) soil carbon storage following the
afforestation of cropland; and (3) to understand the coupling interactions between deep soil carbon storage and
SWS below 1 m in the different revegetation types.

Materials and methods

Study area. The study was carried out at Gaoxigou Village (37° 87’ N, 110° 18’ E), Mizhi County, Shaanxi
Province, an ideal research site characterized by a distinct Chinese national demonstration area soil and water
conservation. It is possibly one of the most extended and well-preserved regions with a clear history of relatively
diversified land management, as well as the remarkable contribution of the “Grain for Green” Project in the
north of the Chinese Loess Plateau (Fig. 1). The region has a semi-arid continental climate, with a mean annual
temperature of 8.4 °C and mean annual precipitation of 440 mm, about 75% concentrated in July to September.
The groundwater level is at more than 50 m depth. The region has a typical hilly and gully topography with
an elevation of 1000-1100 m (a.s.l.), and a loessial soil developed on the loess parent material classified as the
Loessi-Orthic Primosols (Chinese Soil Taxonomy). Several types of forest have been planted on former arable
land, including Platycladus orientalis (Linn.) Franco (oriental arborvitae) and Pinus tabulaeformis Carr. (south-
ern Chinese pine), as well as various orchards.
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Type | Vegetation height (m) | Landform position | Slope direction | Slope degree (°) | Altitude (m)
FL 0.3+0.1 Terrace Southeast - 1069
PO 3+0.5 Middle slope Southeast 12° 1076
PT 5+0.9 Middle slope Southeast 10° 1018
AO 3.5+0.7 Terrace East - 1084

Table 1. Basic characteristics of the experimental sites (mean +SD, n=2). FL farmland, PO Platycladus
orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple orchard, — data not available.

Experimental design and soil sampling. Three forestry types: Platycladus orientalis (Linn.) Franco for-
est (PO), Pinus tabulaeformis Carr. forest (PT) and apple orchard (AO), as well as one farmland (FL) as a con-
trol, were selected in this study, and two sites (spatial independent; Fig. 1) were sampled per vegetation type.
We focused on the recent decadal revegetation effects on soil carbon accumulation using a chronosequence
approach. Before 1979, all three selected forestry sites were arable land, which was then returned to the forest,
while the FL site remained as arable land, primarily planted with potatoes (Solanum tuberosum L.), green onions
(Allium fistulosum Linn.) and millet (Setaria italic (L.) Beauv.). Mean annual nitrogen (N), phosphorus (P), and
potassium (K) fertilizer applications were 180, 60, and 75 kg ha™, respectively, for farmland. Mean annual nitro-
gen (N), phosphorus (P), and potassium (K) fertilizer applications were 650, 300, and 200 kg ha™!, respectively,
for the apple orchard. Historically, the soil characteristics and management (tillage and fertilizer application)
practices are mostly uniform in this region, and intensive agricultural practices peaked in the 1970s*% Therefore,
it is assumed that there were no differences in the soil physicochemical properties between the forest and farm-
land sites before tree plantation in 1979 because of the long-term cultivation at all sites before this date. After
the farmland conversion to a tree plantation, there was basically no human activity except for the apple orchard.
Each pair of sites (i.e. two replicates, 30 m x 30 m quadrat) had similar topography (slope direction, degree and
landform position). For each pair of sites, the vegetation species composition was similar and the vegetation
cover was about 70-80% in all sites (Table 1).

Soil samples were collected from the selected sites (Fig. 1) in July 2015. To minimize the influence of climate,
the sampling was taking during the rainfall free period. Soil samples were collected using a soil auger down to
20 m (except for one of the two PO and AO profiles, which were sampled to 17.6 m and 15.4 m, respectively, due
to geological restrictions). Each soil sample constitutes a mixture of a 50 cm soil layer collected manually with a
6 cm diameter auger. Thus, 31-41 samples in total were collected from each of the 8 profiles.

