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Optimisation of the coalescent 
hyperbolic embedding of complex 
networks
Bianka Kovács1 & Gergely Palla1,2,3*

Several observations indicate the existence of a latent hyperbolic space behind real networks that 
makes their structure very intuitive in the sense that the probability for a connection is decreasing 
with the hyperbolic distance between the nodes. A remarkable network model generating random 
graphs along this line is the popularity-similarity optimisation (PSO) model, offering a scale-free 
degree distribution, high clustering and the small-world property at the same time. These results 
provide a strong motivation for the development of hyperbolic embedding algorithms, that tackle 
the problem of finding the optimal hyperbolic coordinates of the nodes based on the network 
structure. A very promising recent approach for hyperbolic embedding is provided by the noncentered 
minimum curvilinear embedding (ncMCE) method, belonging to the family of coalescent embedding 
algorithms. This approach offers a high-quality embedding at a low running time. In the present work 
we propose a further optimisation of the angular coordinates in this framework that seems to reduce 
the logarithmic loss and increase the greedy routing score of the embedding compared to the original 
version, thereby adding an extra improvement to the quality of the inferred hyperbolic coordinates.

Network theory has become ubiquitous in the study of complex systems composed of many interacting units1–3. 
Over the last two decades, the overwhelming number of studies using this approach in systems ranging from 
metabolic interactions to the level of the global economy have shown that the statistical analysis of the underly-
ing graph structure can highlight non-trivial properties and reveal previously unseen relations1–5. Probably the 
most important universal features of networks representing real systems are the small-world property6,7, the 
high clustering coefficient8 and the scale-free degree distribution9,10. On the modelling ground, a large number 
of network models were proposed for capturing one (or several) of these properties in a simple mathematical 
framework, and a quite notable example among these is provided by the PSO model11, which reproduces all three 
properties simultaneously in a natural manner. In this approach the nodes are placed one by one on the native 
disk representation12 of the 2D hyperbolic plane with a logarithmically increasing radial coordinate and a random 
angular coordinate, and links are drawn with probabilities determined by the hyperbolic distance between the 
node pairs. In vague terms, the degree of nodes is determined by their radial coordinate (lower distance from 
the origin corresponds to larger degree), and the angular proximity of the nodes can be interpreted as a sort of 
similarity, where more similar nodes have a higher probability to be connected.

The idea that hidden metric spaces can play an important role in the structure of complex networks first arose 
in a study focusing on the self-similarity of scale-free networks13. This was followed by reports showing the signs 
of hidden geometric spaces behind protein interaction networks14,15, the Internet16–20, brain networks21,22, or 
the world trade network23, also revealing important connections between the the navigability of networks and 
hyperbolic spaces16,24,25. In parallel, practical tools for generating hyperbolic networks26 and methods for measur-
ing the hyperbolicity of networks were also proposed27,28. In the recent years the geometric nature of weights29 
and clustering30,31 was revealed, and further variants of the original PSO model were proposed for generating 
random hyperbolic networks with communities32,33.

The very notable advancements in the hidden metric space related research provide a strong motivation for 
the development of hyperbolic embedding techniques34–38, following the pioneering work in Ref.17, tackling the 
problem of inferring plausible coordinates for the nodes based on the network structure. One of the first meth-
ods pointing in this direction was HyperMap34, which optimises a logarithmic loss function obtained from the 
assumption that the network was generated according to a generalised version of the PSO model (referred to as 
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the E-PSO model). In contrast, in Ref.35 an embedding based on a non-linear dimension reduction of the Lapla-
cian matrix was proposed. Along a similar line, a whole family of embedding algorithms were studied in Ref.36, 
using different pre-weighted matrices encapsulating the network structure and multiple unsupervised dimension 
reduction techniques from machine learning. In this framework, after the dimension reduction the nodes are 
organised on a circular or quasilinear manifold from which the angular coordinates in the 2D hyperbolic plane 
can be obtained in a simple manner, whereas the radial coordinates are inferred based on the node degrees. 
The rationale behind such an approach is that for networks that are actually generated in a hyperbolic manner, 
the angular order of the nodes is preserved along the obtained low dimensional manifold. This phenomenon 
is referred to as ’angular coalescence’, and thus these methods are called coalescent embedding algorithms36. 
A combination of the Laplacian embedding and the likelihood optimisation based on the E-PSO model was 
proposed in Ref.37, and in a recent work the approach named Mercator was introduced38, where the Laplacian 
embedding is incorporated with optimisation with respect to the so-called S1/H2 model13.

In the present paper we propose an embedding algorithm combining a coalescent approach with likelihood 
optimisation based on the E-PSO model. One of the best performing dimension reduction techniques in Ref.36 
was corresponding to the non-centered minimum curvilinear embedding (ncMCE)39, which also provides the 
starting point of our method. However, after obtaining the initial node coordinates based on ncMCE, we also 
apply an angular optimisation of the coordinates using a logarithmic loss function originating from the E-PSO 
model. We test the proposed approach on both synthetic and real network data, and compare the results with 
the outcome of HyperMap, the original ncMCE coalescent embedding and Mercator in terms of the achieved 
logarithmic loss and the greedy routing score (which is a model-free quality measure of the embeddings).

Preliminaries and algorithm description
In the following, we briefly describe the necessary preliminaries together with our angular optimisation algo-
rithm. Since the optimisation uses a logarithmic loss function based on the E-PSO model, we begin with the 
outline of the PSO and E-PSO models. This is followed by the definition of the loss function and a short descrip-
tion of two state-of-the-art embedding methods, the HyperMap and the Mercator algorithms. Finally, we pro-
vide a summary of the coalescent embedding algorithm ncMCE and describe the proposed optimisation of the 
angular coordinates.

