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Surface model of the human 
red blood cell simulating 
changes in membrane curvature 
under strain
Philip W. Kuchel1*, Charles D. Cox2,3, Daniel Daners4, Dmitry Shishmarev5 & Petrik Galvosas6

We present mathematical simulations of shapes of red blood cells (RBCs) and their cytoskeleton 
when they are subjected to linear strain. The cell surface is described by a previously reported quartic 
equation in three dimensional (3D) Cartesian space. Using recently available functions in Mathematica 
to triangularize the surfaces we computed four types of curvature of the membrane. We also mapped 
changes in mesh-triangle area and curvatures as the RBCs were distorted. The highly deformable 
red blood cell (erythrocyte; RBC) responds to mechanically imposed shape changes with enhanced 
glycolytic flux and cation transport. Such morphological changes are produced experimentally by 
suspending the cells in a gelatin gel, which is then elongated or compressed in a custom apparatus 
inside an NMR spectrometer. A key observation is the extent to which the maximum and minimum 
Principal Curvatures are localized symmetrically in patches at the poles or equators and distributed 
in rings around the main axis of the strained RBC. Changes on the nanometre to micro-meter scale 
of curvature, suggest activation of only a subset of the intrinsic mechanosensitive cation channels, 
Piezo1, during experiments carried out with controlled distortions, which persist for many hours. 
This finding is relevant to a proposal for non-uniform distribution of Piezo1 molecules around the RBC 
membrane. However, if the curvature that gates Piezo1 is at a very fine length scale, then membrane 
tension will determine local curvature; so, curvatures as computed here (in contrast to much finer 
surface irregularities) may not influence Piezo1 activity. Nevertheless, our analytical methods can be 
extended address these new mechanistic proposals. The geometrical reorganization of the simulated 
cytoskeleton informs ideas about the mechanism of concerted metabolic and cation-flux responses of 
the RBC to mechanically imposed shape changes.

Abbreviations
3D	� 3-Dimensional
NMR	� Nuclear magnetic resonance
RBC	� Red blood cell

Our aim is to convey a sense of scale in the distribution of proteins in the membrane and subjacent cytoskeleton, 
relative to the whole human red blood cell (RBC); and to graphically represent changes in membrane curvature 
on the ~ 1 nm to ~ 10 μm scale, brought about by the systematic straining of these cells. This study was motivated 
by the quest for the geometrical and mechanistic basis of recent findings on mechanically distorted RBCs, made 
by using nuclear magnetic resonance (NMR) spectroscopy with stretched and compressed gels1,2.

The rates of glycolysis and transmembrane exchange of cations in RBCs are enhanced when these cells, sus-
pended in gelatin gel, are stretched or compressed. The metabolic effect occurs only when the medium contains 
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Ca2+ ions; and the cells’ responses are attributed to the activation of the mechanosensitive cation channel, Piezo1, 
when the plasma membrane is distorted3–7.

Cation-flux estimates via Piezo1 are typically made by electrophysiological means. This has been by classical 
patch clamping8, or in native RBCs via high throughput planar patch clamp measurements9. Because the elec-
trophysiological measurements usually occur over seconds (of a transient response to shape change), while the 
NMR experiments can last for hours, a different property of channel opening and closure is in operation1,2,10. 
Under constant stretch, even for a channel that inactivates, a steady state current persists. With inactivating 
channels like Piezo1, this current is much smaller than the peak current generated by mechanical deformation. 
Thus, for long periods of stretch in NMR experiments, the results more closely correspond to the steady state 
Piezo1 current that occurs under constant mechanical load.

The Piezo1 three-arm (triskelion) structure spans a relatively large ~ 23 nm diameter membrane patch; this 
has been measured from images obtained with cryo-electron microscopy11–13. Such imaging provides an indica-
tion of the likely values of curvature that are required to activate the channel. The current model suggests that 
the channel is curved in the resting state and flattens as membrane tension increases, which opens the channel14. 
Therefore, when inspecting the alteration of the average extent of membrane curvature, when an RBC is dis-
torted, we might expect an increase in the fraction of the total membrane area that has lower curvature; since 
such altered topology (induced flatness) appears to cause activation of Piezo1.

