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Unsteady MHD natural convection 
flow of Casson fluid incorporating 
thermal radiative flux and heat 
injection/suction mechanism 
under variable wall conditions
Talha Anwar1, Poom Kumam2,3,4* & Wiboonsak Watthayu1

Unsteady magnetohydrodynamic flow of Casson fluid over an infinite vertical plate is examined under 
ramped temperature and velocity conditions at the wall. Thermal radiation flux and heat injection/
suction terms are also incorporated in the energy equation. The electrically conducting fluid is flowing 
through a porous material and these phenomena are governed by partial differential equations. After 
employing some adequate dimensionless variables, the solutions are evaluated by dint of Laplace 
transform. In addition, the physical contribution of substantial parameters such as Grashof number, 
radiation parameter, heat injection/suction parameter, porosity parameter, Prandtl number, and 
magnetic parameter is appropriately elucidated with the aid of graphical and tabular illustrations. The 
expressions for skin friction and Nusselt number are also derived to observe wall shear stress and rate 
of heat transfer. A graphical comparison between solutions corresponding to ramped and constant 
conditions at the wall is also provided. It is observed that graphs of the solutions computed under 
constant conditions are always superior with respect to graphs of ramped conditions. The magnetic 
field decelerates the flow, whereas the radiative flux leads to an upsurge in the flow. Furthermore, the 
shear stress is a decreasing function of the magnetic parameter.

The fluid is a specific type of matter which easily goes under deformation when an external force is applied, and 
it has no particular shape1. Mainly, fluids are partitioned as Newtonian fluid and non-Newtonian fluids. Non-
Newtonian fluids have numerous practical and industrial applications, and such fluids involve honey, blood, 
greases, oils, and foodstuff2. Polymer industries, textile, irrigation problems, and biological systems incorporate 
flows of non-Newtonian fluids in porous medium encountering magnetic effects. Moreover, free and forced 
convection flows of non-Newtonian fluids together with magnetohydrodynamic (MHD) have a wide range 
of applications in polymer fabrication, MHD pumps and motors, aerodynamic heating, and purification of 
mineral oil. Thermal engineering and welding mechanics involve the addition of heat injectors or sinks to the 
aforementioned flows for heating and cooling processes3,4. To forecast the response of non-Newtonian fluids 
in different kinds of reservoirs, hydrologists studied and discussed their flows in porous media ranging from 
sand packs to fused Pyrex glasses5. In metallurgy, for the solidification process, a magnetic field is imposed on 
a liquid metal, which flows through a porous material6. Convective flows of non-Newtonian fluids have a key 
role in the agriculture field to discover sub-ground water reservoirs7. In addition, flows of non-Newtonian fluids 
incorporating radiative flux are of prime use in the mechanisms of polymeric mixtures, aerosol technology, and 
solar collectors which operate at very low and high temperatures8.
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In order to anticipate and optimize the effectiveness of the aforementioned practical phenomena, a wide range 
of studies is conducted and discussed by many researchers. Petrovic et al.9 studied MHD flow and heat transfer 
for two immiscible fluids in a porous medium. Ibrahim et al.10 discussed the effects of a heat source and Joule 
heating on MHD radiative flow over a porous stretching sheet. Entropy generation for compressible radiative 
MHD fluid flow in a channel partially filled with porous material was reported by Jain et al.11. Hasnain et al.12 
provided solutions for MHD two-phase mixed convection fluid flow in an inclined channel filled with porous 
medium. Pattnaik et al.13 derived analytic solutions for natural convection flow with porosity and MHD effects 
by inculcating time-dependent concentration and temperature at the boundary. Velocity and heat transfer phe-
nomena for micropolar MHD flow over a vertically moving plate immersed in porous media were interpreted by 
Kim14. The influence of heat injection and suction on flow under the effect of an imposed magnetic field between 
two concentric porous cylinders was reported by Hamza15.