The E‑PSO model.  The basic idea of the PSO model is to place nodes on the native disk representation of 
the hyperbolic plane with increasing radial coordinates and random angular coordinates, and connect the node 
pairs with a linking probability depending on their hyperbolic distances. The parameters of the model are the 
curvature of the hyperbolic plane K < 0 parametrised by ζ =

√
−K  , the total number of nodes N, the average 

degree < k > parametrised by m =< k > /2 , the popularity fading parameter β ∈ (0, 1] controlling the outward 
drift of the nodes, and the ’temperature’ T ∈ [0, 1) regulating the average clustering coefficient of the generated 
network. Initially the network is empty, and the nodes are placed on the hyperbolic disk in an iterative manner 
according to the following rules: 

1.	 At iteration i the new node i appears with the radial coordinate rii = 2
ζ
ln i and a uniformly random angular 

coordinate θi ∈ [0, 2π) . (The double indexing of the radial coordinate is for a simple bookkeeping of the 
position during the outward drift specified in the next rule).

2.	 The radial coordinates of all previous nodes j < i are increased as rji = βrjj + (1− β)rii . (Thus, the first index 
of the node position refers to the moment of birth, whereas the second index corresponds to the actual time 
step). This repeated outward shift in the node positions is usually referred to as ’popularity fading’, since 
nodes closer to the origin of the hyperbolic disk are close (in the hyperbolic sense) to a higher number of 
other nodes compared to nodes on the periphery.

3.	 The new node i is attached to the already existing nodes as follows: 

(a)	 If the number of previous nodes is m or smaller, then i is connected to all of them.
(b)	 Otherwise, if T = 0 , then node i is connected to the m closest nodes according to the hyperbolic 

distance xij . For nodes with polar coordinates (rii , θi) and (rji , θj) this can be calculated from the 
hyperbolic law of cosines as 

 where the angular difference �θ is given by �θ = π −
∣
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(c)	 If i > m+ 1 and T > 0 , then node i is connected to nodes j < i with a probability depending on the 

hyperbolic distance xij as 
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	   The above choice of Ri ensures that the expected number of realised connections from i to previous 
nodes is m.

	   The networks generated according to these rules have the small-world property, are scale-free 
(with a degree decay exponent equal to 1+ 1/β ), and with an appropriate choice of T can be made 
also highly clustered (lower temperature results in larger average clustering coefficient)11. However, 
an important criticism raised against the PSO model is that for subgraphs spanning between nodes 
having a degree k > kmin , we cannot observe the densification law seen in a couple of real networks 
when kmin is increased38.

	   A generalisation of the PSO model circumventing this problem was proposed in Refs.11,34, where 
the iteration rules listed above are extended by adding extra links also between already existing nodes 
as follows:

4.	 For a randomly chosen, non-connected node pair j, l < i draw a link with probability p(xjl) , where the 
hyperbolic distance xjl is calculated from the coordinates (rji , θj) and (rli , θl) , and p(xjl) is evaluated according 
to equation (2). Repeat this until L+ number of extra links are created.

The main effects of these so-called internal links are that the average degree of the generated network is 
modified to < k >= 2(m+ L+) , and the average internal degree of the subgraphs between nodes with degrees 
larger than a certain kmin becomes increasing as a function of kmin . The expected number of links created between 
node i and all previous nodes by the end of the network growth (assuming altogether N nodes) can be given as34

An equivalent model with only external links (connections emerging always with the newly appearing node) 
was also formulated in Ref.34, which is referred to as the E-PSO model. In this approach we return to the iteration 
rules 1–3 of the original PSO model, and omit rule 4. from the generalised version. However, a very important 
difference compared to the original model is that the expected number of links connected to the newly appear-
ing nodes is no longer constant, instead it changes during the iterations. In order to obtain on average the same 
number of links connected to any given node as in the generalised PSO with the internal links, the parameter m 
in step 3. is replaced by the expression given in Eq. (4).

To generalise the concept of internal links further, it is also conceivable that after a while some of the connec-
tions are deleted. Along this line, we can extend the generalised PSO model with the deletion of the link between 
L− number of connected pairs of old nodes at each time step. But how should the links be selected for deletion? 
If the temperature T is set to 0, when creating new (either external or internal) links, we have to always connect 
the node pair from the candidates that is characterised by the smallest hyperbolic node to node distance. The 
opposite of this deterministic connection rule is easy to phrase: for T = 0 in each deletion step the link con-
necting the hyperbolically furthermost nodes is split up. Consequently, for T = 0 the case L+ = L− gives back 
exactly the original PSO model.

At T > 0 , a natural extension of the above concept is to assume a link removal process where the probability 
that a link will not be deleted corresponds to the usual PSO linking probability, and the complementary prob-
ability of this is the removal probability, according to which we remove at each time step L− number of internal 
links at random. In this way, when L+ = L− in the generalised PSO model, we add and remove the same num-
ber of internal links at each time step, and therefore, the resulting networks become equivalent to the networks 
generated by the original PSO model.

By taking L = L+ − L− as the net number of added and removed internal links per time step, we can also 
consider the analogous generalised E-PSO model, where all connections are created as external links at the 
appearance of the new nodes, without any additional link insertion or deletion. In this framework, by adjusting 
m̄i , the expected number of links connected to the new node i at its appearance, the resulting network can be 
made equivalent to the generalised PSO model with the insertion and the deletion of internal links. The method 
is straightforward, we can simply use

where the only (but important) difference compared to equation (4) is that L can also be negative, whereas L+ 
in equation (4) is always non-negative.

