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Few‑shot pulse wave contour 
classification based on multi‑scale 
feature extraction
Peng Lu1,2*, Chao Liu1,2, Xiaobo Mao1,2, Yvping Zhao2,3, Hanzhang Wang1,2, 
Hongpo Zhang4 & Lili Guo5,6

The annotation procedure of pulse wave contour (PWC) is expensive and time-consuming, thereby 
hindering the formation of large-scale datasets to match the requirements of deep learning. To obtain 
better results under the condition of few-shot PWC, a small-parameter unit structure and a multi-scale 
feature-extraction model are proposed. In the small-parameter unit structure, information of adjacent 
cells is transmitted through state variables. Simultaneously, a forgetting gate is used to update 
the information and retain long-term dependence of PWC in the form of unit series. The multi-scale 
feature-extraction model is an integrated model containing three parts. Convolution neural networks 
are used to extract spatial features of single-period PWC and rhythm features of multi-period PWC. 
Recursive neural networks are used to retain the long-term dependence features of PWC. Finally, 
an inference layer is used for classification through extracted features. Classification experiments 
of cardiovascular diseases are performed on photoplethysmography dataset and continuous non-
invasive blood pressure dataset. Results show that the classification accuracy of the multi-scale 
feature-extraction model on the two datasets respectively can reach 80% and 96%, respectively.

The collection process of pulse wave signals is simple and non-invasive, enabling convenient acquisition of PWC 
data1–3. The classification of PWC can be used to monitor the heart condition. However, no uniform standard 
exists for marking PWC4. The standard diagnostics of PWC is primarily based on an individual’s different clinical 
knowledge and experience to define the morphological features. The formed diagnostic results are subjective, 
which are difficult to be recognized by all experts.

Existing classification methods of PWC can be categorized into two: statistical methods and machine-learning 
methods5,6. Statistical methods represented by artificial time-frequency domain feature extraction are suitable 
for stationary sequences7. Machine-learning methods represented by convolution neural networks8,9 (CNN), 
recursive neural networks10,11 (RNN), and support vector machines12,13 are suitable for complex non-linear 
sequences. Clinically collected PWCs are non-stationary and time varying14, rendering it suitable for machine-
learning methods.

Long short-term memory (LSTM), a variant of RNN, has the ability of mining long-distance time-series 
data information15. It is extensively used in machine translation16,17, fault diagnosis18,19, speech recognition20,21, 
and electrocardiogram classification22,23. In literature24, the representation of speech signals from an original 
network is automatically learned by CNN, and then the temporal representation of features is learned by LSTM; 
In literature25, the features of wearable sensor data is learned by CNN, and then the time dependence between 
actions are modeled by LSTM.

The common idea of the above methods is to extract high-dimensional features by CNN and subsequently 
obtain short-series features through LSTM, which can be used to predict and synthesize time series. PWC is a 
kind of few-shot data that difficultly meets the training needs of complex deep networks26.

In the present study, a recursive-network unit structure based on LSTM is designed and found to be suitable 
for few-shot PWC. Compared with LSTM structure, it has fewer parameters and faster training rate. Adjacent unit 
information is transmitted through state variables, information is updated through a forgetting gate, and the long-
term dependence of PWC is retained in the form of unit series. Simultaneously, a multi-scale feature-extraction 
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model adapted to few-shot PWC is proposed. The multi-scale feature-extraction model is an integrated model 
that extracts features from three angles. The spatial features of single-period PWC and the rhythm features of 
multi-period PWC are extracted through CNN. The long-term dependence features of PWC are retained through 
RNN. All extracted features are then combined linearly for classification.

Cardiovascular-disease classification experiments are performed on photoplethysmography (PPG) dataset 
and continuous non-invasive blood pressure (CNBP) dataset. Experimental results show that the classification 
accuracy of the multi-scale feature-extraction model can reach 80% and 96%, respectively.