To quantify the alteration of membrane curvature that is brought about by stretching an idealized RBC, we 
employed a geometrical strain field, in which an RBC is elongated by a specified extent, denoted by ξ. In addition, 
we considered the variation of the angle of rotation of RBCs relative to the direction of the imposed strain field, 
prior to "switching the strain field on" (imposing stretch). This is relevant to describing the state-of-affairs of RBCs 
suspended in liquid gelatin prior to gelation, because the cells are known to have random orientations, which 
persist while in the gel state15. The mathematical model used in these analyses captures the key micro-anatomical 
dimensions of the discocyte that typify a human RBC (and in most other mammals, other than the camelidae)16.

Mathematical definitions of curvature of three dimensional (3D) surfaces are a major concern of differential 
geometry17,18; it is obvious that complicated formulae have become more accessible since the advent of symbolic 
computation, most notably in software packages like Mathematica19,20. Euler rotation matrices and strain tensors 
were applied to bring about the simulated RBC distortions (morphing), taking care to invoke the relevant inverse 
functions in the definition of the transformed shape function, and the curvature functions; again, Mathematica 
generated algebraic expressions symbolically. This remarkable outcome, despite the highly complicated forms, 
meant that the expressions were accurately evaluated to give estimates of curvatures. The ability to triangularize* 
the mathematically specified surface of the RBC (in Mathematica) meant that the relative size of the cytoskel-
etal triangular (also referred to as hexagonal) mesh was able to be visualized in practicable computation times 
(minutes)19. (*Aside: we use the term triangularization as opposed to triangulation to distinguish the operation 
from the trigonometric procedure used in surveying, and cartography etc).

Theory of methods
RBC shape.  There have been several expressions presented for the shape of the RBC including one based 
on the minimization of the bending energy of a dual layer membrane21. The mathematical expression for the 
RBC discocyte used here is close to those depicted in21, and it is a continuous degree-4 surface that can be writ-
ten either in Cartesian or disc-cyclide coordinates, making it versatile for numerical exploration16. The shape is 
constrained by three principal distances, the main diameter, d, the thickness at the centre of the dimples, b, and 
the maximum thickness (height) near the periphery of the cell, h (see Fig. 1 for the first of many examples here):

where,

The mean volume of a normal human RBC is 86 fL, while the surface area is variously stated to be 137 ± 17 
or 143 µm222,23. Thus, when d = 8 µm, b = 1 µm, and h = 2.12 µm, the model gives a volume of 86 fL and a surface 
area of 128 µm2. We gave precedence to the correct volume over the predicted smaller surface area in the above 
range of 120–154 µm2.

Triangularization of the surface.  While Eq. (1) is readily graphed in Mathematica, a representation of 
the cell’s cytoskeleton requires partitioning the surface with a known number of struts (edges) in the geodetic-
dome-like closed polyhedron. In a human RBC, the struts of the mesh consist of head-to-head-associated two 
hetero-dimers of α- and β-spectrin, with junctional complexes of 12–14 actin monomers bound as short, twisted 
filaments. There are ~ 121,000 edges24 so in Mathematica the Option, MaxCellMeasure in the BoundaryDiscre-
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tizeRegion function could be manually adjusted to make the number of edges in the polyhedron very close to 
this value (see the Supplementary Information for a Notebook implementation).

Shape transformation.  We emulated the distortion of RBCs suspended in stretched gelatin gel by speci-
fying that a geometrical strain field was applied in one direction, chosen to be along the z-axis. This equates to 
what applies in real NMR experiments1,2. It is not possible, experimentally, to align all the RBCs in gelatin media 
prior to or after gelation, so the members of the population of RBCs assume all possible orientations of their axes 
of symmetry in the strain field. Therefore, we considered three orientations as representative of all those that are 
possible (see “Discussion” for additional comments).

Euler rotation matrix.  To alter RBC orientation, the independent variables in Eq.  (1) were transformed, by 
rotation about the x-axis by an angle θ, using an Euler rotation matrix25:

where θ = 0 specifies the original orientation.

Strain tensor.  This mathematical object is a matrix that invokes volume preserving elongation of a Cartesian 
body in the direction of the z-axis:

(5)Rθ =

(

1 0 0
0 cosθ −sinθ
0 sinθ cosθ
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

Figure 1.   Triangular mesh of the RBC drawn to scale in its biconcave disc, using Eq. (1) in Mathematica. 
The main diameter d = 8 μm, thickness at the dimple b = 1 μm, and maximum height at the rim h = 2.12 μm. 
The triangularization was with BoundaryDiscretizationRegion, applied to ImplicitRegion (Supplementary 
Information). Number of edges = 120,042 and MeshCoordinates gave 40,136 points and 80,268 triangles. Green 
colouring was chosen over red (the natural choice for an RBC) for ease of visualizing the mesh. Notebook 2 has 
the Mathematica script used to generate this graphic.
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where ξ = 1 specifies the original shape.