In order to demonstrate that the introduction of the internal links during the network generation process 
can solve the problem of the lack of the densification in the subgraphs between nodes having a degree k > kmin 
observed in the original PSO model, in Fig. 1 we plot the average internal degree < kinternal > of the subgraphs 
spanning between nodes having a degree larger than a certain threshold kmin as a function of kmin for both posi-
tive and negative L values (indicated by different colours) at different β and T parameters. When L is positive 
(analogous to generalised PSO networks, where at each time step the number of newly created internal links 
is larger than the number of deleted internal links), the average internal degree becomes larger as the degree 
threshold begins to increase. For L = 0 (corresponding to the case of the original PSO model) the average inter-
nal degree remains constant until the degree threshold does not become so large that the subgraphs become 
extremely small. And finally, for negative L (analogous to generalised PSO networks, where at each time step 
more internal links are deleted than created) with the increase of the degree threshold the average internal 
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degree decreases even for relatively small values of the threshold. Note that the shape of the < kinternal > −kmin 
curve does not depend on the popularity fading parameter β , and thus, neither on the exponent γ of the degree 
distribution, as opposed to the S1/H2 model13, where the average internal degree is an increasing function of 
the degree threshold only for γ < 3.

Calculating the logarithmic loss.  Assuming a network obtained from the E-PSO model, the probability 
for observing a connection between nodes having the final coordinates (riN , θi) and (rjN , θj) at the end of the 
network generation process was also given in Ref.34 in the form of

where xij stands for the hyperbolic distance calculated based on Eq. (1), imin = max(2, ⌈Ne
−

ζxij
4(1−β) ⌉) , RN is given 

by equation (3), and �i = 2
ζ
ln

[

(

N
i

)2β−1 mIi
miIN

]

 with Ii = 1
1−β

(1− i−(1−β)) . Using equation (6), the likelihood 
of observing an adjacency matrix Aij for given final hyperbolic distances xij can be calculated from

However, when we are interested in the goodness of the fit for an embedding, we need the conditional prob-
ability of the node coordinates given the adjacency matrix and the model parameters, which according to Bayes’ 
rule can be expressed as

(6)p̃(xij) =
1

N − imin + 1

N
∑

i=imin

1

1+ e
ζ
2T (xij−RN+�i)

≃
1

1+ e
ζ
2T (xij−RN )

,

(7)LA ≡ L(Aij | {riN , θi},m, L, ζ ,β ,T) =
∏

1≤j<i≤N

p̃(xij)
Aij
[

1− p̃(xij)
]1−Aij

.

(8)Lr,θ ≡ Lr,θ ({riN , θi} | Aij ,m, L, ζ ,β ,T) =
L({riN , θi} | m, L, ζ ,β ,T) · LA

L(Aij | m, L, ζ ,β ,T)
,

Figure 1.   Average internal degree of subgraphs spanning between nodes with degrees larger than a threshold 
as a function of the degree threshold for synthetic networks generated by the E-PSO model using different 
parameters. With each parameter setting one network was generated with size N = 100, 000 . The parameter 
ζ was always set to 1. Each panel corresponds to a certain β − T setting given in the title of the subplot. The 
different colours of the curves indicate the different settings of the parameters m and L, as listed in panel j). The 
expected average degree < k >= 2 · (m+ L) was 8 for each network.
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where L({riN , θi} | m, L, ζ ,β ,T) corresponds to the conditional probability for obtaining the final node coordi-
nates {riN , θi} given the model parameters, and L(Aij | m, L, ζ ,β ,T) is the conditional probability for receiving 
the adjacency matrix Aij given the model parameters. Since the angular coordinates are uniformly random and 
the radial coordinates (according to the iteration rules 1–2) depend only on ζ and β , it can be shown that34

where rNN = 2
ζ
lnN.

If we are given an input network together with model parameters, the maximum likelihood estimate for 
the node coordinates is formally that set {r∗iN , θ∗i } for which Lr,θ is maximal. As usual, technically it is far more 
convenient to maximise the logarithm of Lr,θ , which is equivalent to minimising − lnLr,θ given by

where C is a constant independent from {riN , θi} . The analytic solution for the optimal radial coordinates can 
be given as34 

 where the optimal ordering of the nodes given by i∗ is following the node degrees, with the largest degree node 
in the network obtaining i∗ = 1 , second largest degree node receiving i∗ = 2 , etc., and Eq. (11a) corresponds to 
the initial radial coordinate of node i∗ , whereas Eq. (11b) takes into account also the outward drift due to the 
popularity fading. The optimal solution for the angular coordinates cannot be expressed analytically in closed 
form, opening up the room for heuristic optimisation algorithms. After substituting in Eq. (10) the sum of the 
r∗iN values expressed from Eqs. (11a–b) as a function of the model parameters ζ , N and β , the node arrangement 
dependent part of the negative log-likelihood can be written as

which we shall refer to as the logarithmic loss from here on.

Embedding with HyperMap.  Probably the most well-known method for minimising the logarithmic loss 
is HyperMap, introduced in Ref.34 for embedding networks based on the E-PSO model. In this approach the 
nodes of the network are sorted and indexed in decreasing order of their degree. The node with the largest 
degree (indexed by i = 1 ) is placed at the centre of the hyperbolic disk, and the rest of the nodes are introduced 
one by one, obtaining initial radial coordinates given by Eq. (11a). At the introduction of a new node, the radial 
coordinates of the previous nodes are updated according to the concept of popularity fading, and the angular 
coordinate of the new node is chosen by minimising a local version of the logarithmic loss, where contribu-
tions only from the already introduced nodes (including the new node) are taken into account. In an improved 
version of this approach further periodic correction steps are also applied for better adjustment of the angular 
coordinates. In our studies we have used this algorithm based on the code available from Ref.34, where further 
details of the method are also given.

Embedding with Mercator.  An alternative, very successful approach to embed networks into the hyper-
bolic space is offered by Mercator38. This method is based on adapting the Laplacian Eigenmaps approach35,37 to 
the S1 model13 in order to compute initial angular positions for the nodes. Once these are estimated, Mercator is 
optimising the angular coordinates further using the likelihood in the static S1/H2 model38. During this process, 
several possible new angular coordinates are examined for each node in the network, always keeping the one 
with the highest log-likelihood. The proposed new coordinates are always drawn from a Gaussian distribution 
centred around the mean angle of the neighbours of the given node, with a standard deviation set by half of 
the largest angular distance between the node and any of its neighbours. The computational complexity of this 
embedding method is O(N2) for sparse networks, and its high performance in terms of the quality of the embed-
ding was demonstrated on both synthetic networks generated by the PSO model and on real networks in Ref.38.