Casson fluid model was initially proposed by Casson in 1959 for the anticipation of flow trends of suspended 
pigment-oil16. In the case of small shear stress, Casson fluid behaves like an elastic solid and no flow takes place. 
On the other hand, the dominance of the shear stress magnitude of Casson fluid against yield shear stress ensures 
the flow of Casson fluid. This fluid is based on a structural model of bilateral behavior of liquid and solid phases 
of two-phase suspension. Some significant examples of Casson fluid are honey, jelly, soup, concentrated fruit 
juices, and artificial fibers. The participation of Casson fluid can be observed in the preparation of multiple 
products such as synthetic lubricants, pharmaceutical chemicals, paints, coal, tomato sauce, china clay, and many 
others. Since human blood is comprised of various substances like fibrinogen, human red blood cells, protein, 
and globulin in aqueous base plasma, it can also be considered as Casson fluid17,18. A wide variety of researchers 
have been fascinated by efficacious applications of Casson fluid in drilling processes, biological treatments, food 
processing, and bio-engineering operations. Khalid et al.19 investigated the time-dependent free convectional 
MHD flow of Casson fluid in a porous material. The flow of Casson fluid through tubes was initially discussed 
by Oka20. MHD Casson fluid flow over a shrinking/stretching surface was examined by Bhattacharyya et al.21. 
Mernone et al.22 explained the two-dimensional peristaltic flow of Casson fluid in a channel. Mustafa et al.23 
implicated the homotopy analysis method to provide an analysis of heat transfer and time-dependent boundary 
layer flow of the Casson model over a flat moving plate. Impacts of heat blowing/suction and thermal radiation 
on temperature and flow of Casson fluid over stretching sheet were analyzed by Mukhopadhyay24. Pramanik25 
conducted a systematic study to evaluate the impacts of porosity and radiative heat flux on heat and mass transfer. 
Arthur et al.26 discussed the influence of chemical reaction and magnetic field on the flow of Casson fluid past 
a porous perpendicular surface.

The transportation of heat transferring fluids exhibits a significant role in widespread industrial and engi-
neering operations, for example, thermal management of high-tech systems, designing of devices, cooling and 
heating processes, manufacturing of gas turbines, nuclear operations, and so forth. However, investigations for 
unsteady MHD flows of non-Newtonian fluids in porous mediums subjected to ramped velocity and ramped 
temperature conditions simultaneously are very few in the literature because it is intricate to handle the resulted 
nonlinear complex relations analytically though, these conditions have significant practical utilities. For instance, 
ramped velocity is an efficient aid to develop prognoses, determining treatment, and examining heart and blood 
vessels. Additionally, diagnoses and establishing treatment of cardiovascular deceases through treadmill test-
ing and ergometry also depend on ramped velocity27. The idea of ramped velocity and ramped temperature 
condition was initiated by Ahmed and Dutta to examine the unsteady flow of Newtonian fluid moving over a 
vertically infinite wall in the existence of mass transfer28. Bruce29, and Myers and Bellin30 further evaluated the 
contribution of ramped velocity in treadmill testing. Malhotra et al.31, Schetz32, and Hayday33 have introduced 
the ramped wall temperature condition. One of the most vital appeals of ramped wall temperature is to demol-
ish the cancerous cells through thermal therapy. Kundu34 provided five kinds of thermal boundary conditions 
to obtain the desired results of cancer treatment, adjacently, minimizing the side effects of thermal therapy to 
almost nonexistence. A comprehensive comparison and survey report35 describe that ramped heating is an 
efficient support to control the rise in temperature occurring because of adiabatic condition, in the chemical 
industry. Das et al.36 evaluated the influence of ramped temperature condition on incompressible optically thin 
fluid flow over an impulsively upright plate. Nandkeolyar et al.37 studied and compared various kinds of plate’s 
movement having periodic acceleration, single acceleration, and uniform velocity subjected to constant wall 
and ramped wall conditions for natural convective flows of viscous fluids in the existence of magnetic field. A 
detailed analysis of several physical phenomena of Hall current, thermal radiation, Darcy’s law, heat consumption, 
and chemical reaction on mass and heat transfer with ramped wall concentration and temperature subjected to 
impulsive and accelerating upright plates was provided by Seth et al.38–40. Chandran et al.41 presented the impact 
of ramped wall temperature on convective viscous fluid flow, which was later extended by Seth et al.42 for the 
porous medium. Zin et al.43 investigated the effects of thermal radiation and magnetic field on free convection 
Jeffrey fluid flow with ramped wall temperature. This study was further extended for simultaneous application of 
ramped boundary conditions (ramped wall velocity and ramped wall temperature) by Maqbool et al.44. Tiwana 
et al.45 recently studied the MHD time-dependent convective flow of Oldroyd-B fluid considering simultaneous 
ramped conditions at the boundary.

