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Estimating multiple latencies 
in the auditory system 
from auditory steady‑state 
responses on a single EEG channel
Lei Wang1,2*, Elisabeth Noordanus1,2 & A. John van Opstal1,2

The latency of the auditory steady-state response (ASSR) may provide valuable information 
regarding the integrity of the auditory system, as it could potentially reveal the presence of multiple 
intracerebral sources. To estimate multiple latencies from high-order ASSRs, we propose a novel 
two-stage procedure that consists of a nonparametric estimation method, called apparent latency 
from phase coherence (ALPC), followed by a heuristic sequential forward selection algorithm (SFS). 
Compared with existing methods, ALPC-SFS requires few prior assumptions, and is straightforward 
to implement for higher-order nonlinear responses to multi-cosine sound complexes with their initial 
phases set to zero. It systematically evaluates the nonlinear components of the ASSRs by estimating 
multiple latencies, automatically identifies involved ASSR components, and reports a latency 
consistency index. To verify the proposed method, we performed simulations for several scenarios: 
two nonlinear subsystems with different or overlapping outputs. We compared the results from our 
method with predictions from existing, parametric methods. We also recorded the EEG from ten 
normal-hearing adults by bilaterally presenting superimposed tones with four frequencies that evoke 
a unique set of ASSRs. From these ASSRs, two major latencies were found to be stable across subjects 
on repeated measurement days. The two latencies are dominated by low-frequency (LF) (near 40 Hz, 
at around 41–52 ms) and high-frequency (HF) (> 80 Hz, at around 21–27 ms) ASSR components. The 
frontal-central brain region showed longer latencies on LF components, but shorter latencies on HF 
components, when compared with temporal-lobe regions. In conclusion, the proposed nonparametric 
ALPC-SFS method, applied to zero-phase, multi-cosine sound complexes is more suitable for 
evaluating embedded nonlinear systems underlying ASSRs than existing methods. It may therefore be 
a promising objective measure for hearing performance and auditory cortex (dys)function.

List of symbols
α�i	� Current phase angle of output frequencies ∈ [0, 2π]
ϕ�i	� Initial phase angle (at t = 0) of output frequencies ∈ [0, 2π]
ϕin
i 	� Initial phase angle (at t = 0) of input frequencies ∈ [0, 2π]

ω�i	� Output angular frequencies
ωin
i 	� Input angular frequencies

τe	� Estimate of real latency
τp	� Pseudo latency
�t	� The onset delay of a target EEG epoch
Ci
τ	� Latency consistency index (LCI) of i-th ASSR

C
sig
τ 	� 95% Confidence limit of LCI

dφ	� The slope of phase lags vs frequencies
ξ	� Relative amplitude gain ( ξ > 0)
θ	� Threshold for PLV
φ(fi)	� Compute current phase of a frequency by FT
mod(·)	� Modulus function: remainder after division
PLV	� Phase lock value

OPEN

1Department of Biophysics, Radboud University, Nijmegen  6525 AJ, The Netherlands. 2Donders Centre for 
Neuroscience, Radboud University, Nijmegen 6525 AJ, The Netherlands. *email: L.Wang@donders.ru.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-81232-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2150  | https://doi.org/10.1038/s41598-021-81232-5

www.nature.com/scientificreports/

MPE	� Mean phase error at the estimated latency ∈ [0, 2]
MSPC	� Multi-spectral phase coherence
ALPC	� Apparent latency from phase coherence
SFS	� Sequential forward selection
MB	� Monaural beat

Auditory steady-state responses (ASSRs) are stable brain oscillations that are locked to the frequencies present 
in the periodic envelope of acoustic stimuli1,2. Studies have indicated that ASSRs may be generated at different 
levels within the auditory pathway, ranging from as early as the cochlear nerve and subcortical sources3,4, to 
the neocortex5–8. Because of their reproducibility, and involuntary nature, ASSRs have been considered a valid 
objective biomarker for auditory system disorders that feature abnormal sound processing, as well as for evaluat-
ing primary and non-primary auditory cortex function9,10. Its presence could relate to basic bottom-up sound 
processing11,12, as well as to more complex cognitive skills, such as auditory learning13, selective attention14, 
speech and music perception7, mental disorders15, or illnesses such as tinnitus9,16. Furthermore, since ASSRs 
may contain signatures of the neural processing from auditory periphery to cortex, the electrically evoked ASSR 
from a cochlear implant (CI) could provide an objective measure for the responsiveness of different regions of 
the auditory pathway of hearing-impaired CI-users17.

It should be noted that ASSRs are due to nonlinear mechanisms in the auditory system (see18, for a review). 
At the earliest stages in the auditory pathway, the nonlinear character of neural sound encoding has been evalu-
ated from auditory nerve recordings. A stimulus consisting of multiple pure tones (the carrier frequencies) was 
shown to result in an envelope spectrum that could be characterized by a unique series of 2nd-order nonlinear 
difference frequencies (or ‘beats’) between any pair of carrier frequencies, which all showed up in the auditory 
nerve response. This indicates that these 2nd-order nonlinear distortions already arise at, or before, the auditory 
nerve19. In the ascending auditory pathway, such harmonic complexes might also evoke higher-order nonlinear 
components, which in turn could give rise to additional ASSRs. In particular, when two pure tones with fre-
quencies f1 and f2 , are passed through a nonlinear system with system order R, a series of combination tones is 
produced at the output, characterized by nf1 ±mf2 (> 0), with n and m positive integers, such that n+m ≤ R
16,20. So far, few studies have systematically evaluated such higher-order nonlinearities in the EEG responses of 
the human auditory system.