Coalescent embedding with ncMCE.  The short outline of the coalescent embedding methods is the 
following: first a weighted adjacency matrix is prepared (this step can be referred to as pre-weighting), based 
on which the node similarity matrix D is obtained, and then the angular coordinates of the nodes are gained by 
applying a dimension reduction technique to D36. The rationale behind this approach is that when applied to a 
network that is known to be hyperbolic, a common node aggregation pattern can be observed in the embedding 
space which is circularly or linearly ordered (angular coalescence) according to the original angular coordinates 
in the hyperbolic space. An extensive study of different similarity matrices and dimension reduction methods 
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was carried out in Ref.36, and according to tests on real input networks, the best greedy routing scores could be 
achieved by combining repulsion-attraction (RA) pre-weighting with ncMCE dimension reduction.

In this approach we first prepare a weighted adjacency matrix W with elements

where ki and kj denote the degree of nodes i and j, and CNij stands for the number of common neighbors of these 
two nodes. The appearance of CNij in the denominator of equation (13) provides a sort of ’repulsion’ between 
nodes having neighbours not in common (large ki and kj compared to CNij ), resulting in larger Wij values, which 
reflect less similarity. Next the minimum weight spanning tree of the induced weighted network is prepared, and 
the entries of the similarity matrix D are given by the distance of the corresponding node pair in the spanning 
tree. The matrix element Dij can be interpreted as an estimate for the minimum curvilinear distance between 
node i and node j39,40.

The dimension reduction is carried out via singular value decomposition, corresponding to a factorisation 
of D as D = U�V

T , where � is a diagonal matrix containing the singular values, from which we keep only the 
two largest ones (and put the rest to zero) in the following. Given a distance matrix, multidimensional scaling 
(MDS) can be used to determine that set of node coordinates which gives back all the pairwise distances. In our 
case the angular coordinates of the nodes are obtained from the matrix X =

(√
� · VT

)T
 . Although already 

the coordinates in the second column of X could be regarded as the angular coordinates when re-scaled into the 
interval [0, 2π) , according to Ref.36 we can obtain better results by applying an equidistant adjustment. Techni-
cally this is equivalent to distributing the angular coordinates in a regular uniform fashion over the interval 
[0, 2π) , following the node order dictated by the second column of X . The radial coordinates are obtained in the 
same way as in the logarithmic loss optimising methods, making use of Eqs. (11a–11b), where the radial order 
of the nodes is adjusted according to their degree.

Optimisation of the angular coordinates.  As mentioned in the Introduction, our embedding method 
combines the coalescent embedding approach with an optimisation of the angular coordinates based on the 
assumption that the network to be embedded was generated according to the E-PSO model. In the first state of 
the embedding process we apply the RA pre-weighting given by Eq. (13) for preparing the similarity matrix D , 
and use the ncMCE dimension reduction technique described in the previous section to obtain the coordinate 
matrix X . The initial angular coordinates inputted to our optimising algorithm correspond to the elements in the 
second column of X after equidistant adjustment.

During the optimisation we iterate over the network nodes according to their radial order (beginning with 
the innermost node), and examine in each iteration a q number of new angular positions for the current node, 
which are placed equidistantly between the second neighbours of the node according to the (current) angular 
node order. For each examined new position the logarithmic loss given by equation (12) is calculated, and if 
lower values are observed compared to the original one, the angular coordinate of the current node is updated to 
the best new position. The reason for limiting the arc of possible new positions between the two second neigh-
bours is that the original coordinates obtained with the ncMCE method are usually already quite good; thus, 
only minor adjustments are needed for improving the embedding. Nevertheless, with this choice of boundaries 
we also allow swaps in the angular order of the nodes. (Whenever we have to update the angular coordinate of 
the current node to a new position between the first and second neighbours, the angular order is changed). By 
increasing the q number of new angular positions examined per iteration we also increase the chance for finding 
better node positions; however, since the computational cost of the method is proportional to q, on the other hand 
keeping q at low values pays off in terms of the running time. According to our experience, q = 6 corresponds 
to a good compromise between these two options, allowing usually a fast improvement in LL at the beginning 
of the optimisation, and thus, we kept q = 6 constant during all experiments shown in the paper.

Let us denote one iteration over all nodes as described above as a swapping round (due to the possibility of 
swaps in the angular order). After a few of these swapping rounds, in order to enable the settling of the angular 
positions to the true optimum allowed by the current angular order, we carry out a couple of non-swapping 
rounds of updates, where the q number of possible new angular positions are distributed only between the first 
angular neighbours of the current node. (e.g., in our experiments on synthetic networks, we used 5 swapping 
rounds followed by 3 non-swapping rounds.) The total number of rounds n can be either preset, or applying 
a stop condition based on the relative improvement in LL over the consecutive rounds is also a simple option.

In terms of complexity, the calculation of the change in the logarithmic loss LL when trying out a new node 
position involves the evaluation of N − 1 number of terms, consequently the total number of calculation steps 
needed to perform the angular optimisation is proportional to n · N · q · (N − 1) (where n denotes the aggregated 
number of swapping and non-swapping rounds). This means that the running time of our algorithm is linear 
in terms of n and q, and quadratic in terms of N. Thus, by keeping the number of optimisation rounds and the 
number of test positions per node low compared to the network size N, the computational complexity of the 
proposed embedding optimisation method is O(N2) , similarly to that of the original coalescent embedding 
approach based on ncMCE dimension reduction36.

