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Brain tumor segmentation based 
on deep learning and an attention 
mechanism using MRI 
multi‑modalities brain images
Ramin Ranjbarzadeh1, Abbas Bagherian Kasgari2, Saeid Jafarzadeh Ghoushchi3, 
Shokofeh Anari4, Maryam Naseri5* & Malika Bendechache6

Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard and 
important tasks for several applications in the field of medical analysis. As each brain imaging 
modality gives unique and key details related to each part of the tumor, many recent approaches used 
four modalities T1, T1c, T2, and FLAIR. Although many of them obtained a promising segmentation 
result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time to 
train and test. So, in this paper, to obtain a flexible and effective brain tumor segmentation system, 
first, we propose a preprocessing approach to work only on a small part of the image rather than 
the whole part of the image. This method leads to a decrease in computing time and overcomes the 
overfitting problems in a Cascade Deep Learning model. In the second step, as we are dealing with 
a smaller part of brain images in each slice, a simple and efficient Cascade Convolutional Neural 
Network (C-ConvNet/C-CNN) is proposed. This C-CNN model mines both local and global features 
in two different routes. Also, to improve the brain tumor segmentation accuracy compared with the 
state-of-the-art models, a novel Distance-Wise Attention (DWA) mechanism is introduced. The DWA 
mechanism considers the effect of the center location of the tumor and the brain inside the model. 
Comprehensive experiments are conducted on the BRATS 2018 dataset and show that the proposed 
model obtains competitive results: the proposed method achieves a mean whole tumor, enhancing 
tumor, and tumor core dice scores of 0.9203, 0.9113 and 0.8726 respectively. Other quantitative and 
qualitative assessments are presented and discussed.

Brain tumors include the most threatening types of tumors around the world. Glioma, the most common pri-
mary brain tumors, occurs due to the carcinogenesis of glial cells in the spinal cord and brain. Glioma is char-
acterized by several histological and malignancy grades, and an average survival time of fewer than 14 months 
after diagnosis for glioblastoma patients1. Magnetic Resonance Imaging (MRI), a popular non-invasive strategy, 
produces a large and diverse number of tissue contrasts in each imaging modality and has been widely used 
by medical specialists to diagnose brain tumors2. However, the manual segmentation and analysis of structural 
MRI images of brain tumors is an arduous and time-consuming task which, thus far, can only be accomplished 
by professional neuroradiologists3,4. Therefore, an automatic and robust brain tumor segmentation will have a 
significant impact on brain tumor diagnosis and treatment. Furthermore, it can also lead to timely diagnosis and 
treatment of neurological disorders such as Alzheimer’s disease (AD), schizophrenia, and dementia. An auto-
matic technique for Lesion segmentation can support radiologists to deliver key information about the volume, 
localization, and shape of tumors (including enhancing tumor core regions and whole tumor regions) to make 
therapy progress more effective and meaningful. There are several differences between the tumor and its normal 
adjacent tissue (NAT) which hinder the effectiveness of segmentation in medical imaging analysis, e.g., size, bias 
field (undesirable artifact due to the improper image acquisition), location, and shape5. Several models that try 
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to find accurate and efficient boundary curves of brain tumors in medical images have been implemented in the 
literature. These models can be divided into three main categories:

(1)	 Machine learning approaches address these problems by mainly using hand-crafted features (or pre-defined 
features)6–9. As an initial step in this kind of segmentation, the key information is extracted from the input 
image using some feature extraction algorithm, and then a discriminative model is trained to recognize the 
tumor from normal tissues. The designed machine learning techniques generally employ hand-crafted fea-
tures with various classifiers, such as random forest10, support vector machine (SVM)11,12, fuzzy clustering3. 
The designed methods and features extraction algorithms have to extract features, edge-related details, and 
other necessary information—which is time-consuming13. Moreover, when boundaries between healthy 
tissues and tumors are fuzzy/vague, these methods demonstrate poorer performances.

(2)	 Multi-atlas registration (MAS) algorithms are based on the registration and label fusion of multiple normal 
brain atlases to a new image modality4. Due to the difficulties in registering normal brain atlases and the 
need for a large number of atlases, these MAS algorithms have not been successfully dealing with applica-
tions that require speed14.

(3)	 Deep learning methods extract crucial features automatically. These approaches have yielded out-
standing results in various application domains, e.g., pedestrian detection15,16, speech recognition and 
understanding17,18, and brain tumor segmentation19,20.

Zhang et al.21 proposed a TSBTS network (task-structured brain tumor segmentation network) to mimic the 
physicians’ expertise by exploring both the task-modality structure and the task-task structure. The task-modality 
structure identifies the dissimilar tumor regions by weighing the dissimilar modality volume data since they 
reflect diverse pathological features, whereas the task-task structure represents the most distinct area with one 
part of the tumor and uses it to find another part in its vicinity.