However no investigation for Casson fluid flow with ramped wall velocity and ramped wall temperature con-
ditions is yet available in the literature. To effectively fill this gap, this study comprises of unsteady incompressible 
MHD flow of Casson fluid, subjected to ramped velocity and ramped temperature conditions at a vertical wall, 
which is placed in the porous medium. Additionally, radiative flux and heat injection/suction are also inculcated 
in the heat transfer mechanism to evaluate their significance. Laplace transformation and the Durbin method 
are implemented to execute the solutions of modeled momentum and energy equations. Finally, the physical 
features of relevant parameters are analyzed with the help of tables and graphs.
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Mathematical modeling of the problem
We assume Casson fluid flow over an infinite vertical plate saturated in a porous medium. The plate is considered 
at ξ = 0 and flow is restricted to ξ > 0 , which is along the direction of the plate (as depicted in Fig. 1). To govern 
the model, the following key assumptions are taken into account

•	 The flow is one-dimensional and unidirectional.
•	 A uniform magnetic field of magnitude B0 is imposed perpendicular to the direction of the plate.
•	 Reynolds number is small enough to ignore the effect of an induced magnetic field.
•	 The radiative heat flux Qr along the direction of the plate is negligible against the radiative heat flux normal 

to the plate.
•	 In order to ignore the polarization effect of fluid, no electric field is applied.
•	 The temperature equation is free from viscous dissipation term.

The family of Maxwell equations is presented to deal with the magnetic field

where µm denotes magnetic permeability, J denotes current density, and E denotes electric field. Furthermore, 
B is the summation of imposed magnetic field ( B0 ) and induced magnetic field ( b0 ), which is ignored in this 
case. From Ohm’s law

where σ is the electrical conductivity and V is the velocity of fluid. Furthermore, the supposition of a small 
Reynolds number leads to

For an incompressible Casson fluid, Cauchy stress tensor for rheological state takes the following form16,46,47

where Pη is yielded stress, µ� is the plastic dynamic viscosity, π is the self product of the component of deforma-
tion rate, πc is the critical value of earlier mentioned product depending upon the non-Newtonian model, and 
exy is the (x, y)xh component of the rate of deformation. Initially, at time τ = 0 , both plate and fluid are static 
with uniform temperature T∞ . For time τ > 0 , ramped boundary conditions for both velocity and temperature 
are considered at the wall (ξ = 0) such that up to some characteristic time τ0 , both velocity and temperature 
depend upon the fraction of time τ and characteristic time τ0 , and later they take uniform values. Mathematically

(1)CurlB = µmJ, CurlE = −
∂B

∂t
, divB = 0,

(2)J = (V × B+ E)σ ,

(3)(J× B)
1

ρ
= [(V × B0)× B0]

σ

ρ
= −

σB20u

ρ
.

(4)τxy =







2

�

µ� +
Pη√
2π

�

exy π > πc

2

�

µ� +
Pη√
2πc

�

exy π < πc
,

Figure 1.   Geometry of the considered model.
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where uc is characteristic velocity, u is a component of velocity along x-axis, Tw is wall temperature, and T∞ is 
constant ambient temperature. Since we have considered ramped wall velocity and ramped wall temperature at 
the same time, this can be regarded as a simultaneous application of ramped boundary conditions. For Casson 
fluid, first time such boundary conditions are considered though they have wide applications in industrial and 
medical sciences. On the basis of all aforementioned assumptions, we obtain the following principal equations 
for flow and energy transfer19,48:

where α = µ
√
2πc/Pη is the parameter of Casson fluid, ρ is the fluid density, g is gravitational pull, β is thermal 

expansion coefficient, kp is permeability, φ is porosity, ρcp is heat capacity, k is thermal conductivity, T is the tem-
perature of Casson fluid, and Q0 is heat injection/suction term. The corresponding initial conditions are given as