Before actually showing the results of our algorithm, it is important to specify how we choose the parameters 
ζ , m, L, β and T of the logarithmic loss, that are considered to be fixed during the angular optimisation. Fol-
lowing the standard practice in the literature, ζ (characterising the curvature of the hyperbolic plane) is always 
assumed to be 1. For m, L,β and T we already mentioned in the description of the PSO and E-PSO models that 
these parameters are connected to the different statistical features of the generated graphs in mostly simple forms 

(13)Wij =
ki + kj + kikj

1+ CNij
,
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(e.g., the average degree is < k >= 2(m+ L) , etc.); thus, a reasonable estimate for these can be made by observing 
the corresponding properties of the network to be embedded. Nevertheless, for example fitting a power-law to 
the degree distribution of a network (in order to estimate the value of β ) can be problematic in many cases, partly 
because of the uncertainty in the identification of the range of the degree distribution over that the power-law 
behaviour holds, and partly because the fitting itself can be complicated due to the occurrence of large fluctua-
tions and the fact that the tail of the distribution usually falls into the regime of rare events. Therefore, instead 
of following the usual, frequently laborious procedures for estimating the embedding parameters, we applied a 
less burdensome method that is able to determine all the necessary parameters simultaneously.

An important note is that when a network is assumed to be generated by the E-PSO model, the above-
mentioned parameters characterise the adjacency matrix itself, and not a certain hyperbolic arrangement of 
the network. Therefore, we can assume that by optimising the parameters m, L, β and T for just one particular 
embedding of the examined network, we can actually get close to a parametrisation of the E-PSO model that is 
congruent with the network in general. According to that, as a first step, we apply the ncMCE based coalescent 
embedding to obtain some initial coordinates for the nodes. Using these, we optimise m, β and T simultane-
ously by minimising the logarithmic loss in Eq. (12) via a simple gradient descent in the m− β − T parameter 
space, meaning that we take ever smaller steps in the direction of the negative gradient of LL (i.e. the vector 
(− ∂LL

∂m ,− ∂LL
∂β

,− ∂LL
∂T ) ) until we get so close to the optimum that the resultant step size becomes smaller than a 

given value, or in other words, until the optimum is approached with a given precision. During this procedure 
the node coordinates are kept fixed, and the value of L is calculated then from the relation < k >= 2(m+ L) ; 
hence, it is actually not regarded as a free parameter on its own. As an illustration of the search in the parameter 
space, in Fig. 2a we show trajectories followed by our algorithm in the case of the Cambrian food web from the 
Burgess Shale41 (details about the studied networks are given in the Results section), and in Fig. 2b we display 
how the logarithmic loss LL improves when moving along these trajectories.

A remaining question is where to start the gradient descent from. In the case of embedding synthetic net-
works obtained from the PSO model, we started the search in the parameter space from the parameters used 
for the network generation, while for real networks we used β = 0.5 , T = 0.5 and m =< k > /2 as the starting 
point. In accordance with our generalised E-PSO model, L was allowed to take negative values as well, i.e. m 
was allowed to take values larger than < k > /2 . We permitted m to change between 1 and 2· < k > (m never 
increased over this value even if it was not prohibited), while the value of β and T was restricted to the interval 
[0.1, 0.99]. If the endpoint of a step would have fallen outside from the designated range of any of the parameters, 
we set the involved parameters to their allowed extremum in this step. The step size was tuned separately in each 
parameter’s direction. The size of the first step was set to the distance of the starting point from the permitted 

Figure 2.   Illustration of the search for the optimal embedding parameters in the case of the Cambrian food 
web from the Burgess Shale. (a) Examples of the trajectories emerging during the gradient descent used for 
minimising the logarithmic loss LL of an ncMCE embedding in the case of different starting points in the 
m− β − T parameter space. The termination points (indicated by circles) lie close to each other for all of the 
tested starting points (marked with stars), suggesting that a global optimum of the logarithmic loss does exist. 
(b) The logarithmic loss LL as a function of the number of steps taken along the trajectories starting from 
different points of the m− β − T space shown in panel (a).
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extremum falling in the direction of the initial negative derivative of the logarithmic loss multiplied by a constant 
factor smaller than 1, where the multiplying constant was the same for all the three partial derivatives and it was 
set experimentally to a value at which the algorithm seemed to eventually converge. The size of the following 
steps was calculated in each direction as the corresponding partial derivative multiplied by another constant 
factor; thus, together with the partial derivatives, the step sizes declined as the optimum was approached. The 
multiplying constant used from the second step was calculated by dividing the size of the first step in the given 
direction by the absolute value of the corresponding initial partial derivative. This way it was provided in each 
direction that—unless the size of the first step was set to a too large value which led to the increase of the partial 
derivative—the size of the second step was always smaller compared to the first step.

In order to validate our parameter inference method, in Fig. 3 we show the estimated β , T and m parameters 
as a function of the true parameter value used for generating synthetic networks of size N = 100 according to 
the PSO model. Based on Fig. 3a, our framework yields estimated β values that are quite close to the true val-
ues, except for the parameter combinations falling into the extremely low β range. When moving to the results 
obtained for T shown in Fig. 3b, the deviation between < Testimated > and the temperature T used during the 
network generation process is slightly larger; nevertheless, the estimated temperature is still not far from the true 
T value. A somewhat more scattered picture is shown for estimating m in Fig. 3c, where < mestimated > is display-
ing a larger deviation compared to the previous cases. However, these estimations are still within the acceptable 
range. Based on these results, our parameter estimation framework shows a reasonably good performance when 
tested on synthetic networks with known model parameter values.

We have two important final remarks related to the parameters of the embedding, concerning the radial 
ordering of the nodes dictated by the node degrees. First, in the case of directed networks it is a natural idea to 
consider also the in- and the out-degree beside the total degree as potential candidates for determining the radial 
order. However, it is important to note that the ordering obtained in this way may become inconsistent with the 
likelihood maximisation that is derived inherently for undirected networks. Nevertheless, when considering 
model-independent quality scores, switching to the order dictated by either the in- or out-degree may also lead 
to an optimum that is impossible to reach when relying on the total degree. Therefore, here we take a practical 
approach by trying out all 3 possible radial orderings (determined by the total-, in- and out-degree) whenever 
dealing with directed networks and choose the ordering that yields the best quality scores.