A learning method for representing useful features from the knowledge transition across different modality 
data employed in22. To facilitate the knowledge transition, they used a generative adversarial network (GAN) 
learning scheme to mine intrinsic patterns from each modality data. Zhou et al.23 introduced a One-pass Multi-
Task Network (OM-Net) to overcome the problem of imbalanced data in medical brain volume. OM-Net uses 
shared and task-specific parameters to learn discriminative and joint features. OM-Net is optimized using both 
learning-based training and online training data transfer approaches. Furthermore, a cross-task guided attention 
(CGA) module is used to share prediction results between tasks. The extraction of both local and global contex-
tual features simultaneously was proposed inside the Deep CNN structure by Havaei et al.24. Their model uses a 
simple but efficient feature extraction method. An AssemblyNet model was proposed by Coupé et al.25 which uses 
the parliamentary decision-making concept for 3D whole-brain MRI segmentation. This parliamentary network 
is able to solve unseen problems, take complex decisions, and reach a relevant consensus. AssemblyNet employs 
a majority voting by sharing the knowledge among neighboring U-Nets. This network is able to overcome the 
problem of limited training data.

Owing to the small size of tumors compared to the rest of the brain, brain imaging data are imbalanced. Due 
to this characterization, existing networks get to be biased towards the one class that is overrepresented, and 
training a deep model often leads to low true positive rates. Additionally, existing deep learning approaches have 
complex structures—which makes them more time-consuming.

To overcome the mentioned difficulties, in our work, a powerful pre-processing strategy to remove a huge 
amount of unimportant information has been used, which causes promising results even in the present deep 
learning models. Owing to this strategy, we do not use a complex deep learning model to define the location of 
the tumor and extract features that lead to a time-consuming process with a high fault rate. Furthermore, thanks 
to the reduction in the size of the region of interest, the preprocessing step in this strategy also decreases overfit-
ting problems. Besides, after the pre-processing step, a cascade CNN approach is employed to extract both local 
and global features in an effective way. In order to make our model robust to variation in size and location of the 
tumor, a new distance-wise attention mechanism is applied inside the CNN model.

This study is structured as follows. In Sect. 2.1, the pre-processing procedure including Z-Score normalization 
is described in detail for four MRI modalities. In Sect. 2.2, deep learning architecture is described. In Sect. 2.3.1, 
the distance-wise attention module is demonstrated. In Sect. 2.3.2, the architecture of the proposed Cascade 
Convolutional Neural Networks (C-ConvNet/C-CNN) is explained. The experiments, discussion, and conclud-
ing remarks are in Sects. 3 and 4.

Material and methods
In this section, we will discuss the proposed method in detail.

Pre‑processing.  Unlike many other recent deep learning approaches which use the whole of the image, we 
only focus on a limited area of it to extract key features. By removing these unnecessary uninformative parts, the 
true negative results are dramatically decreased. Also, by applying such a strategy, we do not need to use a very 
deep convolutional model.

Similar distributions.  To improve the final segmentation accuracy, we use four brain modalities, namely T1, 
FLAIR, T1C, and T226,27. To enforce the MRI data more uniform and remove the effect of the anisotropic (espe-
cially for the FLAIR modality), we conduct the Z-Score normalization for the used modalities. By applying this 
approach to a medical brain image, the output image has zero mean and unit variance24. We implemented this 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10930  | https://doi.org/10.1038/s41598-021-90428-8

www.nature.com/scientificreports/

step by subtracting the mean and dividing by the standard deviation in only the brain region (not the back-
ground). This step was implemented independently for each brain volume of every patient. Figure 1 shows some 
samples of the four input modalities and their corresponding normalization results.

Tumor representation in each slice.  In our investigation, we found that the size and the shape of the tumor in 
sequential slices increase or decrease steadily. The tumor emerges in the first slices with a small size at any pos-
sible location of the image. Then, in the following slices, the tumor will remain in the same location inside the 
image, but it will have a bigger size. Next, after reaching maximum size, the tumor size will start to decrease 
until it vanishes entirely. This is the core concept of our pre-processing method. These findings are indicated in 
Figs. 2 and 3.

The main reason for using the mentioned four brain modalities is their unique characteristics for detecting 
some parts of the tumor. Moreover, to find a tumor, we need to find all three parts in each of the four modalities, 
then combine them to make a solid object. So, our first goal is to find one part of the tumor in each modality.

