
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8994  | https://doi.org/10.1038/s41598-021-88053-6

www.nature.com/scientificreports

Practical clinical and radiological 
models to diagnose COVID‑19 
based on a multicentric 
teleradiological emergency chest 
CT cohort
Paul Schuster1,2,16, Amandine Crombé1,3,16, Hubert Nivet1,2, Alice Berger4, Laurent Pourriol1,5, 
Nicolas Favard1,6, Alban Chazot1,7, Florian Alonzo‑Lacroix1, Emile Youssof1,8, 
Alexandre Ben Cheikh1,7, Julien Balique1,9, Basile Porta1,7, François Petitpierre1,10, 
Grégoire Bouquet1,11, Charles Mastier1,12, Flavie Bratan1,11, Jean‑François Bergerot1,13, 
Vivien Thomson1,7, Nathan Banaste1,14 & Guillaume Gorincour1,15*

Our aim was to develop practical models built with simple clinical and radiological features to 
help diagnosing Coronavirus disease 2019 [COVID-19] in a real-life emergency cohort. To do so, 
513 consecutive adult patients suspected of having COVID-19 from 15 emergency departments 
from 2020-03-13 to 2020-04-14 were included as long as chest CT-scans and real-time polymerase 
chain reaction (RT-PCR) results were available (244 [47.6%] with a positive RT-PCR). Immediately 
after their acquisition, the chest CTs were prospectively interpreted by on-call teleradiologists 
(OCTRs) and systematically reviewed within one week by another senior teleradiologist. Each OCTR 
reading was concluded using a 5-point scale: normal, non-infectious, infectious non-COVID-19, 
indeterminate and highly suspicious of COVID-19. The senior reading reported the lesions’ semiology, 
distribution, extent and differential diagnoses. After pre-filtering clinical and radiological features 
through univariate Chi-2, Fisher or Student t-tests (as appropriate), multivariate stepwise logistic 
regression (Step-LR) and classification tree (CART) models to predict a positive RT-PCR were trained 
on 412 patients, validated on an independent cohort of 101 patients and compared with the OCTR 
performances (295 and 71 with available clinical data, respectively) through area under the receiver 
operating characteristics curves (AUC). Regarding models elaborated on radiological variables alone, 
best performances were reached with the CART model (i.e., AUC = 0.92 [versus 0.88 for OCTR], 
sensitivity = 0.77, specificity = 0.94) while step-LR provided the highest AUC with clinical-radiological 
variables (AUC = 0.93 [versus 0.86 for OCTR], sensitivity = 0.82, specificity = 0.91). Hence, these two 
simple models, depending on the availability of clinical data, provided high performances to diagnose 
positive RT-PCR and could be used by any radiologist to support, modulate and communicate their 
conclusion in case of COVID-19 suspicion. Practically, using clinical and radiological variables (GGO, 
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fever, presence of fibrotic bands, presence of diffuse lesions, predominant peripheral distribution) can 
accurately predict RT-PCR status.

Abbreviations
95%CI	� 95% Confidence interval
AUC​	� Area under the receiver operating characteristic curves
CART​	� Classification and regression tree
COVID-19	� Coronavirus disease 2019
CT	� Computed tomography
DCA	� Decision curve analysis
GGO	� Ground-glass opacities
NPV	� Negative predictive value
OCTR​	� On-call teleradiologists
PPV	� Positive predictive value
RT-PCR	� Real-time reverse transcription polymerase chain reaction
SARS-CoV-2	� Severe acute respiratory syndrome coronavirus 2
SFR	� French society of radiology
Step-LR	� Stepwise binary logistic regression

Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2). It was identified in Wuhan, China, in December 2019 and has rapidly spread worldwide1. As 
of February 13th, 2021, approximately 108 million patients have been reported worldwide, including 3,390,952 
patients in France, with 80,404 deaths2. Real-time reverse transcription polymerase chain reaction (RT-PCR) 
is the gold standard for the acute diagnosis of SARS-CoV-2 in upper and lower respiratory specimens, despite 
possible inaccurate results (false negative and false positive)3–6. However, many hospitals have limited or delayed 
access to molecular testing. Conversely, chest CT is routinely performed at most institutions and can provide a 
result, or at least a diagnostic orientation, in less than an hour, which could help in patients’ triage.

Previous studies have highlighted typical COVID-19 patterns consisting of peripheral, multifocal ground-
glass opacities (GGO), with a sensitivity of 60–98%3,5,7,8. Relying on these radiological features, the French Society 
of Radiology (SFR) has published educational webinars and a standardized report including a four-point scale 
to categorize the risk of COVID-19 on chest CT, namely: highly suspicious, compatible/indeterminate, not 
suspicious and normal (https://​ebull​etin.​radio​logie.​fr/​compt​es-​rendus-​covid-​19). Similar initiatives have been 
proposed by other radiological societies, such as the COVID-19 Reporting and Data System (CO-RADS) for the 
Dutch radiological society9–11. Overall, the specificity and sensitivity of these semi-quantitative scoring systems 
ranged from 0.45 (in asymptomatic patients) to 0.92, and from 0.66 to 0.94, respectively, when including the 
compatible/indeterminate category9–14.

In parallel, predictive models have been issued to facilitate and even automate the diagnosis of COVID-19 
on chest CT with good performances and in an objective manner. Indeed, regarding deep-learning models, 
diagnostic performances (estimated with area under the receiver operating characteristics curves [AUC]) ranged 
from 0.70 to 0.95 in retrospective testing cohorts15–20. When detailed, sensitivity and specificity were 0.84–1 and 
0.25–0.96, respectively. However, their implementation in practice requires either time or mathematical and 
computer sciences skills or graphics processing units. Alternatively, machine-learning models built on com-
binations of clinical, biological, radiological and even radiomics features have been developed21,22. Hence, Qin 
et al. have proposed a scoring system based on biological, clinical and radiological data with high performance 
(AUC = 0.91, sensitivity = 0.88, specificity = 0.92 in the independent validation cohort), but the added value to 
classical radiological assessment was not detailed22. Furthermore, some information required to run the model, 
notably a history of exposure or the leukocyte count, may not be systematically known by radiologists.