Our second remark is related to the very likely ambiguity in the radial ordering for any network (both directed 
and undirected) caused by the occurrence of equal node degrees in the system. I.e., in real networks the degree 
distribution is usually skewed, meaning that a relatively large fraction of the nodes has a small degree compared 
to the average degree. This means that in the low degree regime we usually find a considerable number of nodes 
with the very same degree, hence the radial ordering dictated by Eqs. (11a–11b) allows actually a large number 
of different permutations within segments of the node ranking containing nodes with equal degree. According 
to our experiments detailed in the Supporting Information, there can be a non-negligible variance in the quality 
scores measuring the goodness of the embedding when permuting the radial order between nodes of the same 
degree for both HyperMap, the original ncMCE approach, and also the optimised ncMCE method proposed in 
this paper. Therefore, the actually chosen radial order (out of the many possibilities that are monotonic according 
to the degree) can be viewed as a further parameter of the embedding for the aforementioned methods. However, 
the optimal choice for this parameter can be set only via trial and error, i.e. by repeatedly trying out different 
random permutations between the nodes of the same degree, and keeping that radial order which produces the 
best quality score. Under some circumstances an estimate on the possible further improvement in the quality 
score as a function of the number of further tries can be made, as shown in the Supporting Information.

Figure 3.   Estimated parameters in synthetic networks generated by the PSO model. We show the estimated 
values as a function of the true value used during the network generation process, averaged over 100 samples 
for the m parameter in panel (a), the β parameter in panel (b), and the T parameter in panel (c). The colours 
indicate the different parameter combinations listed in panel (d). The bars indicate the 95% confidence intervals.
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Results
We have tested our method on both synthetic and real networks (our code is available from Ref.42). In order to 
quantify the quality of the embedding, we used the logarithmic loss defined in Eq. (12), and also the greedy rout-
ing score, which is a commonly used, model-free measure34,36. The idea of greedy routing on a network embedded 
in a geometric space corresponds to a simple routing protocol for getting from a source node i to a destination 
node j by walking on the network, where the next step from the current node is always carried out to the neigh-
bour that is the closest to the destination j according to the distance measured in the given geometric space43. For 
networks embedded in a hyperbolic space, the distance we use during greedy routing is the hyperbolic distance 
between the nodes. In case a cycle is detected in the path, the routing protocol is unable to reach the destination 
and the path is stopped. Therefore, a natural simple measure for the success of the routing protocol is given by 
the fraction of successful paths actually reaching the destination without getting stuck on any other node16,44. In 
order to measure the success of the routing in a more refined way, we calculate the greedy routing score36 given by

where ℓ(SP)ij  denotes the shortest path length between i and j, and ℓ(GR)ij  stands for the greedy routing path length 
between the same source-destination pair, which is considered to be infinity if the routing fails in reaching j 
from i.

In Fig. 4 we show the results for synthetic networks generated by the PSO model with sizes N = 100, 500 and 
1000. We tested four embedding methods on 100 networks at each network size. In Fig. 4a we plot the average 
logarithmic loss < LL > as a function of N for HyperMap (purple), the original ncMCE (blue) and ncMCE with 
angular optimisation (cyan). (Since Mercator is based on the S1/H2 model, the logarithmic loss with respect to 
the E-PSO model cannot be considered as a fair quality function regarding this embedding method; therefore, 
Mercator is left out from Fig. 4a.) Not surprisingly, the curves show an increasing tendency with N; however, the 
angular optimisation clearly provides an about 20% lower LL compared to ncMCE without optimisation, and 
about a 30% lower value compared to HyperMap.

In Fig. 4b we show the relative change in LL as a function of the number of rounds n during our optimisa-
tion of the angular coordinates. According to the figure, the LL seems to settle to a more or less constant value 
after 6− 8 rounds. In Fig. 4c we display the average greedy routing score < GR > as a function of the system 

(14)GR =
1

N(N − 1)

N
∑

i=1

N
∑

j=1,j �=i

ℓ
(SP)
ij

ℓ
(GR)
ij

,

Figure 4.   Embedding results for synthetic networks. (a) The average logarithmic loss < LL > and the 
corresponding 95% confidence interval (indicated by bars) as a function of the number of nodes N for 100 
networks generated by the PSO model using ζ = 1 , m = 2,β = 2/3 and T = 0.3 . (b) The convergence of the 
logarithmic loss over the subsequent rounds of iterations during the proposed angular optimisation of the 
ncMCE method. (c) The average greedy routing score < GR > and the corresponding 95% confidence interval 
(indicated by bars) as a function of the number of nodes N for the same synthetic data set as in panel (a). 
(d) The convergence of the greedy routing score as a function of the number of rounds n during our angular 
optimisation.
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size N. This figure indicates that the angular optimisation improves the result of ncMCE in terms of GR as well; 
however, the greedy routing score obtained with HyperMap is not surpassed, and the best greedy routing scores 
are obtained with Mercator. In Fig. 4d we plot the relative change in GR as a function of the number of rounds 
n in the angular optimisation of the result of ncMCE, where—similarly to Fig. 4b—a steady value is reached 
roughly above n = 6 . Additional figures related to embedding results on synthetic networks are provided in the 
Supporting Information.