Finding the expected area of the tumor.  By looking deeper into Figs. 2 and 3, we notice emerging, vanishing, and 
big tumor sizes are encountered in different slices related to different patients. For instance, the biggest tumors 
are depicted in slices 80 and 74 for Figs. 2 and 3, respectively. Another important fact is that to the best of our 
knowledge no sharp difference can be observed in the size of continuous slices and tumor size can be varied 
slightly. During the investigation phase, we noticed that finding the location of the emerging and vanishing 
tumor is a hard and challenging task. But this is not true when we are looking for the biggest tumor inside the 
image. To detect the tumor area in each slice we follow four main steps: (1) read all modalities except the T1 
image and compute the Z-Score normalized image, (2) binarize the obtained image with the thresholds 0.7, 0.7, 
and 0.9 for FLAIR, T2, and T1ce, respectively, (3) apply a morphological operator to remove some irrelevant 
areas, (4) multiply both binary images of FLAIR and T2 to create a new image and 5) combine the obtained areas 
from each image together. This procedure is demonstrated in Figs. 4 and 5 in details.

As the observed tumor in FLAIR and T2 images is demonstrated with a higher intensity than other parts of the 
brain, the threshold value of binarization needs to be larger than the mean value (we selected 0.7). Moreover, the 

Figure 1.   Two sets of four MRI modalities and their corresponding Z-Score normalization.
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tumor is much brighter in T1ce than FLAIR and T2 images. Therefore, a bigger threshold value of binarization 

Figure 2.   Illustration of the ground truth in 24 different slices in Brats18_2013_23_1. The red numbers indicate 
the number of the slice.

Figure 3.   Demonstration of the ground truth in 24 different slices in Brats18_TCIA02_377_1. The red numbers 
indicate the number of the slice. Different parts of tumor are illustrated with different colors.
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needs to be selected (we selected 0.9). If a small threshold value is selected for binarization, several normal tis-
sues will be identified as tumor objects.

In the next step, as there are some tumor-like objects inside the obtained image, we need to discard them 
using some simple but precise rules. As shown in Figs. 4 and 5, to decide whether to select a binary object as a 
part of the tumor or not, extra constraints are applied to the binarized T1ce images: (1) object solidity bigger 
than 0.7, (2) object area bigger than 500 pixels, and (3) length of the major axis of the object needs to be bigger 

Figure 4.   Demonstration of the process of finding a part of the tumor in each slice. The yellow color in the 
top left corner and the bottom indicates the slice number and sample ID, respectively. Also, the conditions for 
selecting the object are shown in yellow color. The red color is chosen for identifying the presented image. All 
binary objects inside the binarized T1ce image are bigger than the threshold criteria, so they were eliminated.

Figure 5.   Demonstration of the process of finding a part of the tumor in each slice. The yellow color in the 
top left corner and the bottom indicates the slice number and sample ID, respectively. Also, the conditions 
for selecting the object are shown in yellow color. The red color is chosen to identify the presented image. The 
detected object from T1ce is indicated by the blue text.
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than 35 pixels. Any object in the binarized T1ce image that does not pass these criteria is removed from the 
image (Fig. 4). The defined constraints (rules) are the same for all the binarized images and we do not need to 
be altered to obtain good result. Moreover, to overcome the problem of using MRI images with different sizes 
and thicknesses, the value for each constraint was selected based on a wide span. For instance, in the BRATS 
2018 dataset, we defined the smallest object area value as 500 pixels. While using a wide span for selecting an 
object decreases accuracy, applying the other rules (solidity and major axis length) enables us to overcome that 
problem effectively.

After detecting all binary objects using morphological operators, we need to add them to each other to cre-
ate a binary tumor image. But there is still another condition before adding the binarized T1ce to the obtained 
image from the binary dot product of the FLAIR and T2 images. We can only consider the effect of a binary 
object inside the T1ce images if it has an overlapping area bigger than 20 pixels with a binary object inside the 
image obtained from the binary dot product of FLAIR and T2 (Fig. 5).

In the next step, we need to find the location of the big tumor inside the slices. To this end, we need to be sure 
that all detected objects are truly tumor objects. To overcome this issue, we track each tumor object in sequen-
tial slices. It means if a tumor object is found in almost the same position with a small change in the size in the 
sequential slices, we can be sure that this object is a true tumor object. After finding the true tumor object in a 
slice, we search in the same area inside all other slices to find the biggest object. This procedure is explained in 
Fig. 6 in details. Finally, using morphological operators this object can be enlarged to cover all possible missing 
tumor areas (we call this area the biggest expected area). By finding this object and its location, we can search 
only in this area to find the tumor and segment it in all slices (Fig. 7). Finally, based on the information explained 
in Sect. 2.1.2 and also Figs. 2 and 3, it is obvious that by moving to the first or last slice, the size of the tumor will 
be decreased. So, we can create a binary mask for all slices in which the size of the expected areas differs slightly 
from the expected slice to slice difference.