Apart from these nonlinear distortion components, also the latency at which they occur in the EEG provides 
information of the underlying neural mechanisms, and could reveal the contribution from different intracerebral 
sources6,7,21. Although the auditory system consists of both ascending and descending pathways5, the ASSRs 
recorded at the scalp are assumed to be mainly due to the ascending system. Therefore, the longer the latency, 
the higher in the auditory system its generators1.

A steady-state response is characterized by its amplitude and phase. The phase (with certain ambiguity) can 
be used to extract a so-called ‘apparent latency’ (the slope of the phase versus frequency plot) introduced by 
Regan (1966). In auditory physiology, the apparent latency is described as ‘group delay’22 and has been used to 
measure the latency of the motion of the basilar membrane, the cochlear microphonic, otoacoustic emissions, 
and the discharge of auditory nerve fibers, although the actual relation of apparent latency to physiological delay 
is not clear1. Specifically, apparent latency, τ , is derived from the relation between the response phase, �φ , and 
frequency: �φ = 2π f · τ ), and is used as an indirect method to estimate the neural response latency for steady-
state stimuli, when a direct measurement is not feasible22. This method, however, suffers from the inherent 2π 
phase ambiguity from the so-called wrap-around effect23, and is only suitable for analyzing low-order ASSR 
components (e.g., envelope frequencies) when the initial phases are known (so that phase lags can be computed). 
The more recently-developed multi-spectral phase-coherence (MSPC) method20; or similarly, the cross-spectral 
coherence (CSC) method24, resolves the phase-ambiguity problem, and allows evaluation of higher-order non-
linear response components. However, the MSPC method relies on prior assumptions regarding the underlying 
nonlinear systems: knowledge about the system orders is required for evaluating the expected nonlinear interac-
tions, from which response latencies can be estimated. Therefore, the MSPC method is difficult to implement 
when the number of underlying systems and their orders (and thus, their nonlinear interactions) are unknown. 
Moreover, when using multiple carrier frequencies, there is an explosion of the number of potential nonlinear 
interactions: for given nonlinear systems and multi-tone sinusoidal inputs, a recursive method25 can yield the 
series of output frequencies. The number of output frequencies is a steeply increasing function of the system 
order R and the number of input frequencies, I, and its accurate computation is non-trivial because of potentially 
overlapping distortion products26; see also Appendix C in Supplemental Material).

Thus, the current state-of-the-art methods are limited in estimating multiple latencies for different nonlinear 
systems from the ASSRs. However, as indicated above, several studies have suggested that ASSR sources can 
be located at multiple cortical and subcortical regions3,6, which are likely associated with different latencies. 
For example, the two-component (brainstem-cortex) model suggests that a cortical generator will dominate 
low-frequency distortion products (around 45 Hz), whereas a brainstem generator would dominate the higher 
modulation frequencies (around 90 Hz)2,27,28. As the measured EEG will typically contain the components from 
these multiple generators, a more general hybrid nonlinear model would read:

in which the unknown parameters are the number of subsystems M, the subsystem order Rm , the subsystem 
latencies τm , as well as the potentially frequency-dependent gains, ψmr . Note that, in general, it will not be possible 

(1)y(t) =
M
∑

m=1

Rm
∑

r=1

ψmr(f )x
r
m(t − τm)
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to uniquely identify each nonlinear system, when the underlying nonlinearities and their inputs are unknown. 
Yet, for certain cases, system-specific information can be obtained from the ASSRs. Figure 1 illustrates a potential 
simple scenario of such nonlinear models. The EEG is considered to reflect the (linear) sum of the outputs from 
multiple nonlinear subsystems (here taken, for simplicity, as homogeneous nonlinearities of different orders, 
Rm , and each at a different latency, τm ). The output distortion frequencies of these subsystems will differ when 
they receive non-overlapping inputs (e.g., systems S1 and S2 ). In this case, the latencies of both subsystems can be 
accurately estimated. In contrast, the output distortion products could be largely overlapping when the systems 
receive identical inputs, as in S2 and SM . In such a case, it will be much harder to estimate the underlying laten-
cies. In this paper, we simulated both cases.

There are currently no suitable methods to deal with such models, and the the commonly used apparent 
latency (or group delay) method cannot be readily aplied. The apparent latency method requires computation of 
phase lags for a group of nearby frequencies, which is difficult for higher-order ASSRs, due to (1) the 2π wrap-
ping problem (i.e., how many cycles have passed?), (2) the nonlinear distortion of phases for higher-order ASSRs 
(which could introduce a bias within 2π , see Appendix C in Supplemental Material), and (3) higher-order ASSRs 
often cover a large frequency range. Thus, the assumption that a group of target frequencies share a common 
latency does not apply anymore. As described earlier, the SPC method may partly account for the first two prob-
lems through a parametric approach, which then hinges on the assumption of the underlying nonlinear system 
orders (and their corresponding nonlinear interactions). It then estimates a latency that follows the apparent 
latency rule (i.e., τ = �φ/2π f  ). Here, we applied the MSPC method as an extension of the classical group delay 
method for higher-order ASSRs. However, the method assumes a common latency for all nonlinear response 
components with the same system order (e.g., all 2nd order responses), which might not be suitable for the ASSR 
analysis when the EEG signals arise from multiple subsystems (as illustrated in Fig. 1).