The corresponding boundary conditions are given as

The choice of an optically thick fluid, which absorbs and emits but does not shatter thermal radiation allows 
us to use Rosseland approximation for radiative flux. Implementation of Rosseland approximation leads to the 
following expression for radiative heat flux49

where k1 and σ1 denote the coefficient of Rosseland absorption and Stefan–Boltzmann constant respectively. This 
non-linear relation of radiative flux can be linearized by assuming that temperature differences are very small. 
Applying Taylor series to expand T4 about T∞ and emitting higher-order terms by virtue of the above-mentioned 
supposition yields the following relation

Plugging Eqs. (13) and (14) in Eq. (8) yields

Introducing the following variables

into Eqs. (7) and (15) and dropping * for the purpose of brevity yields

(5)u(0, τ) =
{

uc
τ
τ0

0 < τ ≤ τ0
uc τ > τ0

,

(6)T(0, τ) =
{

T∞ + (Tw − T∞) τ
τ0

0 < τ ≤ τ0
Tw τ > τ0

,

(7)ρ
∂u

∂τ
=µ

(

1+
1

α

)

∂2u

∂ξ2
− σB20u+ ρgβ(T − T∞)−

(

1+
1

α

)

µφ

kp
u,

(8)ρcp
∂T

∂τ
=k

∂2T

∂ξ2
−

∂Qr

∂ξ
+ Q0(T − T∞),

(9)
u(ξ , 0) = 0, T(ξ , 0) = T∞,

ξ ≥ 0 : uτ (ξ , 0) = 0, uξ (ξ , 0) = 0.

(10)u(0, τ) =
{

uc
τ
τ0

0 < τ ≤ τ0
uc τ > τ0

,

(11)T(0, τ) =
{

T∞ + (Tw − T∞) τ
τ0

0 < τ ≤ τ0
Tw τ > τ0

,

(12)τ > 0 : u(ξ , τ) → 0, T(ξ , τ) → T∞ for ξ → ∞.

(13)Qr = −
4σ1

3k1

∂T4

∂ξ
,

(14)T4 ≈ 4T3
∞T − 3T4

∞.

(15)ρcp
∂T

∂τ
= k

(

1+
16σ1T

3
∞

3k1k

)

∂2T

∂ξ2
+ Q0(T − T∞).

(16)ξ∗ =
ξuc

ν
, u∗ =

u

uc
, τ ∗ =

τu2c
ν

, τ0 =
ν

u2c
, θ =

T − T∞
Tw − T∞

,

(17)
∂u

∂τ
=

(

1+
1

α

)

∂2u

∂ξ2
−

{

M +
1

K

(

1+
1

α

)}

u+ Grθ ,

(18)
∂θ

∂τ
=

(

1+ Nr

Pr

)

∂2θ

∂ξ2
+ Qθ .
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The pertinent initial and boundary conditions in Eqs. (9)–(12) take the following form

with

where Q is heat injection/suction parameter, Gr is Grashof number, Pr is Prandtl number, K is the parameter of 
porosity, Nr is radiation parameter, and M is the magnetic parameter.

Analytical solutions
The solution of the current problem can be computed conveniently using Laplace transformation due to its 
efficient applications for nonuniform boundary conditions. The formulation of the integral form of Laplace 
transform pair for dimensionless temperature and velocity are respectively given as follows

Using the definition of Laplace transform from Eq. (23) on energy Eq. (18) and relevant boundary conditions 
(19)2–(21)2 , we get

where

The solution of second order ordinary differential Eq. (25) subject to boundary conditions (26) is calculated as

In order to find the solution of the velocity field, application of Laplace transform given in Eq. (24) on Eq. 
(17) and relevant boundary conditions (19)1–(21)1 yields

Plugging the value of θ̄ from Eq. (27) in Eq. (28) turns out as

(19)
u(ξ , 0) = 0, θ(ξ , 0) = 0,

ξ ≥ 0 : uτ (ξ , 0) = 0, uξ (ξ , 0) = 0,

(20)u(0, τ) = θ(0, τ) =
{

τ 0 < τ ≤ 1

1 τ > 1
,

(21)τ > 0 : u(ξ , τ) → 0, θ(ξ , τ) → 0 when ξ → ∞,

(22)