Laboratory analysis. All samples were air-dried for 7 days in the laboratory and then passed through a
2-mm sieve to remove stones, roots, and other debris for further analysis. SOC content was determined using
the potassium dichromate oxidation method with external heating®. SIC content was determined using the gas
volume method*. To determine the soil bulk density (y;), undisturbed soils in the middle part of the soil auger
were collected (100 cm?). Samples for soil water content (20 cm interval) and bulk density measurements (50 cm
interval) were weighed before and after drying at 105 °C for 12 h to a constant mass. Soil particle composition
analyses by pipette sampling method and the vertical distribution of soil sand, silt and clay content shown in
Fig S1. The roots were also collected using a root auger (diameter 6 cm) layer by layer (20 cm interval), washed
with tap water to remove soil particles, placed in a plexiglass tray with 1 cm water, and then scanned using the
EPSON Perfection V700. The root densities were analyzed in WinRHIZO software (Regent Instruments Inc.).
The storages of SOC and SIC were calculated using the following formula:
(1—8%)-Ci-h-v

SOCS;(or SICS;) = 100 (1)

where SOCS; (kg m™2) is the soil organic carbon storage of the ith layer, SICS; (kg m™2) is the soil inorganic carbon
storage of the ith layer, & (%) is the gravel content (the gravel content of the samples was 0), C; (g kg™) is SOC
or SIC content, h (cm) is the thickness of soil layer, and 100 is the unit conversion coefficient. y; (g cm™) is the
soil bulk density calculated as follows:

m;

Yii B e —
1,i+50 a+ w,—/lOO) v (2)
where w; (%) is the soil gravimetric water content of each layer, m; (g) is the weight of fresh soil in the ith layer
and V (cm?) is the soil volume.
SWS was calculated using the following formula:

w; - h . Vi
SWS; = ——
Tope10 )
n n
SWS loss = E i1 SWSa; — E i SWSE; (4)
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Figure 2. Vertical distributions of SOC and SIC content for different vegetation types. FL farmland, PO
Platycladus orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple orchard. Bars are standard
deviations.

where SWS, (mm) is the soil water storage of the ith layer, p (g cm™) is water density, 10 is the unit conversion
coefficient, SWS,; (mm) is the soil water storage of forestry types, SWSg (mm) is the soil water storage of FL and
the other variables are describing in Egs. (1) and (2).

Statistical analysis. SPSS 16.0 (SPSS Inc., Chicago, IL, USA) statistical software was used for the statistical
analysis. Revegetation type and soil layers were considered as the main effects. Based on the averaged soil water
content values, root distribution, and variation coefficients, we generally divided the soil profiles into four layers:
0-1, 1-5, 5-10 and 10-20 m. Based on Li et al.'}; rainfall infiltration depth is usually below 1 m, and the maxi-
mum depth can not exceed 5 m; we consider our depth classification is reasonable. Analyses of variance were
performed using the one-way ANOVAs procedure in SPSS. The Duncan method (p <0.05) assessed the differ-
ences in SOC and SIC content. Relationships between soil carbon content and basic soil properties were quanti-
fied using Pearson’s correlation coefficient. Data for soil at a depth > 1.0 m were used for correlation analysis of
SOC and SIC storage with SWS because the 0-1.0 m layer could be affected by short-term rainfall dynamics.

Ethics approval. We confirm that all experiments were performed in accordance with relevant named
guidelines and regulations. We have obtained the proper permission to collect samples of plant roots.