The remaining part is organized as follows. In the ’Materials & Methods’ section, the experimental data 
are stated, and multi-scale feature-extraction model are proposed. In the ’Results’ section, the process of data 
pre-processing and experiment are stated in detail. Finally, conclusions are drawn in the ’Discussion’ section.

Materials and methods
Data description.  At present, the most commonly used methods of collecting pulse wave signals informa-
tion primarily include PPG and pressure detection. PPG traces the pulsation state of blood vessels and meas-
ures pulse wave signals by measuring the attenuated light reflected and absorbed by human blood vessels and 
tissues27. Pressure-detection method obtains pulse wave signals by directly detecting changes in the pressure 
of human arteries over time. The cuff is tied directly to the patient’s wrist, and the patient should maintain the 
same posture during measurement28. Patients feel that the wrist is sore and uncomfortable during long-term 
measurement. Compared with the pressure-detection method, the operation of PPG is simpler and suitable for 
long-term measurement, but it is susceptible to environmental interference during the measurement process, 
and its measurement accuracy and stability are lower than those of the pressure-detection method. For pulse 
wave signals obtained using different acquisition methods, to verify the generalization ability of the model, this 
study conducts experiments based on PPG dataset and CNBP dataset.

Considering that the clinically collected pulse wave signals contain substantial noise, pre-processing steps 
such as data filtering, beat division, etc. are necessary. The specific pre-processing details are described in the 
’Results’ section.

•	 Dataset I: The PPG dataset for the non-invasive detection of cardiovascular diseases contains 657 pulse wave 
records from 219 subjects29. The data covers the age range of 20–89 years old, and the sampling rate is 1000 
Hz. Various diseases including hypertension and diabetes are recorded. The dataset provides four labels for 
normal blood pressure, pre-hypertension, and stage I/II hypertension. Table 1 shows the details of dataset I.

•	 Dataset II: The CNBP dataset based on cardiovascular diseases is collected from the Fifth Affiliated Hospital 
of Zhengzhou University. The subjects who are 18–83 years old fill-up an informed-consent form before data 
collection. ZM-300 intelligent pulse wave signal collector is adopted for data acquisition, with a sampling 
frequency of 200 Hz. A pressure sensor based on a semiconductor strain gauge, with a sensitivity of 0.5 mV/g 
(bridge voltage of 6 V) and a pressure range of 0–1000 g, is used for the collection of pulse wave signals. The 
A/D converter is a 4-channel 12-bit converter. Dataset II contains 1326 pulse wave records from 221 subjects 
under six kinds of pulse pressures. It records various cardiovascular diseases, including hypertension and 
arrhythmia.

	   Moreover, the dataset is collected under the control of standard experimental conditions and specifications. 
All methods are carried out in accordance with relevant guidelines and regulations, and all experimental 
protocols are approved by the Ethics Committee of Drug Clinical Trials of the Fifth Affiliated Hospital of 
Zhengzhou University. Table 2 shows the details of dataset II.

Table 1.   Dataset I label and sample size.

Type of disease Number of samples(group) Pre-processing tags Number of samples(group)

Normal 80*3 Normal 593

Pre-hypertension 85*3

Hypertension 617Hypertension Stage I 34*3

Hypertension Stage II 20*3

Table 2.   Dataset II label and sample size.

Type of disease Number of samples(group) Pre-processing tags Number of samples (group)

Normal 156*6 Normal 1582

Arrhythmia 18*6

Desease 1634
Myocardial ischemia 18*6

Hypertension 15*6

Others 14*6
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Multi‑scale feature‑extraction model.  Few pulse wave datasets of cardiovascular diseases are available. 
At the same time, the feature division of PWC is unclear, and no uniform marking standard exists. The machine 
needs to learn PWC features automatically. In view of the above problems, a solution is to establish a feature-
extraction model based on few-shot PWC. In this paper, a multi-scale feature-extraction model is proposed.