Q =
Q0ν

ρcpu2c
, Gr =

νβg(Tw − T∞)

u3c
, Pr =

µcp

k
,

1

K
=

φν2

kpu2c
, Nr =

16σ1T
3
∞

3kk1
, M =

σB20ν

ρu2c
,

(23)θ̄ (ξ , q) =
∞
∫

0

e−qτ θ(ξ , τ)dτ = L[θ](τ ),

(24)ū(ξ , q) =
∞
∫

0

e−qτu(ξ , τ)dτ = L[u](τ ).

(25)
d2θ̄

dξ2
− c1(q− Q)θ̄ = 0,

(26)

{

θ̄ (0, q) = 1−e−q

q2
,

θ̄ (ξ , q) → 0 for ξ → ∞,

c1 =
Pr

1+ Nr
.

(27)θ̄ (ξ , q) =
(

1− e−q

q2

)

e−
√

c1(q−Q)ξ .

(28)
d2ū

dξ2
−

(

q+ c3

c2

)

ū = −
Gr

c2
θ̄ ,

(29)

{

ū(0, q) = 1−e−q

q2
,

ū(ξ , q) → 0 for ξ → ∞.

(30)
d2ū

dξ 2
−

(

q+ c3

c2

)

ū = −
Gr

c2

(

1− e−q

q2

)

e−
√

c1(q−Q)ξ .
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The solution of Eq. (30) subject to boundary conditions (29) is acquired as

where

with

It is obvious to observe that Laplace domain solutions of temperature field (27) and velocity field (31) are com-
prised of multivalued relations of Laplace parameter q, therefore to compute the inverse Laplace transformation 
by handling these complex combinations efficiently, we implemented the Durbin method given in50. Addition-
ally, these velocity and energy solutions are validated in Figs. 2 and 3 by drawing a comparison with Zakian and 
Stehfest numerical Laplace inversion methods51,52.

Limiting models
Some special cases of our current problem are discussed here to examine the effects of the absence of some 
particular parameters on solutions.

(31)ū(ξ , q) =
(

1− e−q

q2

)

H̄(ξ , q),

(32)H̄(ξ , q) = e
−
√

q+c3
c2

ξ +
Gre

−
√

q+c3
c2

ξ

(c1c2 − 1)(q− c4)
−

Gre−
√

c1(q−Q)ξ

(c1c2 − 1)(q− c4)
,

(33)c2 = 1+
1

α
, c3 = M +

1

K
c2, c4 =

c3 + c1c2Q

c1c2 − 1
.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

(
,

)

 Durbin Method
 Zakian Method
 Stehfest Method

Figure 2.   Validation of temperature solution.
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Figure 3.   Validation of velocity solution.
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Solution in the absence of porosity and MHD.  Taking M = 1
K = 0 in Eq. (31), it reduces to

Solution in the absence of Casson parameter.  Taking 1
α
= 0 in Eq (31), it turn out as

where m = M + 1
K .

Solution in the absence of thermal radiation and heat injection/suction parameters.  Taking 
Nr = Q = 0 in our problem also affects the temperature solution therefore, Eqs. (27) and (31) come out as

where

and G(τ − 1) is presenting a Heaviside function.

Solution for constant velocity and constant temperature conditions.  The temperature and veloc-
ity solutions of Casson fluid for isothermal wall temperature and constant wall velocity are evaluated as

Solution of Newtonian fluid for constant wall velocity and ramped wall temperature condi-
tions.  The ramped wall temperature and constant wall velocity profiles of a Newtonian fluid ( 1

α
= 0 ) can be 

calculated as

(34)

u(ξ , τ) = L
−1





�

1− e−q

q2

�







e
−
�

q
c2
ξ +

Gre
−
�

q
c2
ξ

(c1c2 − 1)

�

q− c1c2Q
c1c2−1

�

−
Gre−

√
c1(q−Q)ξ

(c1c2 − 1)

�

q− c1c2Q
c1c2−1

�









.