IMADIS Teleradiology is a French company dedicated to remote interpretation of emergency CT and MRI 
examinations. As of March 2020, IMADIS Teleradiology had partnerships with the emergency and radiological 
departments of 69 hospitals covering all French regions. During the coronavirus crisis, IMADIS has been widely 
involved in the diagnosis of COVID patients by remote interpretations of chest CT scans from partner centres. 
In order to rapidly homogenize the teleradiological managements of patients with a COVID-19 suspicion within 
our structure, a standardized and dedicated workflow and educational webinars were thus specifically devel-
oped, including the semi-quantitative scoring system derived from the SFR guidelines. Furthermore, through a 
systematic second reading of the teleradiological reports, the radiological semiology of each chest CT acquired 
in the workflow was collected.

Therefore, the first aim of our study was to elaborate and validate practical and simple classification models 
that could be used by any radiologist in any institution, without any mathematical background, based on easily 
available clinical and radiological features. Hence, in addition to semi-quantitative and subjective scoring systems, 
our models could provide a probability for a positive RT-PCR that could help modulating the traditional radio-
logical assessment, improve the communication of the results to physicians and guide possible complementary 
diagnostic strategy in case of first negative swab. The second aim was to correlate the results of our models with 
those of the standardized conclusions of the IMADIS teleradiologists as given in a real-life emergency setting.

https://ebulletin.radiologie.fr/comptes-rendus-covid-19
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Materials and methods
Study design.  This observational multicentric study was approved by the French Ethics Committee for the 
Research in Medical Imaging (CERIM) review board (IRB CRM-2007-107) according to good clinical practices 
and applicable laws and regulations. While the clinical and radiological data were prospectively collected, the 
study was designed retrospectively. Consequently, the written informed consent was waived due to the retro-
spective nature of the analysis. All data were anonymized before any analysis. All methods were performed in 
accordance with the relevant guidelines and regulations.

IMADIS Teleradiology is a medical company providing remote interpretation of emergency imaging examina-
tions in dedicated on-call centres. As of March 2020, IMADIS Teleradiology had partnerships with the emergency 
and radiological departments of 69 hospitals covering all French regions.

Our study included all consecutive adult patients from 2020-03-13 to 2020-04-14 from 15/69 (21.7%) partner 
hospitals that regularly provided the RT-PCR results to IMADIS, as these patients fulfilled the following inclusion 
criteria: age above 18 years old, need for chest CT due to suspicion of COVID-19 according to a board-certified 
emergency physician, available chest CT, and available RT-PCR status (Fig. 1, Supplemental Data S1). We did 
not exclude patients because of their medical history.

Chest CT acquisition.  Chest CT examinations were performed by using 16- or 64-detector row CT scan-
ners with a standardized non-contrast enhanced COVID-19 chest CT protocol for all hospitals. Depending on 
the emergency centers, the slice thickness ranged from 1 to 1.25 for the lung kernel, and from 2 to 2.5 mm for 
the mediastinal kernel. If pulmonary embolism was suspected, CT pulmonary angiographic protocol with bolus 
tracking intravenous iodine contrast agent administration at a rate of 3–4 mL/s was used instead (Omnipaque 
350, GE Healthcare, Princeton, New Jersey; Iomeron 400, Bracco Diagnostics, Milan, Italy; and Ultravist 370, 
Bayer Healthcare, Berlin, Germany). In case of respiratory artifacts precluding the teleradiological interpreta-
tion, the acquisition was repeated, possibly on ventral decubitus.

Teleradiological interpretation protocol.  The panel of IMADIS teleradiologists consisted of 109 senior 
radiologists with at least 5 years of emergency imaging experience (mean length of practice, 7 years) and 55 
junior radiologists (i.e., residents) with 3–5 years of emergency imaging experience (mean length of practice, 
4 years). Teleradiologists were on-call in groups of at least two teleradiologists per night in each of the two inter-
pretation centres (Bordeaux and Lyon, France). All radiological reports involving COVID-19 made by junior 
teleradiologists were validated by a senior teleradiologist working in the same interpretation center.

The IMADIS teleradiology interpretation protocol met the French recommendations for teleradiology 
practice23. The reports and requests with clinical data (filled by emergency physicians) for COVID-19 Chest CT 
image interpretation were sent from the client hospitals to the IMADIS Teleradiology interpretation centres by 

Figure 1.   Flow-chart of the study.
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using teleradiology software (ITIS; Deeplink Medical, Lyon, France). The images were securely transferred over 
a virtual private network to a local picture archiving and communication system for interpretation available on 
each teleradiological workstation from the two interpretation centers (Carestream Health 12, Rochester, NY). 
Images were immediately interpreted by on-call teleradiologists (OCTRs) and the interpretation was subse-
quently transmitted to the emergency physician without any delay.

CT examinations were systematically reviewed within one week following each on-call session by another 
senior teleradiologist (n = 15; mean length of practice, 12.1 years; mean number of reviews, 34 CTs) who was not 
involved during the on-call duty period, blinded to the RT-PCR result and the first reader’s report. All senior 
radiologists had a 2-h-long e-learning session on CT-Chest findings in COVID-19, which became publicly avail-
able on April 7 (Web-based e-learning, developed by IMADIS Radiologists, Deeplink Medical, Lyon, France and 
RiseUp, Paris, France: https://​covid​19-​forma​tion.​riseup.​ai/) in addition to the educational webinars (https://​ebull​
etin.​radio​logie.​fr/​cas-​clini​ques-​covid-​19) and guidelines (https://​ebull​etin.​radio​logie.​fr/​covid​19?​field_​theme_​
covid_​19_​tid=​613) provided by the SFR.

Clinical data.  Clinical information was provided by emergency physicians and collected through the tel-
eradiology software in a standardized COVID-19 CT request form (ITIS; Deeplink Medical, Lyon, France), as 
follows: age; gender; active smoking; medical history, recent anti-inflammatory drugs intake; delay since onset 
of symptoms (categorized as: < 1 week, 1–2 weeks, ≥ 2 weeks); oxygen saturation (categorized as: ≥ 95%, 90–95% 
and < 90%); dyspnoea; fever (≥ 38 °C); cough; asthenia; headache; and ear, nose and throat symptoms.

The RT-PCRs were all performed on throat swab samples contemporary of the emergency room visit. Their 
results were retrospectively collected from the patients’ electronic medical records from each partner hospital.