Results
Vertical distributions of SOC and SIC for different vegetation types. In general, the vertical dis-
tributions of SOC and SIC vary with vegetation types and soil depths (Fig. 2). SOC content showed an overall
downward trend with soil depth (Fig. 2a). SOC content was the highest in the top layer, then decreasing mark-
edly throughout a 1-m soil profile. The SOC content of the 1-20 m soil layer remained the relatively small fluctu-
ations at each site (Fig. 2). The SOC content of different land uses showed a lower value in the 10-20 m soil layer.
There were no significant differences between FL, PO, PT, and AO in the 0-1 m layer (Fig. 3a). The mean SOC
content of PT was higher than other land uses in the 1-5 m layer, SOC content of FL was lower than PT and AO
in the 5-10 m layer, and SOC content of PT was significantly different from AO in the 10-20 m layer (Fig. 3a).
SIC content in the 0-20 m soil profile showed lower values within the 1-2 m soil layer than the layers below
2 m (Fig. 2b), with significant differences in the 0-1 and 5-10 m layers between FL and PT (Fig. 3b). For the
topsoil layer, the SIC content for the various vegetation types differed and reached the lowest values at a depth of
1.5 m. In the 2-12 m soil layer, SIC content fluctuated slightly (Fig. 2b), with the highest value in PT (19.85 gkg™)
and the lowest value in AO (9.61 g kg™"). In contrast, the distribution of SIC changed sharply and irregularly at
12-20 m, notably demonstrated greater variations at PT and AO sites.
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Layer/m | FL PO PT AO
0-1 3.56+0.42a 3.98+1.82a 3.48+0.03a 3.25+0.52a
1-5 7.37+1.10a 8.24+1.32a 10.55+2.33a 8.24+1.73a
SOC storage/kg m™? 5-10 9.10£0.20a 9.04+0.32a 11.09+0.95a 10.58 +1.10a
10-20 15.52+0.31a 15.80+1.00a 17.87 +£2.04a 15.59+1.40a
0-20 33.54+4.26a 35.74+3.74a 39.87+3.68a 34.44+597a
0-1 13.95+1.87a 15.12+0.68a 16.03+£1.07a 13.95+0.44a
1-5 72.41+6.03a 69.89+1.21a 78.82+2.48a 72.31£1.99a
SIC storage/kg m2 5-10 87.56£7.02a 85.74+2.32a 85.74+2.32a 82.35+6.33a
10-20 168.51£5.74a 175.13+6.59a 175.13+6.59a | 164.99+7.98a
0-20 342.84+7.20a 361.12+11.45a | 350.86+7.60a | 339.57+3.74a
0-1 11.05+2.35a 7.92+4.73a 12.29+2.64a 5.34+0.02a
1-5 60.09+3.61a 26.29+1.80b 35.30+0.40b 28.12+3.01b
SWS/mm 5-10 72.61+10.01a 28.69+1.03b 38.20+£5.06b 33.70+3.22b
10-20 145.67 +15.77a 85.80+80.96a 88.11+16.33a | 87.36+36.08a
0-20 302.44 +5.46a 185.51+7.12b 186.28+3.99b | 188.44+11.67b

10-20

Figure 3. Average SOC (a) and SIC (b) content in 0-1 m, 1-5 m, 5-10 m and 10-20 m soil layers for different
vegetation types. FL farmland, PO Platycladus orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple
orchard. Bars are standard deviations. Different lower-case letters indicate significant differences at p <0.05

among vegetation types within each layer.

Table 2. Soil organic carbon (SOC) storage, soil inorganic carbon (SIC) storage and soil water storage

(SWS) (mean £ SD, n=2) of different soil layers for different vegetation types. Different upper and lower-case
letters indicate significant differences at p<0.05 among vegetation types and averaged layers, respectively. FL

farmland, PO Platycladus orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple orchard.

Soil carbon storage and soil water storage.

Table 2 indicates that SIC storage was far higher than SOC
storage in each layer under different land uses. The total soil carbon storage of FL, PO, PT and AO in the 0-20 m
profile was 376.38, 396.86, 390.73 and 374.01 kg m™?, respectively. SOC and SIC storages within different soil
layers were not significantly different among land uses (Table 2, Fig. 4). In contrast, SWS within 1-5, 5-10 and
0-20 m showed a significant difference between FL and other land uses (Table 2, Fig. 4). In the revegetation sites,
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Figure 4. SOC storage (a), SIC storage (b) and SWS (c) in 0-20 m soil layer at all treatments. FL farmland,
PO Platycladus orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple orchard. Bars are standard
deviations.
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Figure 5. Vertical distributions of root length density and soil water content for different vegetation types. FL
farmland, PO Platycladus orientalis (Linn.) Franco, PT Pinus tabulaeformis Carr., AO apple orchard. Bars are
standard deviations.
soil water content within 1-11 m was smaller than FL (Fig. 5, p <0.05). SOC storages in the top layer (0-0.5 m)
were significantly higher than below the 0.5 m soil layer (Table S3); however, it was not significant among differ-
ent land uses within different soil layers (0-2.0 m).