Deep learning architecture.  In today’s artificial intelligence (AI) applications, the convolutional neural 
network (ConvNet/CNN) pipelines that are a class of deep feed-forward artificial neural networks exhibit a 
tremendous breakthrough in medical image analysis and processing28–32. The structure of a CNN model was 
inspired by the biological organization of the visual cortex in the human brain which uses the local receptive 
field. This architecture is similar to that of the connectivity pattern of neurons.

As the CNN model is not invariant to rotation and scale, it is a tremendous task to segment an object that 
can be moved in the image. One of the key concerns about using a CNN model in the field of medical imaging 
lies in the time of the evaluation, as many medical applications need prompt responses to minimize the process 
for additional analysis and treatment. The condition is more complicated when we are dealing with a volumet-
ric medical image. So, by applying a 3D CNN model for detecting lesions using the traditional sliding window 
approaches, an acceptable result cannot be achieved. This is highly impractical when there are high-resolution 

Figure 6.   Pseudocode of the proposed algorithm for detecting the biggest tumor among all slices.
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volumetric images, and a large number of 3D block samples need to be investigated. In all brain volumetric 
images, the location, size, orientation, and shape of the tumor are different from a patient to another and cause 
uncertainty in finding the potential region of the tumor. Also, it is more reasonable to only search a small part 
of the image rather than the whole image.

To this end, in this work, we first identify the region of interest with a high probability of encountering the 
tumor and then apply the CNN model to this smaller region–thus reducing computational cost and increasing 
system efficacy.

The major drawback of convolutional neural network models (CNN) lies in the fuzzy segmentation outcomes 
and the spatial information reduction caused by the strides of convolutions and pooling operations32. To further 
improve the segmentation accuracy and efficiency, several advanced strategies have been applied to obtain bet-
ter segmentation results21,25,33,34 with approaches like dilated convolution/pooling35–37, skip connections38,39, as 
well as additional analysis and new post-processing modules like Conditional Random Field (CRF) and Hidden 
Conditional Random Field (HCRF)10,40,41. Using the dilated convolution method causes a large receptive field to 
be used without applying the pooling layer to the aim of relieving the issue of information loss during the training 
phase. The skip connection has the capability of restoring the unchanged spatial resolution progressively with the 
integration of features and adding outputs from previous layers to the existing layer in the down-sampling step.

Recently, the attention mechanism has been employed in the deep learning context that has shown excellent 
performance for numerous computer vision tasks including instance segmentation42, image-denoising43, person 
re-identification44, image classification45,46, etc.

Proposed structure.  In this study, a cascade CNN model has been proposed that combines both local 
and global information from across different MRI modalities. Also, a distance-wise attention mechanism is 
proposed to consider the effect of the brain tumor location in four input modalities. This distance-wise attention 
mechanism successfully applies the key location feature of the image to the fully-connected layer to overcome 
overfitting problems using many parallel convolutional layers to differentiate between classes like the self-co-

Figure 7.   Two examples of finding the tumor object (expected area) and its corresponding center location and 
applying morphological filters to enlarge the tumor regions. The first row indicates the ground-truth images. 
The second row demonstrates the tumor object. The third row shows the enlarged tumor objects obtained in the 
second row. The yellow color in the top left corner indicates the slice number.
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attention mechanism47. Although many CNN-based networks have been employed for similar multi-modality 
tumor segmentation in prior studies, none of them uses a combination of an attention-based mechanism and an 
area-expected approach.

Distance‑wise attention (DWA) module.  By considering the effect of dissimilarity between the center of the 
tumor and the expected area, we can guess the probability of encountering each pixel in the investigating pro-
cess. In other words, knowing the location of the center of the expected (see Fig. 8) leads to a better differentia-
tion between pixels of the three tumor classes.

The DWA module explores distance-wise dependencies in each slice of the four employed modalities for the 
selection of useful features. Given an input feature channel set A ∈ R

H×W×N , A = {A1,A2, . . . ,AN } , where 
Ai ∈ R

H×W indicates a channel. The variables N, H, and W, are the input channels, spatial height, and spatial 
width, respectively. So, as it is shown in Fig. 9, the Oth centroid of the object is obtained on each channel map by

Figure 8.   An example depicting the whole brain and its corresponding binary mask for two modalities. The 
expected area is shown in the third column. The center of the binary mask and the expected area is shown by a 
red star.

Figure 9.   Illustration of parameter calculation in the Distance-Wise Attention (DAW) module. The blue and 
red pixels are the background and the brain, respectively. The expected area is represented by a yellow object. 
The size of the image is 240 × 240.
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where yc and xc represent the center of the white object, Wobject and Hobject indicate the width and height of the 
object, respectively.