We here propose and test an alternative, nonparametric, semi-heuristic method that requires few prior 
assumptions regarding the underlying EEG sources, and aims to objectively estimate multiple potential laten-
cies from the ASSRs. We named our method ‘apparent latency from phase coherence’ (ALPC-SFS), which is 
applied to a specifically designed stimulus complex, and implements a heuristic sequential forward selection 
(SFS) algorithm29 to identify the components of each subsystem. Our method can estimate multiple latencies 
corresponding to more than one underlying source by using only one EEG experiment. Our ALPC-SFS method 
does not have to make prior assumptions about the number of underlying systems, their input frequencies, or 
their system orders. To test our method, we performed simulations for several scenarios, and recorded EEG 
responses from ten normal-hearing participants to superimposed tones that evoked high-order ASSRs during 
passive listening.

We also compared our ALPC-SFS method with the existing MSPC method, for both the simulation data 
and the EEG recordings. Both methods can be viewed as extensions of the classical group-delay method for 
higher-order ASSRs, as both follow the apparent latency rule. They will achieve an identical latency estimate if 
only one common latency exists. However, when multiple potential latencies underlie the EEG, our ALPS-SFS 
method will outperform the MSPC method (and the group delay method), achieving correct latencies for each 
subsystem, and identifying the associated frequencies that drive each subsystem (see Fig. 3).

Methods
To estimate multiple latencies from recorded ASSRs, we developed a two-stage procedure that consists of the 
nonparametric ALPC estimation method, followed by the heuristic SFS algorithm. The ALPC method can 
apply phase compensation on stimuli with arbitrary initial phases (as used in20), or it can use a much simpler 
time compensation (TC) procedure for a special stimulus complex, in which the initial phases of all stimulus 
frequencies, and thus their nonlinear distortion products, are set to zero. Note that the former requires prior 
information regarding the underlying nonlinear orders of systems and the corresponding nonlinear interaction 
(see Appendix A in Supplemental Material). In contrast, ALPC with TC requires no such information, and thus 
can be viewed as a nonparametric method (see the right-hand side of Fig. 3). We combined ALPC with SFS and 
TC to identify multiple latencies from the ASSRs.

Figure 1.   Simplified scenario of M nonlinear subsystems that underlie the measured EEG response. The input 
signal X(t) contains I frequencies. BPm represent different band-pass filters, so that the subsystems (with order 
Rm and latency τm ) may be driven by the same or by different input frequencies. The EEG contains the linear 
sum of all subsystem outputs ym(t) , with N nonlinear distortion components f�n (ASSRs).
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Problem description.  The EEG is considered as a time-series signal, S, containing a number of distortion 
frequency components {f�1 , f�2 , . . . , f�N , . . .} , with corresponding angular frequencies ω�i = 2π f�i , which are 
the outputs of a nonlinear system. Assuming that N frequency components of them have a common, unknown, 
delay τ relative to their initial phase ϕ�i at t = 0 (potentially having a common generator), we compute the cur-
rent phase angle α�i of each component by taking the Fourier transform (FT), where α�i ,ϕ�i ∈ [0, 2π] . They 
follow:

where ni are unknown integers, i.e., the number of cycles that a component is delayed, and εi is the phase error 
(PE), caused by random noise.

To estimate the common latency, we minimize the mean-squared phase error across N frequencies30:

where mod(·) is the modulus between 0 and 2π . If the nonlinear system order, R ≤ 2 , the initial phases are 
straightforward to measure from the input stimulus by extracting the phases from the envelope of the input 
signal. However, when the system’s order is unknown, and higher than three, this method will fail, because the 
unknown ϕ�i are endowed with the wrap-around problem (i.e., unknown ni).

General framework of ALPC.  First, to avoid that a discontinuous ‘jump’ (from 0 to 2π ) would 
affect the averaging in (3), we represent the components of (2) by Euler’s formula according to: 
exp (j(α�i + τω�i )) = exp (2πni + ϕ�i )+ εi or, equivalently, exp (j(α�i + τω�i )) = exp (jϕ�i )+ εi , where 
εi is a vectorized phase error (PE) and its length |εi| ∈ [0, 2] . We then minimize the cost, defined by the mean 
length of PE (MPE) across N frequencies, to estimate τe:

where | · | is the length of a complex vector. Using the estimated τe , we can compute ni and the absolute phase lag 
of each frequency by 2πni + ϕ�i − α�i (equal to τeω�i − εi ). Plotting the absolute phase lags for each frequency 
component as a function of frequency should yield a line with a slope dφ , where the relationship between τe and 
dφ follows the apparent latency rule1:

In (4), we estimate τe by searching within a period T of signal S, where T is the smallest common multiple 
of the periods of frequency components {f1, f2, ..., fN } . Then, the solutions for the latency are given by a set 
{τ |τ = τe +mT} , with m an arbitrary integer. In a particular application, a prior for the possible range of latency 
values can be imposed to constrain a unique value for τe.

Time compensation (TC) for stimuli with fixed initial phases.  To avoid the need for computing the unknown 
ϕ�i when using stimuli with arbitrary initial phases (which constitutes ‘phase compensation’, see Appendix A in 
Supplemental Material), we here propose to use a more practical stimulus complex: a multi-cosine stimulus, in 
which all initial phases are set to zero at t = 0. With such a stimulus complex it is straightforward to apply time 
compensation (TC) for an arbitrary ongoing interval (starting at t > 0) in the following way (see Fig. 2).