Inverse affine transformation of Eq.  (1).  The requisite overall coordinate-transformation matrix was derived 
symbolically in Mathematica with the following function (note the standard matrix product denoted by .).

followed by ’threading’ the transformation through the discocyte expression (see the Supplementary Information 
for further explanation of the symbols and the complete Mathematica Notebook):

and this yielded the shape-transformed Eq. (1):

Then, the triangularization of the surface was performed as follows:

The function RegionMeasure applied to the boundary-discretized region gave the RBC volume; and the 
functions RegionMeasure[RegionBoundary[bmr0]] yielded the area of the RBC. The coordinates of the nodes 
of the mesh, and the list of all triangles, were obtained with the functions MeshCoordinates and MeshPrimitives. 
Finally, MeshTriangles was plotted by using Graphics3D (Fig. 1).

Curvature.  Representing shape and curvature are primary objectives of differential geometry17, and modern 
computation with Mathematica provides a way of generating curvature expressions for surfaces that are defined 
implicitly by equations like Eq.  (1). And, even more remarkably, those that are transformed to complicated 
expressions like Eq. (8).

A non-planar surface in three dimensions has a tangent plane and a normal vector at a specified point. In 
general, the curvature of the surface differs in one direction versus one at right angles to it. The shapes of these 
surfaces can be illustrated with the particular example of the hyperbolic paraboloid (saddle)17. Such a graphical 
rendering is shown in Supplementary Information, Fig. S1. The observation of, in general, two Principal Curva-
tures motivates the implementation of expressions that describe the curvature of the surface at a given point on 
the RBC. The fact that there are several ways of describing curvature of a surface may not be immediately obvious; 
but in general there are four expressions that have been explored in the theory of 3D differential geometry17.

Curvature expressions.  We begin the presentation of the operations that are required to generate the types 
of curvatures of the RBC surface by defining F[x,y,z] from Eq. (1):

Four operations are to be carried out on F
[

x, y, z
]

 to make up the requisite expressions: (1) The gradient of 
F, ∇F

[

x, y, z
]

, is a vector of partial derivatives of F with respect to each of the independent Cartesian variables:

(2) The Hessian of F, H[F], is a 3 × 3 matrix of second order partial derivatives of F:
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(3) The cofactor or adjugate matrix, denoted by H*[F] is defined as:

 where Cofactor(Fab), a, b = x, y, or z, for each of the second derivatives in Eq. (13) is a matrix of determinants26.
(4) Finally, the trace of the Hessian matrix is required; this is simply the sum of the three terms in the leading 

diagonal of H[F] [Eq. (13)]; it is the Laplace operator of F.

Gaussian curvature KG.  The Gaussian Curvature is expressed in terms of the vector of partial derivatives, its 
transpose, and the cofactor matrix of the Hessian17,18;

Mean curvature KM.  This is given by,

Principal curvatures k1 and k2.  They are the largest and smallest curvatures at a given point. It appears obtuse to 
define the Principal Curvatures after the other two, but it is computationally more efficient to do so17,18:
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Figure 2.   Data from the mesh in Fig. 1 showing the length-distribution histogram of edges in 20 bins (green); 
and, 200 bins (red inset). The mean edge length overall was 62 nm. The median bin (tallest green pillar) 
contained 38% of the total bin contents and spanned 60–65 nm; while the two most abundant bins spanning 
60–70 nm contained 75% of the edge lengths. Notebook 2 has the Mathematica script used to generate this 
graphic.
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The relationships are KG = k1k2 , and KM = k1+k2
2  , the latter explaining the term Mean Curvature.

Implementation of Eqs. (15)–(18) for the RBC.  Average at the three vertices.  The next step after trian-
gularization (e.g., Fig. 1) was to assign the values of curvature to each triangular face. This was done by applying 
Eqs. (14)–(17) to the vertices of each of the triangles and then averaging the three values.