Radiological data.  At the end of the report, the OCTR had to propose a conclusion adapted from the SFR 
classification (https://​ebull​etin.​radio​logie.​fr/​actua​lit%​C3%​A9s-​covid-​19/​compte-​rendu-​tdm-​thora​cique-​iv-0), 
as follows: (1) normal, (2) abnormalities inconsistent with pulmonary infection; (3) abnormalities consistent 
with a non-COVID-19 infection; (4) indeterminate/compatible abnormalities; and (5) findings strongly suspi-
cious of COVID-19.

The 2nd reading assessed the following radiological features: (a) underlying pulmonary disease (categorized 
as: emphysema, lung cancer, interstitial lung disease, pleural lesions, or bronchiectasis); (b) GGO pattern (cat-
egorized as: rounded or non-rounded GGO); (c) consolidation pattern (categorized as: rounded or non-rounded 
consolidations and fibrotic bands [defined as thick, dense bands generally extending from a visceral pleural 
surface and possibly responsible for architectural distortions]); (d) predominant pattern (categorized as: GGO 
or consolidation); (e) distribution pattern of lesions (categorized as: peripheral predominant [defined as located 
within 3 cm of a costal pleural surface], central predominant, or mixed); (f) bilateral lesions; (g) diffuse lesions 
(i.e., five lobes involved); (h) basal predominant lesions; (i) pleural effusion (categorized as: uni- or bilateral); 
(j) adenomegaly (defined as lymph node with short axis > 10 mm); (k) bronchial wall thickening (when each 
bronchial wall approximately exceeds about 33% of the internal bronchial luminal diameter, which was further 
categorized as lobar/segmental or diffuse); (l) airway secretions; (m) tree-in-bud micronodules, and (n) pulmo-
nary embolism. Images for each radiological feature can be found in Supplemental Data S2.

Statistical analysis.  Statistical analyses were performed using R (version 3.5.3, R Foundation for Statisti-
cal Computing, Vienna, Austria). All tests were two-tailed A p-value of less than 0.05 was deemed significant.

Univariate associations between clinical and radiological categorical variables and RT-PCR status were evalu-
ated with Pearson Χ2 or Fisher exact tests, except for age, which was compared between the two groups with 
Student’s t-test (after assessing the normality of this numeric variable through Shapiro–Wilk test). Correlations 
between variables were evaluated with Spearman’s test in order to identify possibly redundant variables. For each 
significantly correlated pair of dummy variables extracted from the same initial multilevel categorical variable, 
the variable with the lowest p-value at univariate analysis was selected for the multivariable modelling.

Next, the study population was randomly partitioned into a training cohort (n = 412/513, ≈ 80%) and a 
validation cohort (n = 101/513, ≈ 20%), with a same prevalence of RT-PCR positivity (i.e. 196/412 [47.6%] and 
48/101 [47.5%], respectively). We focused on two simple classifiers that do not require any computing interface 
to extract the probability for a positive RT-PCR, namely: classification and regression tree (CART, “rpart” R pack-
age) and stepwise backward-forward binary logistic regression (Step-LR—minimizing the Akaike information 
criterion, “MASS” R package). The models were built on the training cohort based on (i) either all dichotomized 
radiological variables or (ii) all dichotomized clinical + radiological variables—with a p-value < 0.05 at univariable 
analysis. The CART algorithm has one hyperparameter (i.e., a parameter that is set before the model building, 
while classical parameters are derived during the model building), named ‘complexity’, which controls the size of 
the tree and was selected following a cross-validation step in the training cohort as minimizing the classification 
error rate. Next, the tree was pruned following this optimal complexity hyperparameter. The minimal number 
of observations in the terminal node and the splitting criteria were set to 3 and the Gini index, respectively.

The performances of the CART-based and step-LR-based models were evaluated with AUC, i.e. by plotting 
the true positive rate (sensitivity) against the false positive rate (1—specificity) at various threshold settings 
and calculating the area under the curve. AUC was used to compare the models between themselves and to the 
prospective conclusions made by the OCTRs on the validation cohort. Accuracy (number of correctly classified 
patients divided by the total number of patients), sensitivity, specificity, negative predictive value (NPV) and 
positive predictive value (PPV) were estimated after dichotomizing predicted probabilities per a cut-off of 0.5. 
All results were given with a 95% confidence interval (95%CI). AUCs were compared using the pairwise Delong 
test (‘pROC’ R package).

https://covid19-formation.riseup.ai/
https://ebulletin.radiologie.fr/cas-cliniques-covid-19
https://ebulletin.radiologie.fr/cas-cliniques-covid-19
https://ebulletin.radiologie.fr/covid19?field_theme_covid_19_tid=613
https://ebulletin.radiologie.fr/covid19?field_theme_covid_19_tid=613
https://ebulletin.radiologie.fr/actualit%C3%A9s-covid-19/compte-rendu-tdm-thoracique-iv-0
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Finally, we applied a decision curve analysis (DCA) to assess the clinical usefulness of the final models in the 
validation cohort. DCA consists of plotting the net benefit of applying the model for clinically reasonable risk 
thresholds compared with two alternative strategies: (i) to treat all patients as affected by COVID-19 or (ii) to 
treat none of the patients24. Herein, the net benefit of our models refers to the correct identification of patients 
with a positive or a negative RT-PCR, and the risk threshold can be seen as the harm-to-benefit ratio or the risk 
at which patients are indifferent about COVID-1925. Hence, a low risk threshold would correspond to patients 
who are particularly worried about the disease26.

Results
Study population.  Table  1 summarizes the descriptive features of the study population. Overall, 513 
patients were included, with a median age of 68.4 years (range 18–100) and 241/513 women (47%). Ninety-nine 
out of 513 (19.3%) of patients had a pre-existing lung chronic disease on chest CT. The prevalence of RT-PCR 
positivity was 244/513 (47.6%).

Univariate analysis.  The following clinical variables were associated with RT-PCR positivity (RT-PCR +): 
delay since onset of symptoms ≥ 1 week, oxygen saturation < 95%, oxygen saturation < 90%, presence of fever, 
cough, asthenia and myalgia (p = 0.04, 0.03, 0.005, < 0.001, 0.02, 0.001 and 0.008, respectively) (Table 2). On the 
contrary, the presence of a dyspnea, headache and ear, nose, throat symptoms did not correlate with the RT-PCR 
status (p = 0.16, 0.5 and 0.6, respectively).