For a given multi-cosine input stimulus, s(t) =
I
∑

i=1
cos(ωin

i t + ϕin
i ) , with all initial phases ϕin

i = 0 at t0 = 0 , 

the ongoing stimulus interval, starting at t0 +�t , is denoted as s(t0 +�t) . The delayed EEG signal (the ASSR) 
d(t) is considered to be the output of an unknown nonlinear system with an unknown latency, τe , i.e., 
d(t) = F(s(t − τe)) , where F(·) represents the unknown nonlinear mapping. The EEG epoch of interest will 
hence follow:

Therefore, from the ASSR we can estimate the pseudo-latency τp between d(t0 +�t) and s(t0) . Since ϕin
i = 0 , 

the corresponding initial phases ϕ�i of all high-order responses are also zero (i.e., ϕ�i =
r
∑

i=1
aiϕ

in
i ≡ 0 , see 

Appendix A and C in Supplemental Material). Moreover, it can be shown that for zero-phase sine inputs, all 
even-order difference interactions (e.g., fn − fm , and 2fn − 2fm ) will yield the same initial phase of π/2 rad, so 
that the method can also be applied to these components (after changing the initial phase to π/2 ; see Appendix 
C). Therefore, from (4) and (6), we can estimate the pseudo latency τp . Finally, we apply TC to obtain the actual 
latency:

(2)

α�1 + τω�1 = 2πn1 + ϕ�1 + ε1
α�2 + τω�2 = 2πn2 + ϕ�2 + ε2
...
α�N + τω�N = 2πnN + ϕ�N + εN

(3)τe = min
τ

(

1

N

N
∑

i=1

mod

(

α�i + τω�i − ϕ�i

2π

)2
)

(4)τe = min
τ

(

1

N

N
∑

i=1

|exp (j(α�i + τω�i ))− exp (jϕ�i )|

)

(5)τe =
dφ

2π
.

(6)d(t0 +�t) = F(s(t0 +�t − τe))
�= F(s(t0 − τp))

with τp = τe −�t
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In our study, �t = 0.3 s, in order to exclude the non-stationary event-related potentials (ERP) in the EEG after 
stimulus onset (see Fig. 2). The device jitter (resulting to be < 0.5 ms) involved a small trigger jitter of the EEG 
recording system, and a fixed travel time of the acoustic signal through the silicon tube to the ears. Thus, the 
estimated latency had around 1-ms system error, which was deemed acceptable for the estimated ASSR latencies.

Latency consistency index (LCI).  Considering that the estimated latency may vary due to additive noise on 
the nonstationary signals, we quantified its consistency over K time epochs. We defined the latency consistency 
index (LCI) for the ith output frequency f�i as Ci

τ.

where τe,k is the estimated latency for frequency component f�i on the kth epoch, and it follows 
ω�iτe,k = 2πni + ϕ�i − α�i from (2), assuming Gaussian noise with zero mean. The LCI is hence mathemati-
cally equivalent to the phase-coupling strength used in MSPC20, which shows that the higher the phase-coupling 
strength between inputs and outputs, the more stable the estimated latency. We selected the duration of each time 
epoch (without overlap) as multiples of the periods of the ASSR frequencies (e.g., integer seconds, given integer 
ASSR frequencies) so that the initial phase ϕ�i remains the same across epochs. In this case, ϕ�i ≡ 0 when the 
cosine carriers have their initial phases set to zero. Thus, the LCI no longer relies on the stimulus frequencies, 
and reads:

Ci
τ can vary between 0 and 1. If the latency is perfectly stable over time epochs, Ci

τ = 1 . Otherwise, if no stable 
latency exists, Ci

τ is statistically indistinguishable from zero. Therefore, LCI can be used to determine if an ASSR 
component can be used to estimate latencies. The theoretical threshold for significance is Csig

τ =
√

3
K

31.
The null hypothesis is that the phase of an ASSR component is randomly distributed in the interval [0, 2π] . 

If Ci
τ exceeds Csig

τ  , the null hypothesis is rejected, and the ASSR component is considered to be significant. Csig
τ  

approximates the 95% confidence limit, as verified by Monte Carlo simulation20. In our analysis, only significant 
ASSR components were considered for estimating latencies.

ALPC with sequential forward selection (SFS).  A particular set of ASSR components may have a com-
mon latency that leads to a low cost of the MPE in (4). In addition, the set of ASSR components may contain 
several subsets that correspond to different latencies, which would be indicative for different underlying sources. 

(7)τe = τp +�t .

(8)

Ci
τ =

∣

∣

∣
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K
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exp(jω�iτe,k)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

K

K
∑

k=1

exp (j(ϕ�i − α�i ))k

∣

∣

∣

∣

∣

(9)Ci
τ =

∣

∣
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∣

Figure 2.   Illustration of time compensation (TC) on a single-channel EEG. The stimulus complex consisted 
of a superposition of four cosine pure tones, at 461, 500, 504 and 537 Hz, starting at t = 0 with initial phase 0. 
Here, the six distortion frequencies (i.e., the 2nd order system products) in the top panel at [4, 33, 37, 39, 43, 76] 
Hz, are shown and time-scaled by a factor 0.1, for illustrative purposes. Note that all six distortions also start 
with zero phase at t = 0 (because of the good property of cosine; see Appendix C in Supplemental Material). The 
EEG response to the stimulus complex is shown in the bottom panel (1st trial on EEG electrode P8, subj#1) and 
has been down-sampled to 200 Hz for easy visualization. The first �t = 0.3 s of the EEG signal is excluded from 
analysis because of the initial non-stationary ERP components (i.e., non-ASSR).
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To automatically identify a frequency subset from all significant ASSR components that belong to a common 
latency, we applied the heuristic SFS algorithm. SFS is commonly used as an alternative to a greedy algorithm, 
to reduce computational complexity. SFS starts with a frequency (or frequency pair), and then sequentially adds 
another frequency (from the remaining set) that results in the smallest increase of the cost (i.e., MPE in a range 
of [0–2]). The details of the SFS algorithm are described in29,32.