The multi-scale feature-extraction model for few-shot PWC is shown in Fig. 1. N continuous PWC cycles 
are used as the network input, and then three network layers are connected in parallel to extract the multi-scale 
features of PWC. The recursive network layer is used to extract the length features of PWC; the periodic feature-
extraction layer is used to extract the features of PWC within a single cycle; and the rhythm feature-extraction 
layer is used to extract PWC features between multiple cycles. Finally, features extracted from the three network 
layers are combined in the inference layer to classify PWC.

Recursive network layer.  PWC is composed of multiple cycles of pulse fluctuations and belongs to a one-dimen-
sional time series. RNN is a network which is good at dealing with time series. By modeling PWC through RNN, 
the correlation between several cycles of PWC can be obtained. PWC is segmented in chronological order and 
sequentially input into RNN. The output state of the hidden layer represents the long-term memory feature 
extracted as the recursive network layer.

Considering the number of sample points and the complexity of network training, a recursive-network unit 
structure for few-shot PWC is designed. The forgetting and saving of information at each moment are controlled 

Figure 1.   Network model structure.
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by the forgetting gate. Compared with the LSTM unit structure, the parameters are fewer. The specific structure 
is shown in Fig. 2.

In the recursive-network unit for few-shot PWC, the unit state vector c is controlled by the forgetting gate. 
The number of unit states of the previous-cycle PWC retained in the current-cycle PWC is determined by the 
forgetting gate. The forward calculation formula of the forgetting gate is as follows:

where the weighted input of the forgetting gate is represented by netf ,t , the weight matrix of the forgetting gate is 
represented by Wf  , the operation of splicing two vectors into one vector is represented by [ht−1, xt ] , the offset term 
of the forgetting gate is represented by bf  , the forgetting gate is represented by ft , and σ refers to sigmoid function.

The weight matrix Wf  is formed by splicing Wfh and Wfx , corresponding to the previous-cycle PWC ht−1 and 
the current-cycle PWC ht:

The input state c̃t of the current-cycle PWC is calculated from the unit output of the previous cycle and the 
input of the current cycle:

where the weighted input of the PWC unit state is represented by netc̃,t ; the weight matrix of the PWC unit state 
is represented by Wc , which is composed of two matrices Wch and Wcx ; and the bias term of the forgetting gate 
is represented by bc.

To update the cell state of the current cycle, the current memory c̃t needs to be combined with the long-term 
memory ct−1 , and new information needs to be added whilst forgetting some information. The unit state ct−1 of 
the previous-cycle PWC is multiplied with the corresponding position element of the forgetting gate ft , and the 
unit state c̃t of the current-cycle PWC is multiplied with the corresponding position element of 1− ft to obtain 
the state output of the current-cycle PWC ct:

The output is determined by the state of the PWC unit:

As shown in Fig. 3, the recursive network layer is designed as a two-layer structure. The time of the main 
wave peak of the front PWC is used as the reference, and the single beat PWC of two adjacent troughs is used as 
the input of the unit. To mine the information that is opposite to the first-layer network-information transmis-
sion direction, a layer of reverse network is built on top of each layer of forward network, and the output of the 

(1)netf ,t =Wf · [ht−1, xt ] + bf

(2)ft =σ(netf ,t)

(3)netf ,t =
[

Wfh Wfx

]

[

ht−1

xt

]

+ bf = Wfhht−1 +Wfxxt + bf

(4)netc̃,t =Wc × [ht−1, xt ] + bc = Wchht−1 +Wcxxt + bc

(5)c̃t =tanh(netc̃,t)

(6)ct = diag[ft ]ct−1 + diag[1− ft ]c̃t

(7)ht = tanh(ct)

Figure 2.   The unit structure.
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first-layer network is directly used as the input of the reverse network. The output of the lower networks ( h0 ∼ hn ) 
is used as the input of the reverse network after random screening by the upper layer:

where Bernoulli(p) represents the Bernoulli distribution according to probability p and has a value of 0 or 1; 
rt = [r0, r1, . . . , rn] , n are the dimensions of ht , and xt is the input of the unit node at time t at the reverse net-
work layer.