The SIC storages of the 20-m profile for FL, PO, PT and AO were 10.22, 10.11, 8.80 and 10.05 times the SOC
storages, respectively. As shown in Fig. 4, the SOC storages of PO, PT, and AO were 2.2, 6.33 and 0.90 kg m™2
higher than that for FL, respectively (p>0.05). The SIC storage was 18.28 and 8.02 kg m™? higher at PO and PT
than for FL (p>0.05). The SWS of PO, PT, and AO was significantly different from that of FL (Table 2), decreas-
ing 1169.32, 1161.60 and 1139.63 mm, respectively (Fig. 4).

Relationships between soil carbon and water storage. As shown in Fig. 6, SOC and SIC storage up

to different soil depths present different correlations with SWS. In the 1-5 m soil layer, SOC storage is positively

correlated with SWS in PO, PT, and AO but negatively correlated in FL, and only the AO has a significant corre-
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Figure 6. Relationships between SOC storage and SWS, SIC storage and SWS in the 1-5 m, 1-10 m and

1-20 m soil layers for different vegetation types. FL farmland, PO Platycladus orientalis (Linn.) Franco, PT
Pinus tabulaeformis Carr., AO apple orchard.The only regression lines with statistical significance (p <0.05) were
drawn in the figure.

Treatments | Carbon type | BD pH Sand Slit Clay Root density | SOC
FL SOC -0.183 -0.204 0.476** | = 0.517** | -0.176 - 1.000
SIC 0.048 —-0.055 -0.057 0.099 - 0.056 - —-0.280
- SOC —0.342* —0.457** | -0.037 0.316* -0.352* 0.975** 1.000
SIC 0.278 0.480** 0.264 -0.295 0.111 -0.078 -0.115
T SOC —-0.527** 0.094 - 0.437%* 0.228 0.444*¢ | 0.964** 1.000
SIC -0.114 0.317* -0.215 0.082 0.437 | - 0.263 0.019
A0 SOC - 0.594** 0.034 -0.021 0.196 —0.425** | 0.908** 1.000
SIC 0.220 0.170 0.162 - 0.069 —0.243 -0.196 —-0.040

Table 3. Pearson correlation analyses of soil properties and soil carbon under different treatments. BD bulk
density, SOC soil organic carbon, SIC soil inorganic carbon, FL farmland, PO Platycladus orientalis (Linn.)

« »

Franco, PT Pinus tabulaeformis Carr. , AO apple orchard. *p <0.05; **p <0.01; “~” no data available.

lation (p <0.01). In the 1-10 m layer, there are significant positive correlations between SOC storage and SWS at
all three revegetation types (p <0.01, Fig. 6). Root length density gradually decreases at a 0-2 m soil profile at all
sites and keeps stable and small values below the 2-m soil depth, which matches very well with profiled soil water
content (Fig. 5). There is no root detected below 10 m soil depth for all revegetation types and the whole soil
profile for the FL during the sampling period. However, in the 1-20 m layer, SOC storage and SWS are negatively
correlated for all land uses, with significant correlations (p <0.05) at PO and AO sites (Fig. 6).