The termination rule of SFS should be carefully chosen, depending on the data at hand. Here, we used the 
following procedure. When starting from a single frequency, SFS continued as long as the following two criteria 
were met: (i) the increase of the MPE of the current step remained < 0.1, (ii) the current MPE < 0.5. Otherwise, 
SFS terminates. If SFS started from a pair of frequencies, it continued when the following three criteria were met: 
(i) the difference of estimated latencies between the current and the previous step < 5 ms, (ii) the step increase 
of MPE < 0.1, (iii) the current MPE < 0.5. Otherwise, SFS terminates. These criteria may be further tuned for 
the particular EEG data set.

Figure 3 summarizes the pipeline for estimating the apparent latency from the EEG by the MSPC and ALPC-
SFS methods, respectively. Depending on the initial phases of the carriers (either arbitrary, or all zero), one can 
use either a parametric (the left-hand side, MSPC, or group delay) or a non-parametric (the right-hand side; 
ALPC-SFS) approach to estimate the underlying latency. For the parametric approach, phase compensation (see 
Appendix A in Supplemental Material) can be used to estimate the unknown initial phases of the ASSRs, which 
are fed to the MSPC algorithm to estimate the dominant latency. Note that the phase compensation method 
requires prior assumptions regarding the nonlinear system. For the non-parametric approach as proposed in 
the present paper, ALPC with SFS can estimate multiple potential latencies, by selecting the involved ASSR 
frequencies for each subsystem.

EEG experiments
Experimental design and stimuli.  We performed EEG recording experiments on 10 normal-hearing 
adults (1 female, age 29 ± 13 y) (hearing thresholds < 20 dB HL). Each subject was measured twice, using the 
same stimuli on different days (i.e., > 48 h interval). The stimulus at the left ear was a superposition of two tones 

Figure 3.   Pipeline for estimating the apparent latency from the EEG signal, using the parametric MSPC (left) 
or non-parametric ALPC-SFS (right) approach. ϕin

i  represents the initial phase of each frequency component in 
the stimuli (input), and ϕ�n represents the initial phase of each ASSR frequency component (output). By using 
multi-cosine stimuli with their initial phases set to zero, the ALPC-SFS method (right) uses time compensation 
by �t to avoid the more complex phase-compensation procedure of the MSPC method (left; see Appendix A in 
Supplemental Material), which computes phase lags of the ASSRs. Moreover, the former can identify potentially 
multiple latencies, [ τ1, τ2, · · · ], instead of only one (biased) dominant latency, τ̂1.
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of 461 Hz and 500 Hz at 81 dB SPL, and two tones of 504 Hz and 537 Hz at 56 dB SPL. The stimuli at the right 
ear consisted of the reverse pattern: two loud tones of 504 Hz and 537 Hz at 81 dB SPL, and two weaker tones 
of 461 Hz and 500 Hz at 56 dB SPL. The stimuli were fed into both ears simultaneously. The four frequencies 
were chosen such that the difference frequencies and higher-order distortions were all unique (see Fig. A2 in the 
Supplemental Material).

In the EEG experiments described here, all input tones were sines with their initial phases at t = 0 set to zero. 
In Appendix C of Supplemental Material, we demonstrate that such carriers will yield irregular phase-shifts for 
all higher-order distortion products, except for the even-order difference interactions (e.g., f1 − f2 , and 2f1 − 2f2 ). 
The initial phase of these even-order distortion products will remain the same. Thus, when only even-order dif-
ference interactions in the ASSRs are considered (as in this study), APLC-SFS with TC can also be applied for 
zero-phase sine stimuli.

In each trial, stimuli with a duration of 12.3 s were played after a silent break with a random duration between 
2 and 3 s. It has been reported that the primary auditory cortex responds within 20 ms to stimulus changes and 
integrates stimulus features over a period of about 200 ms, which is the pre-steady-state phasic response phase33. 
Therefore, the first 300 ms of the EEG of each trial was excluded from analysis to avoid the contributions from 
phasic event-related potentials (i.e., non-ASSRs). We expect the ASSR latencies to remain constant during the 
subsequent 12 s of the ASSR stage, which will allow for an accurate estimate of the neighboring SNR (see sec-
tion E). We repeated 100 trials while recording the scalp EEG with a 64-channel cap with Ag/AgCl electrodes, 
with the listener sitting in an anechoic chamber, watching a silent video. The EEG signals were digitized at a 
sampling rate of 2000 Hz by a Refa amplifier system (TMSi, Twente Medical Systems International B.V., the 
Netherlands), and stored for offline analysis. At the start of each recording session, the impedances of all EEG 
electrodes were carefully set to values below 10 k� to ensure good contacts between electrodes and scalp. During 
the session, these values were regularly checked, and adjusted when deemed necessary. Stimuli were generated 
by TDT (Tucker-Davis Technologies, USA) system 3 hardware, and presented through ER3C insert earphones 
(Etymotic Research, Elk GroveVillage, IL), which were connected to the participant’s ears via 30 cm-long plastic 
tubes and foam earplugs.