(35)

u(ξ , τ) = L
−1





�

1− e−q

q2

�







e−
√
q+mξ +

Gre−
√
q+mξ

(c1 − 1)

�

q− m+c1Q
c1−1

�

−
Gre−

√
c1(q−Q)ξ

(c1 − 1)

�

q− m+c1Q
c1−1

�









,

(36)θ(ξ , τ) = F(ξ , τ)− F(ξ , τ − 1)G(τ − 1),

(37)

u(ξ , τ) = L
−1





�

1− e−q

q2

�







e
−
�

q+c3
c2

ξ +
Gre

−
�

q+c3
c2

ξ

(Prc2 − 1)

�

q− c3
Prc2−1

�

−
Gre−

√
Prqξ

(Prc2 − 1)

�

q− c3
Prc2−1

�









,

F(ξ , τ) =
(

τ +
Prξ 2

2

)

erfc

(

ξ
√
Pr

2
√
τ

)

−
ξ
√
Prτ

√
π

e−
ξ2Pr
4τ ,

(38)θ(η, τ) = e−ξ ı̇
√
c1Qerfc

(

ξ
√
Q

2
√
τ

− ı̇

√

Qτ

)

+ eξ ı̇
√
c1Qerfc

(

ξ
√
Q

2
√
τ

+ ı̇

√

Qτ

)

,

(39)
u(ξ , τ) = L

−1

[{

1

q

}{

e
−
√

q+c3
c2

ξ +
Gre

−
√

q+c3
c2

ξ

(c1c2 − 1)
(

q− c4
)

−
Gre−

√
c1(q−Q)ξ

(c1c2 − 1)(q− c4)

}]

.

(40)θ(ξ , τ) = L
−1

[(

1− e−q

q2

)

e−
√

c1(q−Q)ξ

]

,
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where m = M + 1
K .

Skin friction and Nusselt number
The relations for skin friction Cf  (wall shear stress) and Nusselt number Nu are presented as

where

with

Parametric study
This section covers noteworthy features of several connected parameters like Grashof number (Gr), porosity 
parameter (K), magnetic parameter (M), Casson parameter ( α ), Prandtl number (Pr), radiation parameter (Nr), 
heat injection/suction parameter (Q), and time ( τ ) on dimensionless flow and energy profiles. The numerical 
computations are categorized into two divisions: (1) Casson fluid with ramped wall velocity and ramped wall 
temperature (represented by solid lines) and (2) Casson fluid with constant wall velocity and constant wall tem-
perature (represented by dashed lines). Furthermore, the impacts of the aforementioned parameters on Nusselt 
number and skin friction are observed with the aid of computed results provided in Tables 1 and 2. 

Figure 4 highlights the impact of Nr on the energy profile of Casson fluid. It is noticed that temperature 
receives elevation with an increase in values of Nr. Physically, along normal direction to plate, change of heat 
flux ∂Qr

∂ξ
 rises and k1 reduces, which implies that more amount of radiative heat is transferred to the fluid and 

consequently temperature profile rises. The temperature profile is found higher in the case of simultaneous 

(41)
u(ξ , τ) = L

−1

[

1

q
e−

√
q+mξ +

(

Gr

q(c1 − 1)− (c1Q +m)

1− e−q

q2

)

×

(

e−
√
q+mξ − e−

√
c1(q−Q)ξ

)

]

,

(42)Cf =
(

1+
1

α

)

du(ξ , τ)

dξ

∣

∣

∣

∣

ξ=0

,

(43)Nu = −
dθ(ξ , τ)

dξ

∣

∣

∣

∣

ξ=0

,

(44)
du(ξ , τ)

dξ

∣

∣

∣

∣

ξ=0

= L
−1

[(

1− e−q

q2

)

H̄1(ξ , q)

]

,

(45)
dθ(ξ , τ)

dξ

∣

∣

∣

∣

ξ=0

= L
−1

[(

1− e−q

q2

)

√

c1(q− Q)

]

,

(46)H̄1(ξ , q) =
Gr

√

c1(q− Q)

(c1c2 − 1)(q− c4)
−

Gr
√

q+c3
c2

(c1c2 − 1)(q− c4)
−

√

q+ c3

c2
.