Periodic feature‑extraction layer.  The shape and change of PWC in a single cycle contain its main features. 
Extracting the spatial features of PWC in a single cycle is necessary. However, PWC is sparse and contains little 
information at a single moment. If all points of PWC are used as input sessions, the number of network param-
eters becomes too large. At the same time, the training efficiency and accuracy of the model are greatly reduced 
by too many features.

To effectively extract the features of PWC in a single cycle, one-dimensional CNN is used. The convolution 
module has the functions of local connection and weight sharing and can extract the spatial position relationship 
at different time points of a single-cycle PWC. At the same time, it can reduce the amount of network parameters 
and reduce the model complexity.

The single-cycle PWC is a signal segment with a length of 235, and it is used as the input. The specific structure 
of the single-period feature of PWC is obtained through two convolution modules, which each module contain-
ing a one-dimensional convolution layer and a maximum pooling layer. To reduce the amount of computation 
in the process of model training and improve the computation speed, ReLU function is used as the activation 
function. The specific structure is shown in Fig. 4. .

Rhythm feature‑extraction layer.  PWC is formed by the periodic and regular pulse of pressure in arteries. 
However, slight differences exist between PWC cycles, which contain rhythm information and are difficult to 

(8)ri ∼ Bernoulli(p)

(9)xt = diag(rt)× ht

Figure 3.   Recursive network layer structure.

Figure 4.   Structure of periodic feature extraction layer.
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observe artificially. The rhythm features represent the feature relationship between cycles and reflects the enve-
lope change of the pulse signal. These features have a classification effect and can improve classification accuracy. 
To extract the rhythm features of PWC, a two-dimensional CNN is used.

Compared with single-cycle signals, multi-cycle signals have larger data dimensions, and a suitable convolu-
tion module scale is more important. Whilst ensuring that features are not discarded, reducing the dimension 
of data as much as possible is necessary. N adjacent periodic signals are spliced into a feature map, which is used 
as the input. The specific structure of the single-period features of PWC is obtained through two convolution 
modules, with each module containing one two-dimensional convolution layer and one max pooling layer. Same 
as the periodic feature-extraction layer, ReLU function is used as the activation function. The specific structure 
is shown in Figure 5.

Reasoning layer.  The reasoning layer contains two fully connected layers, each neuron is fully connected to all 
neurons in the previous layer, and the local information with category discrimination in the network layer is 
integrated. The activation function of the fully connected layer adopts the ReLU function, and the training algo-
rithm adopts the error back-propagation algorithm. The output of the last layer is passed through the SoftMax 
classifier to obtain PWC classification result.

Given that the gate-unit activation function in the recursive network layer is selected as the Sigmoid function, 
when the training result is close to the true value, the gradient operator is extremely small, and the convergence 
speed of the model is slow. The cross-entropy loss function is a logarithmic function. When it is close to the 
upper boundary, it can still be maintained at a high gradient state without affecting the convergence speed of the 
model. To improve the convergence speed of the model, cross-entropy is used as the loss function:

where N is the number of samples, M is the number of PWC categories, yij is the label of PWC, and pij is the 
prediction result corresponding to each label.

Results
Evaluation index.  We use Accuracy(Acc), Sensitivity (Sen), Specificity(Spe), Precision(Pre), and F1-score 
for model evaluation. The calculation formula for the five evaluation indicators is as follows30:

where TP stands for true positive and is the number of samples predicting abnormal PWC; TN stands for true 
negative and is the number of samples predicting normal PWC as normal; FP stands for false positive and is 
the number of samples predicting normal PWC as abnormal; FN stands for false negative and is the number of 
samples predicting abnormal PWC as normal; Acc represents the overall classification accuracy of the overall 

(10)loss = −
1

N

N
�

i=1



−

M
�

j=1

yij log(pij)





(11)Acc =
TP + TN

TP + TN + FP + FN

(12)Sen =
TP

TP + FN

(13)Spe =
TN

TN + FP

(14)Pre =
TP

TP + FP

(15)F1− score =
2× Pre× Sen

Pre+ Sen

Figure 5.   Structure of rhythm feature extraction layer.
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model; Sen represents the proportion of abnormal PWC that are matched and measures the model’s ability to 
recognize abnormal PWC; Spe represents the proportion of normal PWC that are matched and measures the 
pairing of the classifier, i.e., the ability to recognize normal PWC; and Pre represents the proportion of PWC 
classified as abnormal that are actually marked as abnormal.