The experiments were approved by the ethics committee at Radboud University and performed in accord-
ance with the human experiment guidelines and regulations of Radboud university. We confirm that informed 
consent was obtained from all subjects.

Preprocessing of EEG.  We applied a three-stage preprocessing protocol on the raw EEG recordings, after 
first removing the three EEG electrodes above the eyes (FP1, FPz, and FP2) because they were contaminated 
by eye-blinks and eye-movement artifacts. First, the raw EEG signals were re-referenced to a common average 
reference (CAR) to reduce the noise from the grounding electrode34. Compared with re-reference in relation 
to a certain EEG electrode that may not be ‘neutral’ to ASSRs, the CAR montage will keep the phases of ASSRs 
unchanged on most EEG electrodes. Second, each EEG channel was filtered with a zero-phase shift filter35 that 
consisted of a 10th-order Butterworth high-pass filter with a cutoff frequency of 1 Hz, and a notch filter at 50 
Hz to remove the line noise. Third, to exclude severely contaminated EEG trials from further analysis (mainly 
by EMG artifacts, which may cause false detections or decreased SNRs of ASSR components), we developed a 
method to automatically exclude bad EEG trials. To that end, we computed the mean and the variance of the 
peak-to-peak amplitude range as indicators on each EEG trial. We excluded EEG trials whose indicators were 
positive outliers on 100 trials, i.e., samples > Q3 + 1.5 * IQR. (Interquartile range (IQR) = upper quartile (Q3) − 
lower quartile (Q1)). In this way, up to 5% of all trials were automatically excluded from further analysis.

Epoch filtering by phase lock value (PLV).  We tested whether excluding poorly phase-locked epochs 
would improve the accuracy of the phase estimates, and latencies, for the frequencies of interest. To that end, 
we divided each trial into twelve one-second epochs, and computed their phase-lock value (PLV ∈ [0, 1] ) to 
each frequency of interest36. PLV = 0 represents no phase locking between the frequency band of EEG and the 
frequency of interest, while PLV = 1 represents the complete phase locking. Epochs with a PLV value below a 
empirically selected threshold, θ (taken as θ = 0, 0.4, 0.6, or 0.8) were excluded. Finally, we computed the phase 
values on the remaining epochs by using two different averaging methods: AVG EEG, and AVG phase (described 
below).

Phase extraction of EEG.  The accuracy of the extracted phases of the frequency components is important 
for estimating latency. Previous studies often average the EEG signals across a number of trials to reduce the 
background noise, so that ASSRs have a higher SNR37. Here, we employed two different methods, ‘AVG EEG’ and 
‘AVG phase’ to extract the phase of a target frequency. The ‘AVG EEG’ method averages filtered EEG signals of all 
trials and subsequently computes the phases of the average EEG. The phase values from this method tend to be 
dominated by epochs with strong ASSRs (i.e., with large amplitudes). Instead, the ‘AVG phase’ method averages 
the extracted phases from all EEG epochs with a duration that is an integer multiple of the signal period (1 sec 
in this study), without considering amplitude information (as used in20). For this method, all EEG epochs thus 
contributed with equal weight to the estimate. For comparison, we used both methods to extract the phases on 
each EEG channel independently.

SNR on target frequencies.  It is difficult to separate the signals generated by ASSRs from background 
noise in the EEG on a single-trial basis. However, after averaging the EEG across a number of trials (100 trials 
in this study), the power of phase-locked frequencies is enhanced, whereas the power of the background EEG 
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is suppressed due to random phases. To quantify the SNR of each ASSR frequency component, we defined the 
neighboring SNR as3:

where P(ft) is the power of the target frequency bin ft . The fi is a neighboring frequency bin within a small range 
(± 0.5 Hz) of ft . For a 12 s EEG trial, the width of a frequency bin is 1/12 Hz and N = 12. Compared with the fre-
quency spectrum of the EEG, the neighboring SNR is robust to the pink noise present in EEG signals (see Fig. 9).

Note that the defined neighboring SNR is not an unbiased estimate of real SNR. In fact, the expected neigh-
boring SNR E(SNR(ft)) = SNR + 138. More specifically, the defined neighboring SNR follows a F distribution 
with (2, 2N) degrees of freedom (when the target frequency bin contains no signal), where N is the number of 
neighboring frequency bins. Given a type-I error (e.g., α = 0.05) from the F test, the significance threshold θ 
is a function of the number of neighboring frequency bins39, i.e., θ = finv(1 − α, 2, 2N) by using the MATLAB 
(2018a) function ‘finv’. For N = 12, the corresponding thresholds for a significance level p of 0.05 and 0.01 are 
3.401 (5.318 dB) and 5.614 (7.492 dB), respectively.

Results
Simulation results.  To illustrate the potential of ALPC with SFS in combination with zero-phase cosine 
stimuli, we simulated different models and scenarios (cf. Fig. 1). In these examples, two parallel nonlinear sub-
systems with different delays could have different, or (partially) shared inputs.