The following radiological variables were positively associated with RT-PCR +: presence of GGO, non-
rounded GGO, rounded GGO, presence of consolidation, non-rounded consolidation, fibrotic bands, intralobular 
reticulations, fibrosis, GGO predominant pattern, peripheral predominant location, bilateral lesions, diffuse 
lesions, basal predominant lesions, and low, moderate and high extent of abnormalities (all p-values < 0.001) 
(Table 3). The following radiological variables were negatively correlated with RT-PCR + : consolidation pre-
dominant pattern, central predominant location, mixed predominant location, airway secretion, bronchial wall 
thickening, either lobar/segmental or diffuse, and tree-in-bud micronodules (p = 0.02, 0.001, 0.002, < 0.001, < 0.00
1, < 0.001, < 0.001, < 0.001, respectively). On the contrary, the presence of rounded consolidation, pleural effusion 
and adenomegaly did not correlate with the RT-PCR status (p = 0.6, 0.2 and 0.3, respectively).

Table 1.   Characteristics of the study population. Note Data refer to the number of patients with percentage in 
parentheses, except for age.

Characteristics No. of patients

Age (years old)

Mean 65.6 ± 18.8

Median (range) 68.4 (18.5–100.1)

Gender

Female 241/513 (47%)

Male 272/513 (53%)

Active smoking

No 359/412 (87.1%)

Yes 53/412 (12.9%)

Anti-inflammatory drugs intake

No 395/418 (94.5%)

Yes 23/418 (5.5%)

Significant medical history

No 151/478 (31.6%)

Cardiovascular risk factors and diseases 267/478 (55.9%)

Respiratory diseases 91/478 (19%)

Cancer 39/478 (8.2%)

Renal diseases 21/478 (4.4%)

Neurological diseases 44/478 (9.2%)

Liver diseases 4/478 (0.8%)

Immunodepression 19/478 (4%)

Pre-existing lung chronic disease on chest CT

No 414/513 (80.7%)

Yes 99/513 (19.3%)

RT-PCR status

Negative 269/513 (52.4%)

Positive 244/513 (47.6%)
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Multivariate models.  The correlation matrix of the relevant dichotomized variables is shown in Fig. 2. 
Analysis of the correlations between similar explanatory variables enabled the selection of ‘presence of GGO’ 
(over ‘rounded GGO’ and ‘non-rounded GGO’), ‘peripheral predominant location’ (over ‘central predominant 
location’ and ‘mixed predominant location’), ‘fibrotic band consolidation’ (over ‘non-rounded consolidation’ and 
‘presence of consolidation’), ‘moderate to severe extension’ (over ‘low to severe extension’ and ‘severe extension’), 
and ‘bronchial wall thickening’ (over ‘diffuse bronchial wall thickening’ and ‘focal/segmental bronchial wall 
thickening’). Thus, the total numbers of variables ultimately entered in the multivariate radiological and clinical-
radiological models were set to 13 and 19 dichotomized variables, respectively.

Figure 3 shows the final decision trees. Regarding the best tree relying on radiological variables, six nodes 
corresponding to six questions were used. Fewer nodes were needed with the clinical-radiological final tree 
model (i.e. five nodes) Hence, the probability for positive RT-PCR ranged from 0.07 to 0.89, and from 0.06 to 
0.93, respectively.

Regarding the Step-LR models, Table 4 shows the matrices enabling the calculation of the probability for RT-
PCR + depending on radiological and clinical-radiological variables. These models also enable to identify inde-
pendent predictors for RT-PCR + , that-is-to-say: fever, fibrotic bands, a GGO predominant pattern, a peripheral 
predominant distribution, diffuse lesions, intralobular reticulations and absence of bronchial wall thickening 
(range of p-value =  < 0.001–0.03).

Performances of the models and conclusions by on‑call teleradiologists.  To evaluate the perfor-
mances of the models, trained models were tested on the external validation cohort. Table 5 shows the results 
while results in the training cohort are given in Supplemental Data S3.

Table 2.   Univariate associations between clinical features and RT-PCR status. P-values in bold correspond to 
significant associations between clinical features and RT-PCR status. Regarding variables with more than two 
levels, the p value in italics corresponds to the p-value considering all its levels. The p-values below are based 
on the Fisher or X2 test for this variable that was dichotomized according to the level of the line. § Data refer 
to number of patients with percentage in parentheses. *p < 0.05, **p < 0.005, ***p < 0.001 (corresponds to X2 or 
Fisher test).

Variables RT-PCR − § RT-PCR + § p value

Time since the onset of symptoms

 < 1 week 148/240 (61.7%) 115/223 (51.6%) 0.02*

1–2 weeks 80/240 (33.3%) 102/223 (45.7%) 0.04*

 > 2 weeks 12/240 (5%) 6/223 (2.7%) 0.3

Dyspnea

No 56/269 (20.8%) 38/244 (15.6%) 0.16

Yes 213/269 (79.2%) 206/244 (84.4%)

Oxygen saturation

 ≥ 95% 77/195 (39.5%) 54/191 (28.3%) 0.006*

90–95% 82/195 (42.1%) 77/191 (40.3%) 0.03*

 < 90% 36/195 (18.5%) 60/191 (31.4%) 0.005**

Cough

No 85/269 (31.6%) 53/244 (21.7%) 0.02*

Yes 184/269 (68.4%) 191/244 (78.3%)

Fever (≥ 38 °C)

No 109/269 (40.5%) 34/244 (13.9%)  < 0.001***

Yes 160/269 (59.5%) 210/244 (86.1%)

Asthenia

No 125/269 (46.5%) 78/244 (32%) 0.001**

Yes 144/269 (53.5%) 166/244 (68%)

Myalgia

No 211/269 (78.4%) 165/244 (67.6%) 0.008*

Yes 58/269 (21.6%) 79/244 (32.4%)

Headache

No 228/269 (84.8%) 200/244 (82%) 0.5

Yes 41/269 (15.2%) 44/244 (18%)

Ear, nose throat symptoms

No 247/269 (91.8%) 228/244 (93.4%) 0.6

Yes 22/269 (8.2%) 16/244 (6.6%)
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Variables RT-PCR − § RT-PCR + § p value