Average at the centroid.  An alternative treatment was to determine the positions of the centroid (centre of grav-
ity) of each triangle and apply Eqs. (14)–(17) to those:

Weighted average curvatures.  Because the area of the triangles in any triangularization vary, as seen in the his-
togram of Fig. 2, the average of the curvatures of a set of triangles must be the weighted average. The weighting 
factor is the area of the triangle relative to the total area of all the triangles in the set:

where the area of each triangle is given by the ‘cross product formula’ from vector analysis27. Specifically, the 
differences between the position vectors of each vertex, v1, v2, v3 are the side vectors of the triangle, × denotes 
the vector cross product, and | | denotes the norm:

Results
Triangularization.  Euler test.  The triangularization shown in Fig. 1 was closed (no gaps), with the number 
of edges E, faces (F; triangles) and vertices (V; mesh points) conforming to Euler’s formula F − E + V = 228; the 2 
is a topological invariant called the ‘Euler characteristic’ and is typically denoted by χ.

Gauss–Bonnet theorem test.  The Total Curvature, which is the integral of the values of the Gaussian Curvature, 
KG, over a closed surface (like that used to describe the RBC), evaluates to 4π; specifically it is 2π χ17. This was 
indeed closely approximated by summing the product of KG (the mean of the three values of each triangle) 
and its area, across all triangles in the mesh. An example of the analysis is given in Notebook 5, Supplementary 
Information.

Triangles per mesh point.  Detailed inspection of the mesh showed that in the vast majority of cases a single 
mesh point was met by six triangles; but there were a few instances of five and seven triangles sharing one vertex. 
These points appeared to be randomly dispersed on the surface. If the instances of such sharp triangles were 
high, this could cause problems with the finite element approximation of the surface area; but there was not a 
problem as noted above in relation to the Gauss-Bonnet Theorem test. On the other hand, such aberrant trian-
gles are not a "good" representation of the spectrin mesh according to recent microscopic image analysis24,29.

Orientation.  It was important to test the fidelity to the triangularization algorithm in generating the same RBC 
volume and area, and curvature estimates, when the RBC was rotated about the x-axis (and, by symmetry, any 
other rotations about lines through the origin in the x,y-plane) in the Cartesian coordinate system using Eq. (5). 
Specifically, the distribution of edge-lengths should not change when θ is varied, and this was reliably achieved.

Edge length.  The next step was to compute the distribution of edge lengths, in order to study how these edges, 
which could be thought of as modelling the spectrin network, might imply that the spectrin is either stretched 
or compressed. Figure 2 shows the distribution of sides in Fig. 1, first at a resolution of 20 linearly spaced bins. 
The distribution is slightly skewed to the left, but it is unimodal; however, the inset which was based on 200 bins 
now appears to be at least trimodal (see “Discussion”).

Triangle area distribution.  Another feature of the surface triangularization, that is of biophysical importance, 
is the area of each triangle and whether this is consistent with the known span of membrane proteins that 
are corralled in the network. Figure S2a shows the separate triangularization of the RBC, which (as for Fig. 1) 
clearly indicates a range of shapes and sizes of the triangles. Sorting the triangles according to area showed a 
span from 0.0094 to 3431 nm2. When subdivided linearly into 10 bins it was seen that the 6th bin contained the 
most triangles (27,541) with a mean area of 1873 nm2; in other words 40.3% of the total area of 128 μm2 had this 
mean area, while the mean area of a triangle across the whole cell was 1575 nm2. The size distribution is shown 
graphically in Fig. S3.
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Figure 3.   Positional dependence of the four types of curvature on the surface of the model RBC. (a) Gaussian 
Curvature, KG; (b) Principal Curvature (maximum), k1; (c) Principal Curvature (minimum), k2; and (d) Mean 
Curvature, KM. On the right of each cell is the graph of mean value (of the respective curvature) versus the fraction 
of the RBC area that has the curvature in a specified sub-domain of values. Specifically, the minimum and maximum 
values of each curvature were idenified, then the whole domain of values was divided linearly into 10 sub-domains 
(bins) with each assigned a colour-code, as shown in the given Range Key. The area of each triangle was computed 
(“Theory of Methods”; and Notebook 2), so the total area occupied by triangles in a given bin could be expressed as 
a fraction of the total RBC area, 128 μm2. For speed of computation the triangularization was made with fewer mesh 
points than for Fig. 1, specifically 13,640 triangles and 6822 mesh points.
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Curvature mapping.  A primary aim was to devise a means of displaying (mapping) the distribution of 
curvature(s) on the surface of the RBC. For this, a colour-coding program was written. Each triangle from 
the triangularization was stored in one of 10 value domains, according to whichever of the attributes was to 
be mapped. Figure 3 shows an undistorted RBC with its axis of symmetry normal to the the x,y-plane, and for 
which the average of the curvatures at each of the three vertices of each triangle was assigned.