Example 1: Two pure second‑order subsystems with non‑overlapping inputs.  Figure  4 shows the simulation 
results of our ALPC-SFS algorithm for the simple example of Eq. (11). The total input signal, x(t), consisted of 
five frequency components: (17, 21, 27, 41, 49) Hz, where x1 = (17, 21, 27) Hz were fed to a pure second-order 
subsystem y1 , and x2 = (41, 49) Hz to a similar subsystem y2 . In this model, system y1 generated the distortion 
products {2fi , fi ± fj} = {4, 6, 10, 34, 38, 42, 44, 48, 54} Hz, and system y2 yielded the non-overlapping compo-
nents {8, 82, 90, 98} Hz. Subsystems y1 and y2 had different latencies τ1 = 51 ms and τ2 = 21 ms, respectively. Y is 
the combined output signal, (representing the EEG) with additive Gaussian white noise (WGN), ε(t) . We added 
noise with different variances, such that the SNRs were 5, 0, − 5, − 10, − 15, and − 20 (dB) (using MATLAB’s 
function ‘awgn’).

To estimate the unknown latencies, we assume that only the total input (stimulus) and output (EEG) are 
available, but that the information regarding the subsystems (e.g., input frequencies of each subsystem, and 
system orders) is unknown. Figure 4 shows that our ALPC-SFS method separated the mixed outputs into the 
appropriate contributions from the two underlying subsystems, and correctly estimated their latencies. Here, 
we took for the additional signal delay, �t = 0 , for simplicity, and signal Y had an SNR of 5 dB. Figure 4a shows 
the input and output signals, and their spectrum. Figure 4b illustrates the SFS procedure, starting from a ran-
domly selected frequency component (here: 38 Hz) from the output frequency set (i.e., those frequencies whose 
power are higher than the background). The upper panels show the mean phase errors (MPEs) of all candidate 
frequencies on each step in the SFS, the bottom panel shows the corresponding estimated latencies of candidate 
frequencies at each step. The MPE started to rise significantly after step 8, where a termination criterion of SFS 
came into action (see Methods). Thus, the first nine (8 + 1) frequencies were selected, yielding an estimated 
latency of 51 ms. Subsequently, SFS was performed on the remaining frequency set, which gave an estimated 
latency for a second subsystem of 21 ms. Without SFS, an estimate based on all frequencies would result in only 
one dominant latency (51 ms), as shown for step 12 (Fig. 4b).

The relationship between SNR and accuracy of the estimated latencies is provided in Table A1 of Supple-
mental Material.

We also considered a scenario for which �t was not zero. We first estimated the pseudo latencies and applied 
TC to determine the actual latencies. The pseudo latency uses the property that the initial phases of the nonlinear 
distortions of zero-phase cosine inputs remain the same (see Appendix C in Supplemental Material for details). 
In this way, we do not need to apply phase compensation. However, when �t exceeds the actual latency, the 
corresponding pseudo latency will be negative (Eq. 6), yielding a negative slope for the phase-lag vs. frequency 
relation (See Fig. 5).

For comparison, we also applied the MSPC method20 to this simple model. Also this method estimates a sys-
tem latency by minimizing the MPE over a time window. It requires the total input (stimuli) and output (EEG), 
and has to make an assumption about the underlying system orders. In case of a correct selection of inputs and 
outputs and system-order information, MSPC may perform equally well as ALPC-SFS (Fig. 3). However, when 
the sub-systems inputs and outputs are not known a priori, MSPC may fail to correctly identify the systems and 
make a biased estimate. Figure 6 demonstrates this for the same settings as in Fig. 4. The MSPC method estimated 

(10)SNR(ft) = 10 log 10
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y1(t) = x1

2(t − τ1)

y2(t) = x2
2(t − τ2)

Y(t) = y1(t)+ y2(t)+ ε(t)
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Figure 4.   Simulation of the ALPC-SFS method for the system of Eq. (11). The two subsystems were successfully 
separated from the mixed nonlinear response, and their latencies were estimated correctly. (a) Input signal X 
(sum of five cosine signals with zero phases) and their mixed total response, Y. (b) SFS without applying the 
termination criterion. Each circle represents a candidate frequency and the dashed line crosses the candidate 
frequencies with the minimum MPE for each step (top panel) and their corresponding latencies (bottom panel). 
(c) Phase error (PE, in radians) of each selected frequency over time. The MPE (bold dashed line) reaches its 
minimum (close to 0) at the estimated latency. (d) Plot of phase lags determined from the estimated latency. The 
slopes of the best-fit lines correspond to the latencies.

Figure 5.   The process of estimating the pseudo latency when the stimuli are delayed (here: �t = 300 ms), like 
in Fig. 2. After applying TC (Eq. 7), the estimated latencies are correctly estimated as 51 and 21 ms, respectively, 
with its MPE close to zero at these latencies. Notice that the negative slopes in the right-hand panel correspond 
to the negative pseudo latencies of − 249 and − 279 ms, respectively (see Methods).
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only one biased latency (close to the dominant one) for the assumed 2nd-order system. However, it failed to find 
the second hidden subsystem, which produced fewer nonlinear distortion products.