By calculating Eq. (1) for both the expected area (see Fig. 8c) and binarization of the input modality in each 
slide (see Fig. 8b), the distance-wise can be defined as

where i and j represent the binarized input modality and expected region, respectively. To obtain the width 
Wobject of the object in Eq. (2), we need to count the number of pixels in each row that have the value 1, and then 
select the row with the maximum count. For calculating the height Hobject , we do the same strategy but in verti-
cal. Figure 9 provides more details about computing parameters in the DAW module. As shown in Fig. 10, this 
process is done for all input modalities and the mean of them is fed to the output of the module for each slice.

Cascade CNN model.  The flowchart of our cascade mode is depicted in Fig. 11. To capture as many rich tumor 
features as possible, we use four modalities, namely, fluid attenuated inversion recovery (Flair), T1-contrasted 
(T1C), T1-weighted (T1), T2-weighted (T2). Moreover, we add four corresponding Z-Score normalized images 
of the four input modalities to improve the dice score of segmentation results without adding more complicated 
layers to our structure.

Due to the use of a powerful preprocessing step that eliminates about 80% of the insignificant information 
of each input image, there is no need for a complex deep network such as10,22,32. In other words, by selecting 
approximately 20% of the whole image (this percentage is the mean of the whole slices of a patient) for each input 
modality and corresponding Z-Score normalized image, there fewer pixels to investigate.

Also, considering the effect of the center of the tumor to correct detection leads to improve the segmenta-
tion result without using a deep CNN model. So, in this study, a cascade CNN model with eight input images is 
proposed which employs the DWA module at the end of the network to avoid overfitting.

As demonstrated in Fig. 11, our CNN model includes two different routes which extract local and global 
features from the four input modalities and the corresponding Z-Score normalized images. The key goal of using 
the first route is detecting the pixels on the border of each tumor (the global feature), whereas the key goal of 
the second route is labelling each pixel inside the tumor (the local feature). In the first route, a 40 × 40 patch (red 
window) is selected from each input image to feed the network. It is worth noting that we extract only patches that 

(1)

{

yc = y0 +
Hobject

2
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Wobject
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(2)
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Figure 10.   Distance calculation based on the center of the expected area and the four input modalities mask.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10930  | https://doi.org/10.1038/s41598-021-90428-8

www.nature.com/scientificreports/

have their centers located in the obtained expected area, as shown in Fig. 12. The presence of Z-Score normalized 
images improves the accuracy of the tumor border recognition. The number of convolutional layers for extracting 
the global feature is five. Unlike the first route, in the local feature extraction route, there are only two convolu-
tion layers and they are both fed with eight 15 × 15 input patches (green window). The core building block of the 
proposed CNN structure is expressed as the convolutional layer. This layer can calculate the dot-product between 
input data with arbitrary size and a set of learnable filters (masks), much like a traditional neural network32,48,49.

The size of the applied masks is always smaller than the dimensions of the input data in all kinds of CNNs. 
Regularly, the first convolution layers which are applied at the beginning of the CNN model play a significant 
role in extracting low-level features such as luminance and texture discontinuity50,51. The high-level features 

Figure 11.   Our implemented cascade structure. The green and red windows inside the input images represent 
the local and global patches, respectively. The DWA module is represented at the end of the structure before the 
FC layer.

Figure 12.   Our implemented cascade structure. The blue and yellow windows inside the input images represent 
the local and global patches, respectively. The red contour indicates the obtained expected area.
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including tumor region masks are investigated in the deeper convolutional layers of the pipeline, while the mid-
dle convolutional layers are utilized for investigating the mid-level features including edges, curves, and points.

As demonstrated in the first row of Fig. 12, the center of each patch is located inside the red border, regardless 
of whether there is part of the window outside the red border or not. By doing this, we do not investigate insig-
nificant areas (which do not include the tumor). This is more helpful and reasonable when we are encountering 
imbalanced data. So, samples of the lesion are being equalized to the normal tissue which avoids overfitting in 
the training step. Additionally, this approach is helpful when dealing with images of various sizes and thick-
nesses as insignificant parts of the images are discarded before affecting the recognition of the tumor algorithm.

After each convolution layer, there is an activation layer that helps the network to learn complex patterns 
without changing the dimension of the input feature maps52. In other words, in the case of an increased number 
of layers and to overcome the vanishing gradient problem in the training step, an activation function is applied 
to each feature map to enhance the computational effectiveness by inducing sparsity51,53.

In this study, all negative values are changed to zero using the Non-Linearity (ReLU) activation function which 
acts as a linear function for positive and zero values. It means some nodes obtain null weights and become useless 
and do not learn anything. So, fewer neurons would be activated because of the limitations applied by this layer.