Presence of GGO

No 180/269 (66.9%) 15/244 (6.1%)  < 0.001***

Yes 89/269 (33.1%) 229/244 (93.9%)

Non-rounded GGO

Absent 197/269 (73.2%) 31/244 (12.7%)  < 0.001***

Present 72/269 (26.8%) 213/244 (87.3%)

Rounded GGO

Absent 238/269 (88.5%) 162/244 (66.4%)  < 0.001***

Present 31/269 (11.5%) 82/244 (33.6%)

Presence of consolidation

No 196/269 (72.9%) 92/244 (37.7%)  < 0.001***

Yes 73/269 (27.1%) 152/244 (62.3%)

Non-rounded consolidation

No 217/269 (80.7%) 172/244 (70.5%) 0.0097*

Yes 52/269 (19.3%) 72/244 (29.5%)

Rounded consolidation

No 246/269 (91.4%) 227/244 (93%) 0.6

Yes 23/269 (8.6%) 17/244 (7%)

Sub-pleural band

No 253/269 (94.1%) 142/244 (58.2%)  < 0.001***

Yes 16/269 (5.9%) 102/244 (41.8%)

Predominant pattern

None 150/269 (55.8%) 11/244 (4.5%)  < 0.001***

Consolidation 57/269 (21.2%) 32/244 (13.1%)

GGO 62/269 (23%) 201/244 (82.4%)

Distribution pattern of lesions

None 133/269 (49.4%) 9/244 (3.7%)  < 0.001***

Peripheral predominant 59/269 (21.9%) 154/244 (63.1%)

Central predominant 28/269 (10.4%) 7/244 (2.9%)

Mixed 49/269 (18.2%) 74/244 (30.3%)

Bilateral lesions

No 170/269 (63.2%) 28/244 (11.5%)  < 0.001***

Yes 99/269 (36.8%) 216/244 (88.5%)

Diffuse lesions

No 231/269 (85.9%) 71/244 (29.1%)  < 0.001***

Yes 38/269 (14.1%) 173/244 (70.9%)

Basal predominant lesions

No 209/269 (77.7%) 145/244 (59.4%)  < 0.001***

Yes 60/269 (22.3%) 99/244 (40.6%)

Extent of lesions

None 134/269 (49.8%) 9/244 (3.7%)  < 0.001***

Low 79/269 (29.4%) 74/244 (30.3%)  < 0.001***

Moderate 46/269 (17.1%) 115/244 (47.1%)  < 0.001***

High 10/269 (3.7%) 46/244 (18.9%)  < 0.001***

Intralobular reticulations

No 231/269 (85.9%) 103/244 (42.2%)  < 0.001***

Yes 38/269 (14.1%) 141/244 (57.8%)

Tree-in-bud micronodules

No 209/269 (77.7%) 230/244 (94.3%)  < 0.001***

Yes 60/269 (22.3%) 14/244 (5.7%)

Presence of bronchial wall thickening

No 194/269 (72.1%) 227/244 (93%)  < 0.001***

Yes 75/269 (27.9%) 17/244 (7%)

Distribution of bronchial abnormalities

None 194/269 (72.1%) 227/244 (93%)  < 0.001***

Lobar/segmental 29/269 (10.8%) 7/244 (2.9%)  < 0.001***

Continued
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Regarding radiological models, the highest performances were reached with the CART model (AUC​
validation = 0.91, 95%CI = [0.86–0.98] and accuracyvalidation = 0.86, 95%CI = [0.78–0.92], versus AUC​validation = 0.90, 
95%CI = [0.84–0.96] and accuracyvalidation = 0.83, 95%CI = [0.74–0.90] in Step-LR model).

Regarding clinical-radiological models, the highest performances were reached with the Step-LR model (AUC​
validation = 0.93, 95%CI = [0.87–0.98] and accuracyvalidation = 0.86, 95%CI = [0.76–0.93], versus AUC​validation = 0.90, 
95%CI = [0.83–0.97] and accuracyvalidation = 0.83, 95%CI = [0.72–0.91] in CART model).

Regarding teleradiologists in real-life setting, in the whole study population and in the validation subcohort, 
the AUCs of the OCTRs’ conclusions (sub-categorized as (1–2–3) or (4) or (5)) were 0.89 (95%CI = [0.86–0.92]) 
and 0.88 (95%CI = [0.72–0.88]), respectively.

The ROC curves in the validation cohort are displayed on Fig. 4. None of the AUC​validations were significantly 
different (lowest p-value = 0.07 regarding the comparisons between the Step-LR clinical-radiological model and 
the OCTRs’ conclusions).

Usefulness of the best model in case of indeterminate teleradiological conclusions.  In the 
subgroup of patients with an indeterminate conclusion (4), the probabilities for RT-PCR + with the clinical-
radiological Step-LR model were significantly higher for patients with RT-PCR + than for patients with RT-
PCR− (0.63 ± 0.28 versus 0.39 ± 0.27, respectively, p = 0.004). Figure 5 illustrates the potential application of this 
model for patients with an indeterminate/compatible conclusion. An excel macro is provided in Supplementary 
Data 4 so that the interested reader can test the Step-LR models.

Misclassifications with the best model.  Regarding the outliers of the model with the highest AUC (i.e., 
clinical-radiological step-LR), 3 out of the 32 patients (9.4%) with a negative RT-PCR in the validation cohort 
were classified positively by the model. Of these 3 patients, 2 were highly suspicious of COVID-19 and 1 was 
indeterminate according to the OCTRs. Conversely, 7 out of the 39 patients (17.9%) with a positive RT-PCR in 
the validation cohort were classified negatively by the model. Of these 7 patients, 4 had conclusions of (1), (2) or 
(3) according to the OCTRs.

Clinical usefulness and decision curve analysis of the final models in the validation cohort.  The 
DCAs showed that the OCTRs’ conclusion and the final models added more benefit than the ‘treat all approach’ 
above a risk threshold of approximately 0.05 (Fig. 6). The two final models added more net benefit than the ‘treat 
all’ strategy and the OCTRs’ conclusion for threshold probability above 0.43.