In terms of real systems, we tested our method on the Pierre Auger collaboration network ( N = 38 nodes, 
available from Ref.45), a network between books about U.S. politics, where links correspond to frequent co-
purchasing ( N = 105 nodes, available from Ref.46), the American College Football network ( N = 115 nodes, 
available from Ref.47), a Cambrian food web from the Burgess Shale ( N = 142 nodes, available from Ref.41), a 
protein interaction network from the PDZBase database ( N = 161 nodes, available from Ref.48) and a network 
of hyperlinks among a large set of U.S. political weblogs from before the 2004 election ( N = 1222 nodes, avail-
able from Ref.49). An important note about the Cambrian food web and the political blog network is that these 
networks are usually considered to be directed. According to that, we tried out all 3 options for defining the 
radial order among the nodes as described in the previous section for both HyperMap, the original ncMCE 
based coalescent embedding and our algorithm (whereas Mercator does not allow this option). Although the 
best quality scores were achieved with the total degree in the case of the political blog network, the comparison 
between the 3 options showed non-trivial results for the Cambrian food web, where the ordering according to 
the in-degree achieved the best greedy routing scores for both the original ncMCE approach and our algorithm, 
although its score was surpassed by the ordering according to the total degree in the case of HyperMap. More 
details on this aspect of the Cambrian food web are given in the Supporting Information.

In Fig. 5 we show a summary of the quality scores obtained for the real networks, displaying the best results 
we could achieve for each method depending on the choice of the embedding parameters. For each network of 
size N < 1000 we performed embeddings trying out 2500 radial orders of the nodes with each m− L− β − T 
parameter setting for HyperMap, the original ncMCE and our approach, and we also embedded each of these 
networks 2500 times with Mercator (where the repeated embedding of the same network also provides varying 
results). The political blog network was embedded 10 times with each method. The total number of rounds n 

Figure 5.   Embedding results for real networks. (a) The logarithmic loss for the original ncMCE (blue), ncMCE 
with angular optimisation (cyan), HyperMap (purple) and Mercator (olive) for the real networks that we 
studied. (b) The greedy routing score for the same methods.
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needed in our optimisation framework varied between n = 8 and n = 20 for the studied real networks (details are 
given in the Supporting Information). In panel a) we compare the logarithmic loss LL for the different methods, 
where in the case of Mercator this was calculated according to the S1 model13,38 instead of the E-PSO model, and 
in panel b) we show the results for the greedy routing score GR. Further results at different parameter settings 
(together with a more detailed description of the studied networks) are given in the Supporting Information.

According to Fig. 5a, Mercator achieved the best LL score for 4 out of the 6 studied systems. However, this 
can be due to that some of these networks are more congruent with the S1/H2 model compared to the E-PSO 
model. When comparing only the methods building on the E-PSO model (that is HyperMap, the original ncMCE 
algorithm and our approach), our method obtained the lowest LL in 4 out of the 6 cases. If we narrow the scope 
further to the original ncMCE algorithm and our method, it seems that the angular optimisation is reducing the 
LL compared to the value obtained with the original ncMCE approach in all studied real networks. The maximum 
reduction was 47.6% (for the Pierre Auger collaboration network) and the average reduction was 21.29% for the 
studied systems. This reduction in the LL was necessary for bypassing the LL score of HyperMap in 3 networks, 
where the LL of the original ncMCE approach turned out to be higher compared to that of HyperMap.

When moving to the greedy routing score shown in Fig. 5b, we can see that the proposed optimisation of 
ncMCE improves the greedy routing score as well. The maximum improvement compared to the original ncMCE 
in terms of the GR was 22.5% (for the protein interaction network from the PDZBase database), and the average 
improvement was 15.53% for the studied systems. In addition, our approach achieved the highest GR for 2 out of 
the 6 studied networks, and the second best greedy routing score in 3 more cases. The overall best performance in 
terms of the GR-score in the studied real networks is achieved by Mercator, producing the highest value for 3 of 
the examined systems. At this point, it is important to note that although the GR-score allows a fair comparison 
between different methods in the sense that it is model-free, still, the intrinsic GR-score of real networks that 
could serve as the ground truth is unknown. According to that, a ranking between embedding methods based 
on the GR-score obtained in real networks should be treated with caution.

In the case of synthetic networks, the GR-score of the generated graph may be viewed as the ground truth, 
but the comparison becomes model-dependent, and the interpretation of cases where this ground-truth value 
is surpassed becomes somewhat ambiguous. By keeping in mind these limitations, in Fig. S3 in the Supporting 
Information we compare the GR-score of PSO networks with the GR-score of their embedding obtained with 
the different methods. The results indicate that the difference between the GR-score of a given embedding algo-
rithm and the ground truth is highly dependent on the model parameters; thus, the induced ranking between 
the different approaches is also varying. Furthermore, all methods except the original ncMCE algorithm yielded 
a GR-score higher than the ground truth in several cases, adding an extra complication to the comparison. 
Although we cannot draw a conclusive ranking between the methods based on this analysis, the results clearly 
show that the GR-score for all of the studied methods is promisingly close to that of the ground truth graph for 
the majority of the parameter settings.

In Fig. 6 we compare the layouts of the American College Football web in the 2D hyperbolic space obtained 
with the four different embedding methods. An interesting feature of this data set is that information about the 
conferences of the included teams is also available, which is marked by the different node colours in the figure. 
The angular coordinates of the nodes are equidistantly distributed in the output of the original ncMCE approach, 
as it can be seen in Fig. 6a. A visually quite pleasant feature of this layout is that according to the colouring, the 
teams belonging to the same conference tend to occupy a more or less well-defined, continuous range accord-
ing to the angle. After applying the angular optimisation proposed in this paper, the angular coordinates are no 
longer equidistantly distributed and—as shown in Fig. 6b—the conferences contract into well-separated clusters, 
which helps the viewer even more in separating the different groups during a visual interpretation of the layout.

HyperMap seems to repeatedly assign the same (or very close) angular coordinates for multiple nodes at 
the same time, which results in very tight clusters in the layout (Fig. 6c); however, according to the colouring 
of the nodes, these clusters often contain nodes from different conferences. The layout obtained with Mercator 
(Fig. 6d) shows an organisation similar to that of our algorithm, where most of the team conferences appear as 
well-separated, but not extremely tight clusters.