SIC storage is positively correlated with SWS for all land uses for the 1-5 m layer, with only a significant
correlation (p <0.05) for FL (Fig. 6). For the 1-10 m layer, SIC storage present significant positive correlations
with SWS for FL and PT, but no significant correlation for PO and AO (p>0.05). There were significant positive
correlations in the 1-20 m layers for all sites, except for AO (p <0.05). Interestingly, for the farmland, while there
is no correlation between SOC storage and SWS regardless of soil depth classifications, a significant correla-
tion between SIC storage and SWS found for all soil depth classifications (Fig. 6). Overall, Table 3 also shows a
significant negative correlation between SOC and BD for all three forestation types, but not for the farmland.
In contrast, there is no clear correlation between SIC and BD or other soil chemical and physical properties
(Table 3). However, soil pH shows a significantly positive correlation with SIC at PT and PO (Table 3, p<0.01).
Note that there is no correlation between SOC and SIC, regardless of land-use types. Moreover, SOC storage
below 1 m was significantly correlated with SWS loss below 1 m (R*=0.735, Fig. 7).
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Figure 7. Relationship between SOC and SIC storage with SWS loss below 1 m down to 20 m.

Discussion

Effects of afforestation on SOC. Along with afforestation, changes in the plant species composition can
alter litter input and root distribution®’; thus, the distribution of SOC in the soil profile is changed. Vegetation
patterns in the hilly and gully region of the Chinese Loess Plateau have been changed dramatically since imple-
menting “Grain for Green” Project. The increased soil carbon content of the reforested area from farmland at the
topsoil (0-1 or 2 m) has been widely reported'>?'. Like many other studies, the SOC for all land uses demon-
strated a decreasing trend with soil depth??%**, SOC content predominantly depends on the input, decomposi-
tion, and transformation of organic matter in different soil layers®. The SOC of the topsoil layer mainly comes
from the accumulation and decomposition of external litter and root exudates®*>*. With an increase in soil
depth, the roots of vegetation gradually decrease, which has resulted in a decrease of SOC, as evidenced by a very
significant positive correlation between SOC and plant root density (Table 3).

Our study identified that the conversion of farmland to forest slightly increased SOC content in the 1-5 and
5-10 m soil layers (Fig. 3, Table 2), but afforestation did not significantly increase SOC content compared with
FL 0-1 m soil layer. The SOC in the top layer (0-1 m), active roots layer (1-10 m) and 10-20 m layer mainly
affected by the management measures (e.g. tillage and remove litters), the distribution of roots, soil sedimentary
process and soil texture in the Chinese Loess Plateau®'*'7, respectively. The variation of SOC was relatively small
due to (1) SOC content of the PO was lower than that of PT due to the species-dependent root traits** and shal-
low root distribution (Fig. 5), (2) coniferous (PT) have a limited capacity to improve soil carbon storage after
restoration, and (3) the limited sample size results in the statistical analysis was difficult. In addition, the SOC
did not significantly increase in all forestry types in the deep soil depth maybe because there was lower root
biomass per unit soil depth and soil water consumption to wilting point limits the productions of root litter®.
In contrast, AO had reduced SOC on the top (0-0.5 m) presumably due to management measures, such as deep
plowing and loose soil, which accelerate the mineralization decomposition of SOC, but low SOC at FL was due
to remove aboveground litter decreased organic matter input, and deep plowing increased soil organic matter
decomposition reduced SOC accumulation®”.

Effects of afforestation on SIC.  SIC represents the largest soil carbon pool in the Chinese Loess Plateau,
mainly related to the parent material’s lithology and the paleoclimate. The parent material in this study area is
loess, which contains many lithogenic carbonates® and its SIC content is much higher than SOC content!”¢.
Our result agreed with previous studies that SIC content for all land uses increased in the 0-1 m soil layer!®'6,
which may be due to precipitation can dissolve atmospheric CO, and form H,CO3, which may react with CaCO,
in the soil to form soluble Ca(HCOs3), and then leach downwards through precipitation to accumulate in the
deeper soil layer. Besides, rich-organic acids in the surface soil can dissolve some soil carbonate, reducing the
surface SIC*. In the 1.5 m soil layer, the SIC was significantly decreased in all land use (Fig. 2) due to the red clay
sequence in this layer compared with other layers, where the Fe,O; ratios generally remain high® as the climate
was humid during that period. Thus, the variation of SIC has fluctuation at the depth 2-10 m slightly and great
fluctuation at the depth > 10 m, which was explained by that the soil lithogenic carbonates and paleoclimate play
a vital role in SIC distribution at the depth 2-10 m, and is likely caused by soil-forming processes (loess parent
material and deposition process), large spatial variability or the paleoclimate at the depth > 10 m*-*..