In contrast to the convolution operation, the pooling layer which is regularly incorporated between two 
sequential convolutional layers has no parameters and summarizes the key information without losing any 
details in the sliding window (mask). Additionally, as the dimension of the feature maps (in both column and 
row) is decreased in this layer, the training time will be smaller and mitigates overfitting32,49. By using the max-
pooling method in this paper, the feature map is divided into a set of regions with no overlapping, then takes 
the maximum number inside each area.

As in a CNN pipeline, the dimension of the receptive field does not cover the entire spatial dimension of the 
image in the last convolutional layer, the produced maps by the last convolutional layer related to only an area of 
the whole input image. Due to this characterization of the receptive field, to learn the non-linear combinations 
of the high-level features, one or more FC layers have to be used. It should be noticed that before employing 
the achieved feature maps in the fully connected layer, these two-dimensional feature maps need to be changed 
into a one-dimensional matrix54. Furthermore, to reduce the effect of the overfitting a dropout layer55 with a 7% 
dropout probability has been employed (before the FC layer).

Unlike the convolutional layers, the fully connected layers are composed of independent more parameters, so 
they are harder to train56. The last layer in the proposed pipeline for the classification task is the Softmax regres-
sion (Multi-class Logistic Regression) layer that is used to distinguish one class from the others. This Multi-class 
Logistic regression can follow a probability distribution between the range [0,1] by normalizing an input value 
into a vector of values. This procedure demonstrates how likely the input data (image) belongs to a predefined 
class. It should be mentioned that the sum of the output probability distribution is equal to one24,48.

In the proposed network, we employed the stochastic gradient descent approach as the cross-entropy loss 
function to overcome the class imbalance problem57. This loss function calculates the discrepancy between the 
ground truth and the network’s predicted output. Also, in the output layer, four logistic units were utilized to 
investigate the probabilities of the given sample belonging to either of the four classes. The loss function can be 
formulated as follows:

where lossi implies the loss for the i-th training sample. Also, Up demonstrates the unnormalized score for the 
ground-truth class P. This score can be generated by considering the effect of the outputs of the former FC layer 
(multiplying) with the parameters of the corresponding logistic unit. To get a normalized score to determine 
the between-class variation in the range of 0 and 3, the denominator adds the predicted scores for all the logistic 
units Q. As only four output neurons have been used in this study, the value for Q is equal to four. In other words, 
each pixel can be categorized into one of four classes.

Experiments
Data and implementation details.  In this study, training, validation, and testing of our pipeline have 
been accomplished on the BRATS 2018 dataset which includes the Multi-Modal MRI images and patient’s clini-
cal data with various heterogeneous histological sub-regions, different degrees of aggressiveness, and variable 
prognosis. These Multi-Modal MR images have the dimensions of 240× 240× 150 and were clinically obtained 
using various magnetic field strengths, scanners, and different protocols from many institutions that are dis-
similar to the Computed Tomography (CT) images. There are four MRI sequences for training, validation, and 
testing steps which include the Fluid Attenuated Inversion Recovery (FLAIR), highlights water locations (T2 or 
T2-weighted), T1 with gadolinium-enhancing contrast, and highlights fat locations (T1 or T1-weighted).

This dataset includes 75 cases with LGG and 210 cases with HGG which we randomly divided into training 
data (80%), validation data (10%), and test data (10%). Also, labels of images were annotated by neuro-radiol-
ogists with tumor labels (necrosis, edema, non-enhancing tumor, and enhancing tumor are represented by 1, 2, 
3, and 4, respectively. Also, the zero value indicates a normal tissue). Label 3 is not used.

The experimental outcomes are achieved for the proposed structure using MATLAB on Intel Core I7- 3.4 
GHz, 32 GB RAM, 15 MB Cache, over CUDA 9.0, CuDNN 5.1, and GPU 1080Ti NVIDIA computer under a 
64-bit operating system. We adopted the Adaptive Moment Estimation (Adam) for the training step, with a batch 
size 2, weight decay 10−5, an initial learning rate 10−4. We took in total 13 h to train and 7 s per volume to test.

(5)lossi = − log

(

eUp

∑Q
d=1 e

Ud

)
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Evaluation measure.  The effectiveness of the approach is assessed by metrics regarding the enhancing 
core (EC), tumor core (TC, including necrotic core plus non-enhancing core), and whole tumor (WT, including 
all classes of tumor structures). The Dice similarity coefficient (DSC) is employed as the evaluation metric to 
compute the overlap between the ground truth and the predictions.

The experimental results were obtained using the three criteria, namely HAUSDORFF99, Dice similarity, and 
Sensitivity23,58–60. The Hausdorff score assesses the distance between the surface of the predicted regions and that 
of the ground-truth regions. Dice score is employed as the evaluation metric for computing the overlap between 
the ground truths and the predictions. Specificity (actual negative rate) is the measure of non-tumor pixels that 
have been calculated correctly. Sensitivity (Recall or True positive rate) is the measure of tumor pixels that have 
been correctly calculated. These three criteria can be formulated as:

where Rp , Ra , and Rn demonstrate the predicted tumor regions, actual labels, and actual non-tumor labels, 
respectively.