Preprocessing.  Pulse wave signals collected in clinical settings is easily affected by noise, including motion 
artifacts, inherent noise of collecting instruments, and power-supply noise. Using end-to-end training directly 
reduces the classification accuracy. Therefore, the original signals need to be pre-processed before the experi-
ment.

The frequency of pulse wave signals is primarily distributed between 0.5–2 Hz. Motion artifact is primarily 
caused by breathing, and the respiratory frequency of normal adults is about 0.2–0.3 Hz. The inherent noise of 
collecting instruments is above 90 Hz. The power supply noise is 50 Hz/60 Hz. Empirical mode decomposition 
(EMD) is a signal-processing method based on the time-scale features of the data itself without pre-setting any 
basis functions31. EMD has obvious advantages in dealing with non-stationary and non-linear data. According 
to the frequency-distribution features of the pulse wave signals, the EMD method is used to remove the noise.

In the process of EMD, cubic spline function is used to interpolate the maximum value sequence and the 
minimum value sequence to obtain the upper and lower envelopes. The cubic spline interpolation needs to use 
two adjacent points before and after. Therefore, there will be divergence at the two ends of the data, that is, the 
derivative of the intrinsic mode-function at the boundary increases, which makes the filtered signal has obvious 
distortion at the beginning and end. To avoid the transient phenomenon at the beginning and end of the filtered 
signal, the end points of the curve are added to the spline. The Pearson correlation degree is used to measure 
the degree of information loss before and after denoising, and the calculation method is shown in equation (16):

where X represents the set of elements arranged in time in the original PWC, Y represents the set of elements 
arranged in time after denoising, and N represents the number of sample points.

The value interval of Person is [− 1,1]. When a person is close to 1, X and Y have a strong linear correlation, 
showing that the information loss is relatively small after denoising. In the experiment, only data with a Person 
coefficient greater than 0.93 after filtering is retained to ensure that the filtered data retains the original informa-
tion to the greatest extent. The calculation result of the signal Person coefficient in Fig. 6 is 0.99.

Signals collected clinically are actually the slice data of pulse wave signals. Few records of pulse wave database 
itself exist; not every record has all categories, and even some categories appear only on a few records. In this case, 
to ensure that categories are not omitted as far as possible, the PWC should be divided separately into beats32. 
In the experiment, the PWC is divided into cycles according to the trough position. The signal segment of the 
adjacent valleys is regarded as one PWC cycle. The specific pre-treatment process is shown in Fig. 6.

Setting of model parameters.  The pre-processed PWC is randomly divided into training set and test 
set at a ratio of 4:1. Under the condition of a certain amount of data, the classification accuracy of the model 
no longer increases before the number of hidden nodes of the neural network increases to a certain extent33. 
Therefore, the number of hidden nodes in the recursive network layer is set to 32, the number of kernels in the 
periodic feature-extraction layer is set to 32 and 64, the number of kernels in the rhythm feature-extraction layer 
is set to 32 and 64. After verification through multiple experiments, the network training parameters are set, as 
shown in Table 3.

Experiment.  The number of PWC cycles input of the model is expressed as a unit cycle. An increase in 
amount of cycles of model input leads to an increase in depth of the recursive network. Furthermore, the pro-
portion of features extracted by the periodic feature-extraction layer and the rhythm feature-extraction layer 
increase. At the same time, the network dimension increases leads to decreased training speed of the model. 
To determine the optimal number of unit cycles for a suitable PWC multi-feature scale model, experiments are 
conducted for different unit cycles. Training set II is used in the experiment, and each group is trained 50 times. 
The final results are shown in Table 4. According to the table, when the number of unit cycles is 5, the model has 
the optimum effect.