Discussion
In this study, we developed practical and ready-to-use models to predict the RT-PCR status from categorical 
clinical and radiological variables that are routinely available or assessable by emergency physicians and radiolo-
gists without either expertise in thoracic imaging or computer science or additional blood samples. We purposely 
elaborated parsimonious models through a cautious variable selection including univariate filtering, assessment 
of correlations and stepwise selection. Our best models displayed high AUCs (> 0.90) and accuracy (> 0.85) on the 
external validation cohort, though they were not statistically different from those of OCTRs. Thus, these models 

Variables RT-PCR − § RT-PCR + § p value

Diffuse 46/269 (17.1%) 10/244 (4.1%)  < 0.001***

Airway secretion

No 208/269 (77.3%) 227/244 (93%)  < 0.001***

Yes 61/269 (22.7%) 17/244 (7%)

Fibrosis

No 253/269 (94.1%) 193/244 (79.1%)  < 0.001***

Yes 16/269 (5.9%) 51/244 (20.9%)

Pleural effusion

Absent 221/269 (82.2%) 215/244 (88.1%) 0.2

Yes, unilateral 18/269 (6.7%) 10/244 (4.1%) 0.3

Yes, bilateral 30/269 (11.2%) 19/244 (7.8%) 0.3

Adenomegaly

No 248/269 (92.2%) 218/244 (89.3%) 0.3

Yes 21/269 (7.8%) 26/244 (10.7%)

Table 3.   Univariate associations between radiological features and RT-PCR status. P-values in bold 
correspond to significant associations between clinical or radiological features and RT-PCR status. Regarding 
variables with more than two levels, the p value in italics corresponds to the p-value considering all its levels. 
The p-values below are based on the Fisher or X2 test for this variable that was dichotomized according to the 
level of the line. GGO ground-glass opacities. § Data refer to number of patients with percentage in parentheses. 
*p < 0.05, **p < 0.005, ***p < 0.001 (corresponds to X2 or Fisher test).
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could be helpful notably to weight indeterminate conclusions or to manage patients with a strong COVID-19 
suspicion and negative (or lack of) RT-PCR3.

Our series represent a real-life multi-centric emergency population during the COVID-19 pandemic with 
well-balanced proportions of negative and positive RT-PCR results, making it appropriate for the development 
of predictive models. The clinical and radiological variables correlating with the RT-PCR status in the univariate 
analysis were consistent with the literature, namely, fever, asthenia, oxygen saturation, GGO, non-rounded con-
solidation, fibrotic bands, and intralobular reticulations with bilateral, diffuse, basal predominant and peripheral 
distributions27–29.

Figure 2.   Correlation matrix of the 24 dichotomized radiological variables with a significant association with 
the RT-PCR status at univariate analysis. The colour-coding only corresponds to significant correlation (p < 0.05 
according to Spearman test), from red (positive correlations) to blue (negative correlations). GGO ground-glass 
opacity.
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Figure 3.   Final classification and regression tree (CART) models built with (a) radiological variables alone 
(with the highest performances in the validation cohort) and (b) clinical radiological variables. GGO ground-
glass opacities, p(RT-PCR +) probability for a positive RT-PCR.
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The aim of our models was to provide rapid assistance to non-specialized radiologists who may need sup-
port to conclude or modulate his report confidently without delaying patient management. We purposely chose 
classification algorithms that are easily explainable and do not require additional computing time, i.e., a binary 
logistic regression and a classification tree. These two algorithms are often used for benchmarking purposes in 
machine learning before using more complex models. In preliminary exploratory analyses, we actually tested 
other algorithms such as random forests or categorical boosted trees, which indeed showed slightly higher AUCs 
but could not be visually represented and explained to radiologists. Interestingly, similar performances of our 
models in the training and validation cohorts highlight the lack of overfitting and their good generalizability 
to new patients.

Improving COVID-19 diagnosis with deep learning frameworks has already been attempted with good results, 
but without remarkable added value compared with the diagnostic performances of traditional radiological 
assessment, OCTRs or our models as calculated in the independent validation set. Indeed, previous studies 
have found that the sensitivity, specificity and accuracy of radiologists on chest CT were 0.97, 0.56 and 0.72, 
respectively30. Using a quantitative assessment of the main COVID-19 radiological features (through volumes of 
GGO and fibrotic alterations) did not increase sensitivity and specificity (0.68 and 0.59 with GGO, respectively, 
and 0.86 and 0.44 with fibrotic alterations, respectively)31. The AUCs of these deep learning models mostly ranged 
between 0.70 and 0.95, while sensitivity and specificity, when given, ranged between 0.84 and 1, and 0.25 and 
0.96, respectively15–20.

Other studies proposed practical scores such as the PSC-19, which relies on four variables (history of expo-
sure, leukocyte count, peripheral lesion and crazy paving patterns), with AUC = 0.91, sensitivity = 0.88 and higher 
specificity of 0.9222. However, this score requires a blood sample and could be of limited use when investigating a 
patient in a new COVID-19 cluster of patients without proven exposure. Chen et al. also combined an explainable 
machine learning algorithm (i.e., penalized logistic regression) and bio-clinical-radiological variables21. They 
built three models: bio-clinical alone, radiological alone and bio-clinical-radiological models. Surprisingly, the 
results of the final models in the validation cohort showed the highest performances when radiological variables 
were not taken into account (AUCs = 0.97, 0.81 and 0.94, respectively). Ridge and/or LASSO penalized logistic 
regressions have also been investigated in our preliminary data exploration but did not show added value to 
Step-LR. While deep learning studies trained their models in large cohorts of hundreds of patients, it should 
be noted that these two practical studies did not exceed one hundred patients, questioning their validity. In 

Table 4.   Final multivariate stepwise binary logistic regression models elaborated with either radiological or 
clinical-radiological variables. Significant results are highlighted in bold. 95%CI 95% confidence interval; GGO 
ground glass opacity; OR odds ratio. § The variables correspond to those in the final model after the stepwise 
backward-forward selection. §§ Examples correspond to 6 distinct clinical cases. Each variable has 2 levels: “1” 
if the variable Xi is present (for instance fever), and “0” if the variable Xi is absent (for instance lack of fever). 
§§§ The probability for RT-PCR + are calculated as follows: P(RT-PCR +) = 1/1+ exp[−(β0 +

∑9
i=1 βi × Xi)]. 

*P < 0.05, **P < 0.005, ***P < 0.001.