Experimental results.  To have a clear understanding and for quantitative and qualitative comparison pur-
poses, we also implemented five other models (Multi-Cascaded34, Cascaded random forests10, Cross-modality22, 
Task Structure21, and One-Pass Multi-Task23) to evaluate the tumor segmentation performance. Quantitative 
results of different kinds of our proposed structure are presented in Table 1.

From Table 1, we can observe that the two-route CNN model without using a preprocessing approach is not 
able to segment the tumor area properly. Adding an attention mechanism to a two-route model without using 
the preprocessing method causes to gain better segmentation results in terms of all three criteria. Also, by add-
ing the preprocessing approach, the Dice scores in three tumor regions observe a surge increase from 0.2531, 
0.2796, and 0.2143 to 0.8756, 0.8550, and 0.8715 for End, Whole, and Core, respectively. Despite only having a 
one-route CNN model (local or Global features) and thanks to the use of the preprocessing approach, the CNN 
model consistently obtains improved segmentation performance in all tumor regions. Moreover, it is observed 
that the use of the preprocessing method is more influential than only using an attention mechanism. In other 
words, the proposed attention mechanism can be more helpful when we are dealing with a smaller part of the 
input image extracted by the preprocessing method. By comparing the effect of local and global features, it can 
be recognized that the local features are more effective than global features.

The Dice, Sensitivity, and HAUSDORFF99 values of all input images using all the structures are described in 
Table 2. For each index in Table 2, the highest Dice, Sensitivity, and the smallest HAUSDORFF99 values are high-
lighted in bold. From Table 2, it is obvious that our strategy can achieve the highest Sensitivity values in Enh and 
Whole tumor areas and the highest value for the Core area was obtained by10. Also, there is a minimum difference 
between the values of HAUSDORFF99 using34 and23. In22, there is a significant improvement in the Enh area for 
all three measures. Also21, achieves the worst results in the Whole and Core areas for HAUSDORFF99 measure.

Notice that when using the proposed method, all criteria were improved in comparison to other mentioned 
approaches, but the sensitivity value in the Core area using34 is still higher. To our best knowledge, there are 
three reasons. First, the proposed strategy pays special attention to removing insignificant regions inside the 
four modalities before applying them to the CNN model. Second, our method uses both the local and global 
features with different numbers of convolutional layers which explores the richer context tumor segmentation. 
Third, by considering the effect of the dissimilarity between the center of the tumor and the expected area, the 
network can be biased to a proper output class. Additionally, compared to the state-of-the-art algorithms with 
heavy networks, such as22 and23, our approach obtains more promising performance and decreases the running 
time by only using a simple CNN structure. Moreover, as shown in Table 3, the proposed method is faster at 
segmenting the tumor than other compared models.

(6)DICE
(

Rp, Ra

)

= 2∗
Rp ∩ Ra

Rp + Ra

(7)Sensitivity =
(

Rp ∩ Ra

)

/(Ra)

Table 1.   Evaluation results with different pipeline configurations on BRATS 2018 dataset.

Method

Dice score (mean) Sensitivity (mean)

Enh Whole Core Enh Whole Core

Two-route CNN 0.2531 0.2796 0.2143 0.2456 0.2569 0.2007

Global route CNN + Attention mechanism 0.3128 0.3410 0.3025 0.3343 0.2947 0.2896

Local route CNN + Attention mechanism 0.3412 0.3671 0.3625 0.3356 0.3819 0.3808

Two-route CNN + Attention mechanism 0.4136 0.3754 0.3988 0.3910 0.3951 0.3822

Global route CNN + Preprocessing 0.7868 0.7916 0.7867 0.7426 0.7965 0.7448

Local route CNN + Preprocessing 0.8602 0.8343 0.8516 0.8751 0.8569 0.8485

Two-route CNN + Preprocessing 0.8756 0.8550 0.8715 0.8941 0.9036 0.8512

Proposed method 0.9113 0.9203 0.8726 0.9217 0.9386 0.9712
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Figure 13 provides a visual demonstration of the good results achieved by our approach on the BRATS 2018 
dataset. As shown, all regions have a mutual border with all of the other regions. Due to the difference between 
the value of tumor core and enhancing areas inside the T1C images (third column), the border between them 
can be easily distinguished with a high rate of accuracy without using other modalities. But it is not true when 
we are dealing with the border of a tumor core, edema areas, or enhanced edema areas. Due to these mentioned 
characteristics of each modality, we observe that there is no need for a very deep CNN model if we decrease the 
searching area.

Table 2.   Comparison between the proposed method and other baseline approaches on BRATS 2018 dataset.