On the premise of retaining the structure of the pre-processing layer and the reasoning layer, as well as the 
network parameters, the network layer is changed for comparison experiments. Zhan34 et al. extracted features 
through CNN for classification. Liu35 et al. extracted PWC timing features through parallel CNN structures, 
including signal segment features within a period and multi-period features representing cycle relationships; 
Ghosh36 et al. extracted PWC features based on LSTM to predict systolic and diastolic blood pressure. The train-
ing process of different network models is shown in Figure 7.

Performance comparison with other neural network methods under different datasets is shown in Table 5. 
According to the table, the multi-scale model has good classification performance on dataset I and dataset II.

(16)Pearson =

∑
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∑

X
∑

Y
N

√

(
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Figure 6.   Network model structure.

Table 3.   Network hyperparameters.

Parameter Value

Periodic feature-extraction layer

Convolution Layer 1 Convolution Layer 2

Kernel dimension 7*1 5*1

Stride size 5*1 5*1

Amount of kernels 32 64

Pooling dimension 3*1 3*1

Pooling stride size 2*1 1*1

Rhythm feature-extraction layer

kernel dimension 7*3 5*3

Stride size 5*1 5*3

Amount of kernels 32 64

Pooling dimension 3*1 3*1

Pooling stride size 2*1 1*1

Recursive network layer

Input channels 235

Number of hidden nodes 32

Bidirectional True

Dropout 0.5

Cycle length of PWC 235

Unit cycle N

Reasoning layers Feature dimension*32/32*2

Batch size 64

Optimizer Adam
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Discussion
A small-parameter unit structure and a multi-scale feature-extraction model are proposed to obtain improved 
results under the condition of few-shot pulse wave contour classification. Cardiovascular-disease classification 
experiments were carried out on PPG dataset and CNBP dataset. To evaluate the classification performance of 
the multi-scale feature-extraction model, three different classification methods including single neural network 
model34, parallel neural network model35, and LSTM model36 were introduced for comparison. Comparative 
studies show that the multi-scale feature-extraction model outperforms the other classification methods in terms 
of identification accuracy, stability, and sensitivity, and the multi-scale feature-extraction model consumes less 
time for training. For the proposed novel PWC classification approach, the model is notably sensitive to the 
number of unit cycles, and we find that the best unit cycle is five. Also, the multi-scale feature-extraction model 
depends on the division result of the PWC cycle.

Moreover, (a) the classification problem of few-shot PWC is well handled; (b) owing to the limitation of 
data volume, only binary classification is carried out; (c) PWC must be pre-processed (including EMD filtering 
and beat segmentation) before feature learning, which may lead to missing partial information. Finally, given 
the excellent performance of the multi-scale feature-extraction model in the few-shot PWC experiments, the 
classification of few-shot PWC is interesting and meaningful to study, and it will be further investigated in our 
future research.

Received: 27 August 2020; Accepted: 14 January 2021

Table 4.   The influence of different unit cycles on experimental results.

Unit cycles Acc(%) Sen(%) Spe(%) Pre(%) F1

2 93.17 93.25 92.50 92.68 92.97

3 94.35 94.86 92.96 93.12 93.98

4 95.24 93.37 96.03 96.27 94.80

5 96.39 94.66 96.67 96.88 95.75

6 94.34 91.74 93.94 94.34 93.02

Figure 7.   Changes in classification accuracy of different network training processes.

Table 5.   Performance comparison of multi-scale model and other methods.

Model

Dataset I (PPG)
Dataset II 
(CNBP)

Acc(%) F1 Acc(%) F1

Zhan 76.02 74.82 92.71 92.12

Liu 78.16 78.33 91.94 91.44

Ghosh 72.54 67.54 95.72 95.35

Multi-scale feature extraction model 79.75 79.01 96.22 95.81
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