The variation of SIC content for the various vegetation types were increased with the increasing at 0-1 m soil
layer and SIC in PO and PT were relatively higher than in FL and AO in the 0-0.5 m, which was explained by
(1) the nitrogen fertilizer application may have induced the soil carbonate reduction forming CO, throughout
soil profile to the atmosphere®**>%, (2) tillage increase precipitation infiltration at the terraced FL and AO thus
induce the leaching SIC from top (0-0.5 m) soil layer, and (3) organic acid and amino acid contained in root
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exudates at PO and PT sites reduce the SIC content”. For this reason, SIC at all sites is slightly higher below 2 m
than the above due to the carbonate deposition and paleoclimate. It is suggested that the paleoclimate role at this
layer is the main reason for the difference®**; the effect of vegetation type on soil inorganic carbon in deep soil
is weak. Chang et al.’® examined that land-use conversion from cropland to forest could redistribute SIC along
with the soil profile but would not affect the net SIC accumulation.

Implications of revegetation on soil carbon and water storage. This study discovered that the SOC
and SIC storage of the whole soil profile (0-20 m) was 9 and 24 times that of the topsoil layer (0-1 m), respec-
tively. The results indicated that the study area stores large amounts of SOC and SIC below the topsoil profile.
Furthermore, since SIC storage is a substantial component, 9-10 times SOC storage in the 0-20 m soil profiles
for different land uses (Fig. 4a,b). Therefore, soil carbon storage might have been greatly underestimated in this
area and other similar regions®****. Soil carbon accumulation in deep (below 1 m) soil has important implica-
tions for mitigating the rise of atmospheric CO, concentration in the future. However, our results showed that
soil carbon stocks in restored forests were not significant difference compared with FL, and it just has had slightly
positive effects on carbon storage in deep soil. In contrast, there are many reports for carbon sequestration by
ecological restoration®. To our best knowledge, most previous studies on SOC and SIC with the greatest depths
in the Chinese Loess Plateau reported being just 3 m?**%%°. Our results indicated substantial soil carbon storages
in the deeper soil (e.g. 1-20 m), consistent with the recent findings of Li et al.'’. Indeed, for the carbon storage
evaluation in a deep soil profile like Loess Plateau, estimation should not limit the topsoil layer (e.g. 0-1 to 3 m).
Note that deep loessial soils may develop under different vegetation covers at various stages that may have stored
SOC historically'”*. Li et al.” reported that apple orchard at different stand ages did not significantly increase
SOC storage, however, with increased stand age, the coarse root density (>2 mm), root biomass carbon storage
and SWS loss significantly increased in the deep soil profile (below 1 m). This may be explained by root carbon
conversion to SOC too little and the root was lignification for extraction water from deep soil strata and the small
number of roots in specific layers restricted root-induced SOC change in the living soil layer through fine root
turnover and related exudates.

Using a chronosequence approach, this study showed that SOC storage than SIC storage (in contrast) in deep
soil is strongly correlated with soil water storage loss (Fig. 7). The predictive relationship between SWS loss in the
deep soil and carbon input from root biomass might represent a new avenue for estimating deep carbon storage®.
To evaluate the response of SWS and soil carbon storage to long-term forest ecological engineering and the cou-
pling interaction between them, we examined the trade-off between carbon accumulation in soil and soil water
consumption in the Chinese Loess Plateau. The SWS and SOC storage showed different correlations at different
vegetation types and in the different soil layers. Although the conversion of farmland to forest slightly increases
SOC storage, it may consume more soil moisture and cause soil desiccation in the Chinese Loess Plateau®. In
our study, averaged SOC storage of the three restored vegetations was greater by 0.94 kg m™2 than FL (p >0.05),
which overall consumed 1156.94 mm soil water storage compared with FL (p <0.05), that is, soil accumulation
1 kg m™? SOC need to consume around 1230.80 mm SWS in whole profile (0-20 m).