Rotation and strain.  The affine transformation, which combines both rotation and strain, produced shape 
changes such as those shown in Fig. 4. For this figure the RBC was rotated by 45° from the x,y-plane and then 
increasingly stretched.

On stretching (in the z-direction) the RBC was elongated and became narrower, an effect best seen in the 
overlapping images in Fig. 4e. However, the width of the RBC at the dimples and the maximum curvature at the 
rim both increased, as if the opposite faces of the cell were being pulled apart.

Volume and surface area during distortion.  The surface area of an RBC declines with age in the blood 
circulation30,31.

It is also known that an RBC’s surface area cannot be increased by more than ~ 15% before it ruptures; this was 
discovered in studies with RBCs swelling in hypotonic media32. In our own experiments with RBCs suspended 
in gelatin gel that is then stretched, haemolysis is very extensive with two-fold stretching (ξ = 2) (unpublished 
results). Therefore, it was important to explore the volume and surface area inter-relationships that are brought 
about by the affine transformation [Eqs. (5) and (6)].

Figure 5a shows that the surface area decreases on stretching if the RBC lies across the strain field; but it 
increases by up to 21% as the cell is stretched by 75% (ξ = 1.75) when aligned with its disc-plane parallel to the 
strain field. Meanwhile, the volume of the RBC scarcely changed under all the angles of orientation and extents 
of stretching explored herein (Fig. 5b).

Overall, we concluded from Fig. 5 that RBCs sustain increased or decreased surface area depending on their 
initial orientation in the gel on stretching the sample, while the volume did not change significantly. The extent 
of area change is much less than would occur with a sphere; and this helps explain why the biconcave disc shape 
has been naturally selected. Specifically, the particular shape enables volume and surface area preservation during 
passage of the RBC through the capillaries of the peripheral tissues and lungs2,30,31,33.

Colour‑coded curvatures for different values of θ and ξ.  Figure 6 shows RBCs that were tilted at 
45° around the x-axis and progressively strained from no extension to a maximum of ξ = 1.75. The changes in 
curvature are indicated by the changes in colour; the most notable feature for the Gaussian curvature (KG) is 
the increasing dominance of areas of red denoting increased area of lower values as the RBCs are stretched. On 
the other hand, the intermediate values (green) dominate the area of the values of k1 (the maximum Principal 
Curvature). Numerous other comparisons can be made, as are taken up in the “Discussion”.

Another way of depicting the changes in curvature with orientation and strain is via a form of histogram 
shown in Fig. 7. The graphs show the fraction of the RBC area that is occupied by triangles with curvature (for 
each of the four types) in the neighbourhood of the mean values that correspond to 10 bins, arranged uniformly 
between the minimum and maximum values of the respective curvature.

The values of the curvatures span different ranges in all scenarios of orientation and strain. When there was 
no strain (top row of Fig. 7, and Fig. 3) the triangles with k1 (orange line) of smallest value occupied the largest 
area. When the RBCs at 0° were stretched the minimum of k1 decreased in value but occupied a much larger 
area of the cell as stretching was increased. Another notable feature at 45° orientation was the shift in k2 and 
the Mean Curvature (green and blue lines) to larger values as stretching was increased, with the maximum area 
occupied by triangles of intermediate values. Also, there is a clearly defined maximum value in these polygonal 
graphs. For the RBCs at 90° orientation k1 and k2 both decreasd with increased stretching, with the maximum 
area occupied by large values. Overall, the patterns of all four polygonal graphs shifted progressively as stretching 
was increased, but at each of the angles of orientation the patterns were distinctly different.

This is but a snapshot of RBCs orientated at three angles; for a continuous distribution of angles, we would 
expect a smooth transition from the left hand column of polygonal graphs through the middle column to the 
right hand column.