Variables§ Coefficients (βi) P-value Multivariate OR (95%CI)

Examples§§

A B C

Radiological model

0. (Intercept) − 2.758126351 – 0.06 (0.03–0.12) 1 1 1

1. Presence of GGO 1.089578460 0.04* 2.97 (1.03–8.56) 0 1 1

2. Fibrotic band 1.5310410593  < 0.001*** 4.62 (2.11–10.77) 1 0 1

3. GGO predominant pattern 1.5366549953  < 0.001*** 4.65 (1.96–11.45) 0 1 1

4. Subpleural predominant distribution 0.9053515712 0.004** 2.47 (1.33–4.63) 0 1 1

5. Diffuse lesions 0.8414110324 0.02* 2.32 (1.16–4.61) 0 0 1

6. Intralobular reticulations 0.7052466524 0.03* 2.02 (1.05–3.91) 0 0 1

7. Bronchial wall thickening − 1.758954141  < 0.001*** 0.17 (0.07–0.4) 1 0 0

Probablity for RT-PCR + §§ 4.8% 68.4% 97.9%

Clinical-radiological model

0. (Intercept) − 4.805582918 – – 1 1 1

1. Fever 1.982642859  < 0.001*** 7.26 (2.82–20.41) 1 1 1

2. Myalgia 0.899937144 0.08 2.46 (0.82–6.94) 1 0 0

3. Presence of GGO 1.181705996 0.08 3.26 (0.86–12.54) 1 1 0

4. Presence of fibrotic band 1.322814497 0.02* 3.75 (1.34–11.47) 1 0 1

5. GGO predominant pattern 1.504660153 0.008* 4.5 (1.52–14.24) 1 1 0

6. Peripheral predominant distribution 0.930711612 0.03* 2.54 (1.12–5.83) 1 1 0

7. Diffuse lesions 1.413720338 0.003** 4.11 (1.66–10.58) 1 0 0

8. Intralobular reticulations 1.028166435 0.02* 2.8 (1.2–6.66) 1 0 0

9. Bronchial wall thickening − 1.716180719 0.002** 0.18 (0.06–0.51) 0 0 1

Probablity for RT-PCR + §§§ 99.6% 68.9% 3.9%
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addition, the performances of standardized radiological conclusions were missing in all these studies involving 
artificial intelligence. It should be noted that alternative measures could have been used to evaluate and compare 
classification models, instead of the AUC. We purposely chose the AUC because it was the most frequently used 
estimators in similar prior studies and it is adapted to well-balanced study population regarding the outcome.

Our results also highlight the very good performances of radiologists in daily practice, which can be explained 
by the considerable increase in knowledge of the COVID-19 radiological presentations since the first peer-
reviewed studies in January–February 2020, attained through open-source educational publications, webinars 

Table 5.   Performances of the final, trained, multivariate models and on-call teleradiologists’ conclusions 
on the independent validation cohort. Regarding the teleradiologists’ performances, they correspond to 
conclusion = (1), (2), (3) or (4) versus conclusion = (5). Accuracy, OR, sensitivity, specificity, PPV, NPV and 
AUC are given with 95% confidence interval. The highest diagnostic performance measure for each line is 
highlighted in bold. AUC​ area under the ROC curve, CART​ classification and regression tree; NPV negative 
predictive value; OCTRs on call teleradiologists; OR odds ratio; PPV positive predictive value; Step-LR stepwise 
binary logistic regression. § The diagnostic performances are calculated after dichotomizing the predicted 
probability for RT-PCR + per 0.5. §§ Thirty of the 101 patients from the validation cohort were excluded because 
of missing values (all from clinical variables).

Performance measures

Final models

OCTRs (validation cohort)Step-LR CART​

Radiological models (n = 101)

Accuracy§ 0.83 (0.74–0.90) 0.86 (0.78–0.92) 0.81 (0.72–0.88)

OR§ 26.3 (8.9–77.9) 56.1 (14.6–215.3) 26.9 (8.2–88.4)

Sensitivity§ 0.77 (0.63–0.88) 0.77 (0.63–0.88) 0.69 (0.54–0.81)

Specificity§ 0.89 (0.77–0.96) 0.94 (0.84–0.99) 0.92 (0.82–0.98)

PPV§ 0.86 (0.74–0.93) 0.93 (0.80–0.97) 0.89 (0.76–0.96)

NPV§ 0.81 (0.72–0.88) 0.82 (0.73–0.88) 0.77 (0.68–0.83)

AUC​ 0.90 (0.84–0.96) 0.92 (0.86–0.98) 0.88 (0.81–0.94)

Clinical-radiological models (n = 71)§§

Accuracy§ 0.86 (0.76–0.93) 0.83 (0.72–0.91) 0.79 (0.68–0.88)

OR§ 44.2 (10.4–187.0) 27.1 (7.4–100.) 21.8 (5.5–85.5)

Sensitivity§ 0.82 (0.66–0.92) 0.80 (0.63–0.91) 0.69 (0.52–0.83)

Specificity§ 0.91 (0.75–0.98) 0.88 (0.71–0.965) 0.91 (0.75–0.98)

PPV§ 0.89 (0.73–0.96) 0.85 (0.70–0.94) 0.87 (0.69–0.95)

NPV§ 0.85 (0.74–0.92) 0.82 (0.71–0.90) 0.76 (0.67–0.84)

AUC​ 0.93 (0.87–0.98) 0.90 (0.83–0.97) 0.86 (0.78–0.95)