Table 1.   Variation of Nusselt number for different values of parameters. Bold values are used to specify the 
variation of a particular parameter.

τ Pr Nr Q Nu

0.4 21.0 2.0 0.5 1.7595

0.5 – – – 1.9304

0.6 – – – 2.0738

0.7 0.7 – – 0.4008

– 7.0 – – 1.2675

– 21.0 – – 2.1954

– 21.0 1 – 2.6888

– – 2 – 2.1954

– – 3 – 1.9013

– – 2.0 − 1.0 3.0433

– – – − 0.5 2.7793

– – – 0.0 2.4976

– – – 0.5 2.1954

– – – 1.0 1.8694
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Table 2.   Variation of skin friction for different values of parameters. Bold values are used to specify the 
variation of a particular parameter.

τ M K α Gr Cf

0.4 2.0 0.5 1.0 1.0 − 1.7444

0.5 – – – – − 2.1051

0.6 – – – – − 2.4621

0.7 1.0 – – – − 2.2825

– 2.0 – – – − 2.711

– 3.0 – – – − 2.6484

– 2.0 0.3 – – − 3.2248

– – 0.6 – – − 2.7052

– – 0.9 – – −  2.5114

– – 0.5 0.2 – − 6.9092

– – – 0.5 – −  3.8643

– – – 0.9 – −  2.9343

– – – 1.0 1.0 − 2.9329

– – – – 3.0 − 2.6989

– – – – 5.0 − 2.4649
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Figure 4.   Energy distribution for various values of Nr.
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constant boundary conditions. Figure 5 presents the relationship between temperature and the amount of heat 
either injected ( Q > 0 ) or sucked ( Q < 0 ). The figure shows that when positive Q increases temperature profile 
also increases since this increment corresponds to an increase in the amount of injected heat. On the other 
hand, temperature faces a decay when the magnitude of Q increases in a negative direction because this incre-
ment implies that the amount of heat released by the fluid is increasing. Subsequently, this explanation justifies 
the physical logic and highlights the significance of heat generation/suction in heating and cooling processes. 

The distribution of temperature for various Pr values is presented in Fig. 6 for both ramped wall condition 
and isothermal wall condition. For both cases, it is spotted that the temperature profile declines as Pr grows. It 
is physically certified by the fact that fluid with a higher Pr value has comparatively less thermal conductivity, 
which minimizes the conduction of heat. As a result, the thickness of the thermal boundary layer shrinks. Ulti-
mately, the temperature of fluid reduces. Figure 7 illustrates that the temperature of Casson fluid is an increasing 
function of τ . Additionally, the temperature is greater in the case of ramped temperature condition in contrast 
to isothermal wall condition. The temperature near the plate has higher values and it calms down asymptotically 
to zero-value as fluid flows far away from the wall.

The influence of M on the velocity profile for ramped and isothermal wall conditions is revealed in Fig. 8. It is 
sighted that an increase in strength of the magnetic field reduces both magnitude of velocity and boundary layer 
thickness. This is due to the fact that the imposition of the magnetic field results in the establishment of a strong 
Lorentz force, which acts as a dragging force and offers resistance to fluid flow. Eventually, fluid gets decelerated 
with an increase in M because dragging force dominates the flow supporting forces. Furthermore, the velocity 
profile has a relatively greater elevation in the case of isothermal condition in contrast to the ramped condition. 
Figure 9 covers the contribution of Gr in fluid flow for ramped plate and isothermal plate. Both flow profiles 
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Figure 6.   Energy distribution for various values of Pr.
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depict that enhancement in Gr is a favorable factor as it accelerates the flow in both cases. The physical logic 
justifying this behavior is the strengthening of thermal buoyancy force. Since Gr deals with the fraction of buoy-
ancy force and viscous force, an increase in Gr implies that buoyancy force suppresses the viscous effects, which 
leads to reduce the offered resistance. Hence, fluid gets accelerated near the plate and far away from the plate, it 
calms down as buoyancy force together with associated forces gets weaker. Figure 10 exhibits correspondence of 
the velocity profile and Casson parameter α . It is observed that they share an inverse relation, as an increase in α 
results in flow retardation. The physical phenomenon countering this retardation is the plasticity of fluid. When 
parameter α reduces, momentum boundary layer thickness increases due to an increase in the plasticity of fluid. 
It is also witnessed that α has a similar effect on both ramped wall and isothermal wall solutions. Furthermore, 
it is worthy to mention that when α is very large ( 1