Edge length distribution as a function of extent of stretching.  Figure 8 shows that for θ = 0° the 
median value of edge length of the triangularization decreased on stretching by 75% more than the original 
value. This is consistent with the fact that Fig. 5 shows that for θ = 0° the surface area decreased with increasing 
ξ. The main feature for the RBCs at 45° is the emergence of a broad bimodal distribution of edge lengths that is 
most clearly evident in the bottom of the middle column of the histograms. On the other hand, when the RBCs 
were at 90°, the distribution of edge lengths remained relatively narrow for stretching all the way to ξ = 1.75. 
From Fig. 5, it is at this orientation that most increase in area took place, and it is especially clear in the bottom 
right-hand histogram that the median edge length was ~ 70 nm; this is similar to the second maximum in the 
second column. Consistent with this observation is that both RBC orientations displayed increases in surface 
area as well (Fig. 5).
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Figure 4.   RBC rotated through 45° about the x-axis, relative to a linear strain field imposed in the z-direction. The relaxed 
RBC (a) had the same dimensions as in Fig. 1 (in fact, as in all the figures in this article): (a) No elongation, ξ = 1.00; (b) 
stretched by 25%, ξ = 1.25; (c) stretched by 50%, ξ = 1.50; (d) stretched by 75%, ξ = 1.75; and (e) showing the relative elongation 
and concomitant narrowing of the RBCs by superimposing the images. Colour coding was used to provide distinction 
between the RBCs in (e). In the boundary discretization MaxCellMeasure was set to 0.1 giving ~ 8000 mesh points.
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Figure 5.   Dependence of RBC surface area (a) and volume (b) on rotation about to the x-axis (θ) and 
stretching along the z-axis (ξ). The relaxed RBC had the same dimensions as in Fig. 1.
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Figure 6.   Curvatures of RBC rotated 45° around the x-axis and stretched in the z-direction by the extents 
(ξ) indicated above. The relaxed RBC had the same dimensions as in Fig. 1. The central scale bar indicates 
d = 8 μm, the main diameter of the fully relaxed RBC. KG denotes Gaussian Curvature; k1, Principal Curvature 
(maximum); k2, Principal Curvature (minimum); and KM, Mean Curvature. The values of the respective 
curvatures across the 10 subdivisions of the domain of values are those shown in the central column of 
the polygonal graphs in Fig. 7.
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Discussion
Triangularization.  The fully extended α- and β-spectrin heterotetramer has an end-to-end length 
of ~ 200 nm24; but the filaments of unstretched RBC membranes have an average distance, between the nodal 
F-actin helices, of 60–70 nm34 and up to 85 nm29. The automatic triangularization that we used here to model 
the RBC cytoskeleton was controlled to correspond to 121,000 α- and β-spectrin heterotetramers; and this 
gave ~ 65 nm as the mean value of the distance between two neighbouring nodes. This would imply that native 
spectrin has its filaments in a bent or serpentine form that more than halves the end-to-end distance of the 
tetramer. This state of the struts could be maintained by the central complex coordinated by ankyrin-124 impos-
ing curvature on them.

Given that the fully extended struts of the cytoskeleton are ~ 200 nm long24, basic geometry (triangle side 
a gives area = a2 

√
3/4) yields an estimate of the area of the resulting tessellation as follows: a single equilateral 

Figure 7.   Curvature graphs of an RBC rotated at 0°, 45° and 90° around the x-axis and stretched in the 
z-direction by the extents (ξ) indicated on the right. The colours of the polygonal plots indicate: Gaussian 
Curvature KG (μm−2), red; Principal Curvature (maximum), k1, orange; Principal Curvature (minimum), k2, 
green; and Mean Curvature KM, blue. Each discontinuity of the polygons denotes the mean value in curvature of 
the bin in the given curvature domain.
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Figure 8.   Histograms of the lengths of the 121,000 edges in the triangularization of an RBC at each of three 
rotations about the x-axis with no stretching (ξ = 1), and 75% stretching (ξ = 1.75). The colour coding was used to 
distinguish the three groups of data according to the rotations: green 0°, red 45°, and blue 90°. The bin numbers 
were 20 and 200 for the upper and lower pair of histograms at each value of stretching, ξ, respectively. The insets 
show the RBC shapes from which the histograms were made; they are the same as given in Figs. 4, S4 and S5.
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triangle of 200 nm on each side has an area of 0.0173 μm2. With a closed single-sheet surface like the RBC, each 
edge in the tessellation is shared with two triangles, and since there are three edges per triangle, the number 
of triangles is 2/3 the number of edges. This implies that there are 80,667 triangles, which, when multiplied by 
0.0173 μm2, gives a total area of 1397 μm2, a number 10.9 times greater than for the real/actual RBC.

On the other hand, if we assume there are 80,667 cytoskeletal triangles, this implies a triangle area of 
128/80,667 = 0.0016 μm2, which translates (using the triangle area formula above) to a side length of 60.8 nm. In 
other words, the internodal distance of the RBC cytoskeletal network should be ~ 60 nm. This number compares 
favourably with what we obtained as the mean distance of the edges in the tessellation analysed in Fig. 2: viz., 
75% of the edges span 60–70 nm.