Figure 4.   ROC curves of the final radiological (a) and clinical-radiological (b) multivariate models in the 
independent validation cohort. CART​ classification and regression tree; Step-LR stepwise binary logistic 
regression.
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Figure 5.   Added value of the final clinical-radiological model for patients with indeterminate/compatible radiological conclusions. (a) 
A 50-year-old woman presented at the emergency with chest pain, fever, and cough for less than one week. Chest CT showed a basal-
predominant peripheral ground-glass opacity (GGO—white arrow) in the lower right lobe. The probability for RT-PCR + was 68.9%. 
(b) A 71-year-old woman presented at the emergency with cough, dyspnoea, fever and asthenia for 1–2 weeks. Chest CT showed 
bilateral peripheral fibrotic bands (white arrowheads) with a peripheral right GGO (white arrow). The probability for RT-PCR + was 
65%. (c) A 61-year-old woman with a medical history of active smoking, emphysema and chronic obstructive pulmonary disease 
presented at the emergency with a cough, dyspnoea, fever and asthenia. Chest CT showed peripheral predominant intralobular 
reticulations in the lower left lobe (black arrowheads) with a single area of non-rounded GGO (white arrow). The probability for 
RT-PCR + was 57.9%. In the three cases, the RT-PCR was indeed positive.
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and recommendations issued by national and international radiological societies, which were immediately relayed 
to the teleradiologists working at IMADIS. Indeed, comparisons of AUCs between best models and OCTRs’ 
conclusions did not reach significance, which could have been due to lack of power. Additionally, OCTRs could 
ask for their colleagues’ advice when facing a complicated case, as they were never alone in one of our two emer-
gency interpretation centres during on-call duty. Therefore, though our predictive models showed comparable 
performances with other machine- and deep-learning models, and slightly higher performances than OCTRs’ 
conclusions, the gain was not striking, leading to no significant difference according to the Delong test. Few 
studies have focused on the specificity of teleradiologists compared with conventional radiologists. It should be 
noted that the organization of teleradiology could greatly vary from one group to one another. IMADIS has the 
particularity to gather teams of teleradiologists in interpretation centers, with the constant ability to interact 
with colleagues and solicit help. Banaste et al. have demonstrated that IMADIS structuration enables to organize 
systematic second readings of whole body CT scanners in multiple traumas patients, with good diagnostic perfor-
mances of OCTRs whatever the amount of activity and the hours of the day32. Regarding the OCTRs’ accuracy for 
diagnosing COVID-19, Nivet et al. have also shown that implementing the semi-quantitative assessment as pro-
posed by SFR was feasible and provided high sensitivity (0.92), specificity (0.75–0.84), PPV (0.77–0.84) and NPV 
(0.91–0.92) depending on the reading and when considering the indeterminate/compatible group as positive12.

To illustrate eventual clinical applications of the final models, we used DCAs, which are a popular alterna-
tive to cost-effectiveness studies24. Regarding the two settings (radiological data alone and clinical-radiological 
data), we found similar shapes of the DCAs for the OCTRs’ conclusion and the final models. Interestingly, at 
worst, the net benefits of the models were equivalent to those of OCTRs (for the intermediate risk threshold) 
and to the ‘treat all’ strategy (for the very low risk threshold). However, the machine learning models would be 
complementary to the OCTRs’ conclusion and would improve the net benefit for patients from intermediate- to 
high-risk thresholds. Practically, we believe that our models could be useful for patients with (i) high suspicion 
but non-available RT-PCR status or negative first RT-PCR, and (ii) indeterminate OCTR’s conclusion. A high 
probability per our models would lead to the isolation of the patients and the achievement of another RT-PCR.

The measurements of performance in our models should also be considered with the disease prevalence dur-
ing our period of inclusion (≈ 48%) and the nature of the study population33. Indeed, although PPV and NPV 
are useful to rapidly sort patients with COVID-19 suspicion, they depend on this prevalence, which fluctuates 
depending on the country and public health measures.

Our study has certain limitations. First, the RT-PCR is an imperfect gold standard, which may explain why 
no study has ever reached perfect performance. Indeed, the analysis of the outliers of the best model in the vali-
dation cohort with fully available clinical-radiological variables (n = 10, 3 false positives and 7 false negatives) 
demonstrated that 6 of these patients either could have performed their chest CT before the disease manifesta-
tion or were false negative by RT-PCR. This finding stresses the risk of false negatives with chest CT due to the 
delay between the beginning of clinical symptoms and the appearance of the COVID-19 semiology on chest CT. 
Second, approximately 25–33% of clinical data were missing because they were collected in real-life emergency 
situations. Third, some radiological features were not evaluated because they were published after the beginning 
of the COVID-19 IMADIS workflow (for instance: multifocality and thickened vessels). Fourth, a history of 
exposure was rarely collected in our cohort although it could have been an important predictor. Fifth, biological 
markers were not available because they were rarely dosed before asking for the chest CT. Sixth, although the 
OCTRs’ conclusions were prospectively collected, the radiological features that were necessary to elaborate the 

Figure 6.   Decision curve analysis (DCA) of the final models and conclusions of the on-call teleradiologists 
(OCTRs) in the validation cohort, depending on data on which they were trained: (a) radiological and (b) 
clinical + radiological. The x-axis corresponds to the odds or risk threshold at which a patient would opt for 
COVID-19 management. The y-axis corresponds to the overall net benefit. The black line represents the ‘treat 
all’ patients COVID-19 strategy. The grey horizontal line represents the ‘treat none’ of the patients strategy. For 
both sources of data, the added value of the models over the ‘treat all’ strategy and the OCTRs readings are 
highlighted for risk thresholds above 0.43 (arrows). CART​ classification and regression tree, Step-LR stepwise 
logistic regression.
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predictive models were not collected in emergency situations, which could have led to the overestimation of the 
associations of these features with the RT-PCR status. Seventh, it is worth noting that our study did not propose 
specific models to differentiate non-COVID-19 infectious lung diseases from COVID-19. Though an important 
corollary question, this was not our first aim. Indeed, our population represents a real-life emergency cohort 
and some patients could have had non-infectious diseases (: conclusion (2)), or non-pulmonary infections for 
instance (: conclusion (1)), in addition to non-COVID-19 lung infectious diseases (: conclusion (3)). Finally, 
although widely used and significantly reproducible over multiple raters, the radiological features were qualita-
tively or semi-quantitatively assessed, which introduces a risk of subjectivity and could bias the performances 
of the model in other validation cohorts12.

To conclude, we presented one of the largest French multicentric emergency cohort including prospective 
standardized reports following national recommendations. Our findings illustrate the high diagnostic perfor-
mances of the OCTRs working in a teleradiological structure entirely dedicated to emergency imaging, which 
promoted continuous training and collaborative work. This setting enables us to propose free and practical 
models built on easily available clinical and radiological data provided by emergency physicians and OCTRs. 
These models provide a probability for positive RT-PCR, which could be used by general radiologists in case of 
indeterminate radiological conclusions, and no/limited availability to RT-PCR in order to confidently conclude 
their reports in daily practice.

Data availability
The datasets analyzed during the current study will be publicly available (Being submitted to Springer Nature 
Database). Details regarding the statistical analysis can be made available from the corresponding author on 
reasonable request.
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