In the arid and semiarid areas, the consequence of the long-term soil carbon sequestration is at the cost of
water depletion and soil desiccation, which positively affects plant productivity in assimilating carbon and con-
temporarily SOC facilitated soil water retention or wilting point>***’. Therefore, SWS was positively related to
SOC storage in the 1-5 m and 1-10 m layers for different revegetation types. In addition, the SWS was affected
by the soil texture, that is, the contents of silt and clay (Fig. S1). However, in the 1-20 m layers this relation-
ship disappears or even becomes negative, which may be explained by lower plant water uptake in the deeper
(10-20 m) layers® and precipitation cannot recharge into the deeper soil in the Chinese Loess Plateau®. Interest-
ingly, there was no significant correlation between SOC storage and SWS for the FL, but there was a significantly
negative correlation between SIC storage and SWS, which was explained by that the SWS is not consumed by
crops in deep soil (below 1 m) and it can be replenished by precipitation in FL!?°. Besides, our results showed
that SWS was positively related to SIC storage in different layers for different vegetation, contrary to Zhao et al.*.
In this case, the SIC storage below 1 m has a prolonged rate of carbon exchange and has not been influenced by
groundwater*’ and the parent material of this soil is loess, including more inorganic C*, revegetation relatively
consumes lower soil water content from deeper soil layer. In summary, SOC accumulates through the consump-
tion of soil water by plants and concurrently can increase soil water retention. In our study, afforestation slightly
increased SOC storage, but it consumed more SWS from the deep soil profile and resulted in soil desiccation
and unsustainable development?. In the Chinese Loess Plateau, previous results*® have revealed a potential
environmental risk related to water availability and C sequestration under afforestation. Based on the dynam-
ics of profile soil moisture and vertical distribution of roots, it was concluded that the depth of depleted soil
moisture under PO, PT and AO in the Chinese Loess Plateau could reach 18, 16 and 19 m, respectively*. The
existence of both negative and positive correlations between soil carbon and water may have reflected short-term
cyclic changes with long-term cumulative evolution®. For the correlation between soil water and carbon, while
the consequence of the long-term soil pedogenic processes is soil carbon formation as a cost of water depletion
and soil desiccation, the short-term soil functioning processes is that soil water content of the forestland has a
positive effect on plant productivity in assimilating carbon and contemporarily facilitated soil water retention’.
The present soil-landscape has been shaped by combining long- and short-time processes, and this history can
provide some clues to project future changes. Therefore, exploring sustainable afforestation requires adequate
soil carbon and soil water in deep soils in arid and semiarid areas. Appropriate plant species selection is also the
key to improving water use efficiency and carbon sequestration. If afforestation exceeds the carrying capacity of
an ecosystem, degradation is inevitable?>””. Water and carbon interaction in deep are significant for the sustain-
ability of ecological restoration in arid and semiarid areas.
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Conclusions

In this study, we highlighted the importance of deep soil in regulating water and carbon cycles, while the “Grain
for Green” Project carried out over a large area of the Chinese Loess Plateau may have demonstrated considerable
impacts on soil carbon accumulation and soil water balance at the shallow soil depth. Our results showed that
under different restored vegetation types, SOC and SIC content and their storage were not significant differences
in the whole 20-m soil profile of the semi-arid loess hilly area. The deep loessial soil profile contained a massive
amount of inorganic carbon and the SIC storage was 9-10 times SOC storage for the same vegetation. However,
restored vegetation types significantly consumed soil water from a deeper soil profile, leading to SWS loss in
deep soil. In summary, afforestation did not significantly increase deep soil carbon storage but water depletion.
We need to further understand the water-carbon interactions in deep soil for sustainable and eco-environmental
construction and regulate water and carbon fixation in a semi-arid region of the Northern Loess Plateau.
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