While the observation of a less-than-fully-extended triangular spectrin mesh could have been deduced 
without the complicated triangularization used here, the analysis nevertheless adds credibility to the ab initio 
triangularization process; while the discussion above confirms the consistency of the numerical values reported 
in the literature with a (fairly) regular triangular tessellation24.

Curvature.  In its present form, the analysis of curvature and its graphical representation conveys a semi-
quantitative impression of how the distorted RBCs might transmit the locally altered shape of the membrane to 
Piezo1. However, the range-of-influence of membrane curvature on Piezo1 remains to be determined. Perhaps 
a finer mesh of triangularization is needed to explore this. The approaches adopted here should be extendable 
to such situations.

At the level of formal 3D differential geometry it was important to check for conformity of the total curvature 
with the Gauss–Bonnet Theorem17, which states that the integral of the Gaussian curvature over a closed surface 
will be 4π for surfaces like the RBC, even with its dimples that have regions of negative curvature. Notebook 
5 shows an example of this outcome in which the Gaussian curvature in each triangle was multiplied by the 
area of the respective triangle and then the sum taken over them all. This is tantamount to a finite difference 
approximation to the surface integral and the result was a gratifying verification of the overall curvature analysis.

Mesh‑triangle area expansion and diminution.  Figure 9a–c are examples of the partitioning of mesh-
triangles into those that are expanded and those that are diminished when the RBC is exposed to the linear 
strain field at 0°. On the other hand, with the RBC at 45° (Figs. 9d–f) the pattern of the mesh-triangles that are 
expanded or diminished is quite different. In the former case, the expanded triangles are arrayed in a single ring, 
while in the latter case, there are two separate regions each with two holes in them. For the diminished triangles 
in the RBC at 0° (Fig. 9b), there are two separate continuous zones; and for the RBC at 45°, there is one centrally 
perforated sheet. If there were an uneven distribution of Piezo1 throughout the RBC membrane, say in the dim-
ples as has been suggested by Svetina et al.35, then the action of Piezo1 would depend on the orientation of the 
RBCs to the strain field. Hence, it is not obvious whether the net effect of distortion of a randomly orientated 
population of such RBCs would actually lead to net activation of Piezo1.

Numerous studies have shown that Piezo1 responds to an increase in membrane tension7,36,37. Ion channel 
reconstitution into lipid bilayers has revealed that many eukaryotic channels respond to membrane tension38. 
The idea that ion channels can respond to membrane tension originates from the pioneering studies of bacte-
rial mechanosensitive channels39,40; and this has been underscored recently by work using a membrane-tension 
device with KcsA, that had not previously been considered to be mechanosensitive41. Hence, it is conceivable that 
membrane transporters other than Piezo1 in RBCs could be affected by shape changes of the type modelled here.

It is proposed that expansion of a mesh-triangle corresponds to an increase in local tension, whereas a 
decrease in area corresponds to relaxation. Therefore, from the numerous studies mentioned above, we conclude 
that even if Piezo1 were uniformly distributed around the RBC membrane, then members of the channel popula-
tion would not be uniformly activated (at a given orientation to the direction of the strain field). This is further 
complicated by the non-uniform local levels of cytoskeletal contractility in RBCs, which will also influence local 
membrane tension42. Thus, the net extent of activation of the Piezo1 channels would depend on the orientation 
of each RBC to the strain field, and to local levels of RBC contractility. This would make the idea of segregation 
of Piezo1 to the pits of the RBC dimples less plausible35. Of course, studies involving light microscopy used with 
fluorescent antibodies directed specifically at Piezo1 on RBCs could settle this question.

Figure 9.   Partitioning of mesh-triangles of an RBC into those that underwent an increase in area and those 
that were diminished when the cell was strained in the z-direction. The RBCs had an angle of orientation 
to the strain field of θ = 0° and θ = 45°, respectively, prior to being stretched by the factor ξ = 1.75. In order to 
speed up computation the triangularization was performed with 13,188 edges and not the real ~ 121,000. The 
Mathematica Notebook was written to achieve direct correspondence between a triangle in the relaxed RBC 
and its counterpart in the stretched state. (a) Shows the mesh-triangles that were increased in area; (b) those 
that were diminished in area; and (c) is a union of (a) and (b), which shows complete closure of the mesh by the 
two classes of triangles. For the θ = 45° orientation, (d) shows the mesh-triangles that were increased in area. 
Note how these occupy two disconnected manifolds, while (e) is the single perforated surface that contains 
those mesh-triangles that were diminished in area; and (f) is the union of the two classes of triangles. Notebook 
7 contains the computations not only for this figure but for mapping the differences in the four curvatures 
between the relaxed and stretched RBCs.