α
→ 0 ), the non-Newtonian behavior of fluid fully vanishes, 

and fluid reduces to a purely Newtonian fluid.  
The variation in isothermal wall momentum distribution and ramped wall momentum distribution for various 

values of K is reported in Fig. 11. The figure exhibits that larger values of K escalate the fluid velocity and bound-
ary layer thickness, which is justified by the physical logic that an increase in the porosity of media reduces the 
strength of the resistive force and consequently, momentum development enhances in flow regime. Moreover, 
velocity is found lower for ramped conditions against isothermal conditions. Figure 12 discloses the effect of 
variation in Nr on flow profile and it is spotted that velocity enhances for larger values of Nr. This is authenticated 
by the logic that thermal radiation heats up the fluid and this higher rate of energy transfer looses the bonds 
between fluid particles. Successively, the offered resistance gets weaker and flow is accelerated. Velocity profiles 
for ramped wall and isothermal wall follow similar trends for thermal radiation. Figure 13 interprets the influ-
ence of Pr on momentum profile. Ramped wall and isothermal wall flows are compared, and it is observed that 
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Figure 8.   Velocity distribution for various values of M.
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Figure 10.   Velocity distribution for various values of α.
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later flow has faster velocity. For increasing variation of Pr, velocity profile behaves inversely, which is physically 
supported by an intensification of momentum diffusivity. As a result, dragging force dominates near the plate and 
fluid faces more resistance. Far away from the plate, dragging force gradually decreases and fluid comes to rest.  

Table 1 presents that the Nusselt number is an increasing function of Pr and τ while it behaves oppositely for 
Nr and Q. An important observation is made here that initially heat transfer rate enhances for τ < 1 and later 
it starts decreasing for τ > 1 . Table 2 provides that the wall shear stress reduces with elevation in τ and M, and 
it augments for increasing values of K, Gr, and α . For both tables, in each row, one column encloses bold values 
for a particular parameter to focus on the role of that parameter in heat transfer and skin friction.

Conclusion
The main aim of this study is to examine the physical features of combined ramped velocity condition and 
ramped temperature condition on unsteady Casson fluid flow over an infinitely long vertical plate. The plate is 
nested in a porous media and a uniform magnetic force is applied. Besides, heat injection/suction and thermal 
radiation are also included in the model. Some appropriate transformations are employed for the sake of non-
dimensionalization of principal equations, and later Laplace transformation is operated to compute the solutions. 
Combined ramped conditions (ramped wall velocity and ramped wall temperature) are practically significant 
though their analytical handling leads to complicated relations. Hence, results in basic coordinates are computed 
through numerical Laplace inversion called the Durbin method. These results are validated with two more 
numerical inversion methods named Zakian and Gaver-Stehfest methods. The control of connected parameters 
on dimensionless temperature and velocity solutions is graphically elaborated. Meanwhile, the computed results 
for Nusselt number and skin friction are reported through tables. A comparison between solutions with ramped 
conditions and solutions with isothermal conditions is also drawn graphically. The prime observations of this 
investigation are remarked as

•	 Fluid velocity is a decreasing function of the Casson parameter α.
•	 An increase in Prandtl number and heat suction reduce the temperature of the fluid.
•	 Porosity and magnetic parameter have a relatively inverse influence on momentum boundary layer thickness.
•	 Velocity on the wall can be handled with larger values of α (connected to skin friction).
•	 Heat transfer rate is minimized when radiation parameter escalates, while a decline in thermal diffusivity 

implies a decrease in heat transfer rate. Accordingly, the heat transfer process can be controlled or supported 
by larger and smaller values of Prandtl number (associated to Nusselt number)53,54.

Data availability
All the relevant material is available.
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