In order to support the qualitative observations with quantitative measurements, we compared the modules 
forming according to the angular arrangement in the hyperbolic layouts in Fig. 6 to the “ground truth” clusters 
given by the team conferences in the data. A natural idea for locating these modules in an automated way is to 
apply a community finding method that can also take into account the hyperbolic distances. The angular sepa-
ration of the communities seems to be a common feature of hyperbolic networks50–53, that on the one hand has 
inspired multiple generative models with an inherent community structure32,54–56, and on the other hand can be 
also exploited when the aim is to find the communities in a precise and efficient way53. Here we take a simple 
approach by applying such a version of the Louvain algorithm for community detection57 where the weighted 
modularity58

optimised by the method was calculated according to link weights given by wij = (1+ xij)
−1 as suggested in 

Ref.36, the node strength si was simply equal to si =
∑N

ℓ=1 wiℓ and M denoted the total sum of the link weights. 
This way the 4 different layouts produced 4 different set of link weights over the same graph topology, and 
based on these we obtained 4 different partitioning of the network into communities with Louvain. These parti-
tions were compared to the team conferences using the adjusted mutual information (AMI)59, corresponding 
to an information-theoretic similaritymeasure between sets of communities, where exact identity between the 
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partitions results in AMI = 1 , and the similarity between random partitions is adjusted to AMI = 0 . The obtained 
AMI values are given above each layout in Fig. 6, and according to the results, the best AMI scores were achieved 
by our method and Mercator (both obtaining < AMI >= 0.85 over 10 runs of the modularity optimisation), 
followed closely by the original ncMCE algorithm ( < AMI >= 0.81 ), with HyperMap somewhat separated from 
the rest (with < AMI >= 0.67 ). These quantitative results are in full consistency with the qualitative observa-
tions detailed before.

In Fig. 7 we show the running time for the different embedding algorithms, measured for synthetic networks 
generated by the PSO model. The size of these networks varied between N = 100 and N = 10, 000 nodes, while 
the further parameters of the network generating model were kept fixed.

The original ncMCE algorithm seems to be the fastest, with Mercator coming second followed quite closely 
by our approach, and HyperMap appears to be way slower compared to the rest at larger network sizes.

Discussion
The coalescent hyperbolic embedding based on the ncMCE dimension reduction was shown to be a very efficient 
method with low running time and high-quality results36. In the present work we proposed a further optimi-
sation of the angular coordinates obtained with this approach using a logarithmic loss function based on the 
E-PSO model. According to our experiments on both synthetic and real networks, this comes with the cost of a 

Figure 6.   The layouts of the American College Football web on the native hyperbolic disk that reached the 
highest greedy routing scores. (a) The layout based on the coordinates resulted from the original ncMCE 
method. (b) The layout according to the coordinates obtained with our approach, optimising the results of 
ncMCE. (c) The hyperbolic layout obtained with HyperMap. (d) The embedding according to Mercator. The 
colour of the nodes indicates the team conference as listed in panel (e). The title of panels (a–d) include the 
average adjusted mutual information between the communities found by Louvain over 10 runs and the original 
team conferences.
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somewhat increased running time, but it also provides a lower logarithmic loss LL and a higher greedy routing 
score GR. The reduction of LL is not at all surprising (since we are actually optimising with regard to that); how-
ever, the improvement in GR in the meantime indicates that the embedding becomes better also according to a 
model-free quality score. In addition to the original ncMCE approach, we compared the results of our algorithm 
also with embeddings obtained with HyperMap34 and Mercator38, and apparently our algorithm is competing 
with these state-of-the-art methods in terms of the aforementioned two quality scores. In terms of the GR-score, 
Mercator seems to show the best overall performance; however, its advantage over our method is narrow, e.g. the 
best result is achieved in 3 real networks by Mercator, in 2 real networks by our approach and in 1 real network 
by HyperMap (where in addition, our method finished as the second, before Mercator). Although the GR-score 
is currently one of the most widely used quality scores in hyperbolic networks, it also has some limitations, e.g., 
the intrinsic GR-score of real networks that could serve as a ground truth is unknown. We discuss these issues 
in more details in the Supporting Information. In total, our studies of the quality scores achieved by the differ-
ent embedding algorithms suggest that applying multiple different methods appears to be a good strategy when 
aiming for the highest quality embedding possible.

In the case of the American College Football web, the optimisation of the angular coordinates led to a result 
where clusters of nodes belonging to the same team conferences became more separated from the other groups 
compared to the layout in the original ncMCE approach. This shows that in some cases our algorithm not only 
improves the quality score of the embedding, but it can also provide a layout that is more intuitive and easy to 
interpret. Based on the above, the usage of our extension of the ncMCE coalescent embedding can be quite ben-
eficial in any further study or application where high-quality hyperbolic embedding of networks is important.

A final remark we would like to make regarding the quality of the embedding (measured by either the loga-
rithmic loss or the greedy routing score) is related to the radial order of the nodes dictated by the node degree in 
HyperMap, the original ncMCE coalescent embedding and also in our approach. As mentioned previously, real 
networks are very likely to contain (in some cases even large) groups of nodes with equal degree, and within such 
a group the radial order of the nodes can be chosen arbitrarily. According to our analysis (detailed in the Support-
ing Information), depending on the actual choice of the radial order the quality scores can show a non-negligible 
variance. Furthermore, in directed networks in principle we can choose from 3 degree types (corresponding to 
the in-, the out- and the total degree) when defining an ordering among the nodes. Although the radial order 
based on the in- or out-degrees may be inconsistent with the optimal radial order according to the (inherently 
undirected) hyperbolic model, our studies related to the Cambrian food web showed that the model-independent 
GR-score can still be higher for these alternative radial orderings. Therefore, these alternatives can help to find 
optimums that are not reachable from the standard radial ordering dictated by the undirected degree. Neverthe-
less, the systematic study of the embedding of directed networks is an interesting challenge for further work.
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