▸
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Cytoskeletal rearrangement.  Since our pictures of RBCs, in various states of distortion are static, we can 
deduce nothing about the kinetics of cytoskeletal rearrangement of a kind suggested by Gov et al.43. However, 
the images of positive and negative changes in area of mesh-triangles (Fig. 9) suggest that rearrangements of the 
struts of the geodetic dome would occur such that strain would be re-distributed more uniformly. Whether this 
rearrangement occurs on the timescale of the blood circulation, or even during the ~ 0.3 s taken to pass through 
a capillary in the human body44, requires more experimentation.

Conclusions
There are many aspects of RBC shape, volume and flexibility that are ripe for explanation45,46, and inevitably 
these studies will tap into recent findings on Piezo1, and new analytical methods including computational fluid 
dynamics.

At a deeper conceptual level, the work described here is an exploration of the geometrical constraints on 
’biological form’ (e.g.,28,47); in this case, the particular shapes are those taken up by an RBC in a strain field. 
The linear strain field used here is the simplest of all, being in a single direction: but it is consistent with that 
imposed by a stretched gel, as used in our NMR experiments15. Much more complicated deformations occur 
in flowing systems, in which some domains of the RBC membrane are stressed into more positive curvature, 
while others simultaneously undergo more negative curvature48–51. The ability of the RBC to accommodate these 
contortions decreases with the age of the cell and it is posited as a major factor in what determines RBC survival, 
for ~ 120 days in the circulation33. Transient, distorted shapes exist in RBCs when they are in regions of high 
velocity that impose non-laminar flow around prosthetic or even healthy heart valves. Flow changes occur during 
valve development in cardio-genesis in particular, and flow is modified around calcified or diseased valves, not 
just prosthetic ones50,51; so, there is considerable merit in having a computationally accessible means of modelling 
RBC shape changes by using the methods presented here.

The RBC shapes in various in vivo situations have begun to yield to computation. For example, it is known 
that the stresses on an RBC can be so extreme around prostheses as to lead to cell rupture. To date, simulating 
such outcomes really only yield to advanced supercomputing e.g.,52.

The other critical aspect of simulations for surface deformation is the distance scale of the deformations that 
are required to activate mechanosensitive ion channels like Piezo111,14. The changes in curvature invoked at the 
tip of a patch-clamp pipette are quite extreme, across a diameter of ~ 1 μm or an area of 0.79 μm2, implying that 
80,667(number of triangles) × 0.79 (μm2, area of patch)/128 (μm2, total area of RBC) ≅ 500 cytoskeletal triangles 
are spanned. The resolution of the present simulations and the curvature near the rim of the RBC are in the same 
range. Therefore, if increased membrane bending activates Piezo1, then it will be those molecules at the rim of 
the cells (as in Fig. 6, right) that would be activated. On the other hand, if a decrease in curvature (increased area 
of flatness) is what activates them, then it will be also found in the stretched cell. Even more interesting is the fact 
that the two Principal Curvatures k1 and k2 both increase on stretching the cell (Fig. 6 right).

However (as alluded to in the “Introduction”), in patch clamping experiments the visible curvature appears 
not to be what activates the channel. The inflation of the membrane dome is driven by the confinement by the 
micro-pipette that is on the micron scale. It is the tension (and presumably flattening at the nm scale below the 
resolution of a confocal microscope) that appears to drive the channels to open14,37,53–55. Whereas in stretched/
compressed gel experiments, the morphological forms taken up by the RBCs will be like those shown in this 
article. However, more curvature of the membrane on the length scales seen in membrane flickering56,57 would 
be superimposed on these shapes.

Future directions for this computational work will involve larger scale simulations of population-averaged 
curvatures in cells under strain, and in strain fields that are not simply unidirectional and linear. Then, correla-
tions might be able to be made with experimental measurements like those already reported on stretched/com-
pressed gels1,2, including estimates of membrane tension during electrophysiological measurements performed 
on whole RBCs.
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