Method

Dice score (mean) Sensitivity (mean) HAUSDORFF99 (mm)

Enh Whole Core Enh Whole Core Enh Whole Core
34

Multi-Cascaded 0.7178 0.8824 0.7481 0.8684 0.7621 0.9947 2.80 4.48 7.07

10

Cascaded random forests 0.75 0.86 0.79 0.83 0.91 0.86 – – –

22

Cross–modality 0.903 0.791 0.836 0.919 0.846 0.835 4.998 3.992 6.369

21

Task Structure 0.782 0.896 0.824 – – – 3.567 5.733 9.270

23

One-Pass Multi-Task 0.811 0.908 0.857 – – – 2.881 4.884 6.932

Proposed method 0.9113 0.9203 0.8726 0.9217 0.9386 0.9712 1.669 1.427 2.408

Table 3.   Comparison of execution time of different techniques applied on BRATS 2018 dataset for one subject 
patient.

Approach Multi-Cascaded 34
Cascaded random 
forests 10 Cross-modality 22 Task Structure 21

One-Pass Multi-
Task 23

Proposed 
method

Time 261 s 314 s 208 s 193 s 277 s 84 s

Figure 13.   The results of brain tumor segmentation using the proposed strategy (the blue, green, and red colors 
are enhanced, core, and edema regions respectively).
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Figure 14.   Comparing the results of brain tumor segmentation by applying DWA method to the proposed 
CNN structure. The blue, yellow, and red colors are edema, enhanced, and core regions respectively.

Figure 15.   Comparing the results of brain tumor segmentation using the proposed strategy with four state-of-art 
methods (the blue, yellow, and red colors are edema, enhanced, and core regions respectively). (A) Multi-Cascaded 
34, (B) Cascaded random forests 10, (C) Cross-modality 22, (D) One-Pass Multi-Task 23, and (E) Our method.
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Owing to the use of the DWA module, our model can mine more unique contextual information from the 
tumor and the brain which leads to a better segmentation result. Figure 14 shows the improved segmentation 
resulting from the application of the DWA module in the proposed method—particularly in the border of 
touching tumor areas.

The comparison between the baseline and our model in Fig. 15 shows the effectiveness of the proposed 
method in the capability of distinction between all four regions.

Figure 15(GT) indicates the ground truth corresponding to all four modalities in the same row. The Multi-
Cascaded (Fig. 15A) and Cascaded random forests (Fig. 15B) approaches show satisfactory results in detecting 
the Edema area but cannot detect the small regions of Edema outside the main Edema body. The Cross-modality 
(Fig. 15C) and One-Pass Multi-Task (Fig. 15D) approaches gain promising results in detecting the tumor Core 
and Enhancing areas, especially in detecting tumor Core in outside border of the Enhancing area.

It is illustrated that some separated Edema regions are stuck together in final segmentation using the Cross-
modality method. As shown in Fig. 15(C), applying the Cross-modality structure reaches the minimum seg-
mentation accuracy for detecting the Edema regions compared to others. This model under-segments the tumor 
Core areas and over-segments the Edema areas. The One-Pass Multi-Task approach shows a better core matching 
with the ground-truth compared to Fig. 15(A–C) but still has insufficient accuracy, especially in the Edema areas. 
Based on our evaluation, estimation of the three distinct regions of the brain tumor using an attention-based 
mechanism is an effective way to help specialists and doctors to evaluate the tumor stages which is of high inter-
est in computer-aided diagnosis systems.

Discussion and conclusions
In this paper, we have developed a new brain tumor segmentation architecture that benefits from the characteri-
zation of the four MRI modalities. It means that each modality has unique characteristics to help the network 
efficiently distinguish between classes. We have demonstrated that working only on a part of the brain image near 
the tumor tissue allows a CNN model (that is the most popular deep learning architecture) to reach performance 
close to human observers. Moreover, a simple but efficient cascade CNN model has been proposed to extract 
both local and global features in two different ways with different sizes of extraction patches. In our method, 
after extracting the tumor’s expected area using a powerful preprocessing approach, those patches are selected to 
feed the network that their center is located inside this area. This leads to reducing the computational time and 
capability to make predictions fast for classifying the clinical image as it removes a large number of insignificant 
pixels off the image in the preprocessing step. Comprehensive experiments have indicated the effectiveness of 
the Distance-Wise Attention mechanism in our algorithm as well as the remarkable capacity of our entire model 
when compared with the state-of-the-art approaches.

Although the proposed approach’s outstanding results compared to the other recently published models, 
our algorithm has still limitations when encountering tumor volume of more than one-third of the whole of 
the brain. This is because of an increase in the size of the tumor’s expected area which leads to a decrease in the 
feature extraction performance.
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