Example 2: Models containing multiple system orders.  We also applied both methods to a more complex model, 
in which each subsystem contained a second- and a third-order nonlinearity:

The total input signal X(t) contained four frequency components: {37, 43, 38, 46} Hz, where x1=(37, 43) Hz 
were fed to subsystem y1 , and x2=(38, 46) Hz to subsystem y2 . In this example, subsystem y1 generated the follow-
ing distortion product set: {6, 74, 80, 86, 31, 37, 43, 49, 111, 117, 123, 129} Hz, and subsystem y2 yielded the non-
overlapping set: {8, 76, 84, 92, 30, 38, 46, 54, 114, 122, 130, 138} Hz. For both frequency sets, the first four entries 
are 2nd-order distortion products and the remaining components are 3rd-order outputs. Subsystems y1 and y2 
had latencies τ1 = 51 ms and τ2 = 21 ms, respectively. Y is the combined output signal, representing the EEG.

To estimate the latencies, we assumed that only the total input (X) and output (Y) were available, and that 
there was no prior information about the subsystems. Figure 7 shows the estimated latencies for the ALPC-SFS 
and MSPC methods. In this example, signal Y had an SNR of 5 dB. Without knowing the information of both 
subsystems y1 and y2 , ALPC-SFS correctly estimated the latencies and separated the two original subsystems. In 
contrast, the MSPC method relied on an explicit assumption regarding the order of potential subsystems. How-
ever, as in this example, within a given system order, not all distortions are associated with a common latency. 
As a result, the MSPC method made biased estimates.

Example 3: two mixed subsystems with identical outputs.  We also simulated the more challenging scenario 
in which the two subsystems had overlapping output components. In this case, only distorted phases can be 
extracted from the mixed output signals, and the relative amplitude gain of the output components (related to 
ψmr in (1)) results to determine the estimated latencies. The stimulated model reads:

where the relative amplitude gain ξ > 0 , and the latencies, τ1 = 15 , τ2 = 20 ms. Both y1 and y2 had identical 
input frequencies (17, 21, 27) Hz so that they generated nine identical 2nd-order output components: {4, 6, 10, 
34, 38, 42, 44, 48, 54} Hz. We varied the relative gain ξ = [ 1

100 ,
1
10 ,

1
6 ,

1
4 ,

1
3 ,

1
2 ,

1√
2
, 1,

√
2, 2, 3, 4, 6, 10, 100] , and 

simulated the mixed signals Y without noise, and under SNRs of (5, 0, − 5, − 10, − 15, − 20) dB. The latency 
estimates as function of the relative gain are shown in Fig. 8.

The simulations show that in case of total overlap of the system outputs, the estimated latency is a weighted 
average of the underlying true latencies, where the relative gain of the systems serves as the weighting factor. 
After normalizing the estimated latencies (on the pure, noiseless signal) to a range between 0 and 1, we fitted 

(12)
y1(t) = x21(t − τ1)+ x31(t − τ1)

y2(t) = x22(t − τ2)+ x32(t − τ2)
Y(t) = y1(t)+ y2(t)+ ε(t)

(13)
y1(t) = x1

2(t − τ1)

y2(t) = x2
2(t − τ2)

Y(t) = ξy1(t)+ y2(t)+ ε(t)

Figure 6.   The MSPC method estimates a system’s latency for the same input X and output Y as in Fig. 4. It 
assumes that the system order equals two. It estimates one biased latency of 54.8 ms with its corresponding MPE 
of 0.42 (MPE ∈ [0, 2]).



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2150  | https://doi.org/10.1038/s41598-021-81232-5

www.nature.com/scientificreports/

the estimates with a sigmoid function f (x) = a
1+e(−bx) , with x the natural logarithm of the relative gain, and fit 

coefficients a=1.00 and b=1.17, with 95% confidence bounds (0.9944, 1.007) and (1.143, 1.196), respectively. In 
general, the estimated latency for the superposition of the two system outputs with latencies ( τ1 ≤ τ2 ) follows: 
τmix = (τ2−τ1)

1+e(−1.17 log(ξ)) + τ1 , which is equivalent to,

On the signal without noise, each selected starting frequency of the SFS yielded the same results for latency, MPE, 
and selected frequency components (i.e., output components). On the signal with noise, selecting a different 

(14)τmix =
1

1+ ξ (−1.17)
(τ2 − τ1)+ τ1

Figure 7.   Estimated latencies when subsystems ( y1 and y2 ) are unknown. (Top) By using ALPC-SFS on Y, two 
latencies (51 and 21 ms) are correctly estimated with corresponding MPEs less than 0.001 and with correctly 
identified subsystems ( S1 = y1 and S2 = y2 ). Here, SFS started from a randomly selected distortion frequency, 
6 Hz, and the same termination rule with scenario 1. (Bottom) MSPC estimated latencies for the assumed 
2nd-order, and 3rd-order subsystems from X and Y. The estimated latencies are 17.9 ms and 52.7 ms with large 
MPEs of 0.78 and 0.66 for the 2nd-order and 3rd-order subsystems, respectively. Note also that the selected 
frequencies that determine the two latencies do not correspond to the actual subsystems.

Figure 8.   (Top) Estimated latencies on mixed signals of two subsystems with overlapping output frequencies 
and varying amplitude scale ratio ξ . The estimated latencies from mixed signals (on the noise-free signals) fit a 
sigmoid function between two veridical latencies. (Bottom) The mean phase error (MPE) tends to increase with 
decreasing SNR. In all cases, SFS started with 10 Hz.
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starting frequency for the SFS yielded similar results for latency and MPE (as shown in Fig. 8), but could slightly 
differ regarding the selected frequency components, because frequency components with a large phase shift (due 
to low SNRs) are not selected by SFS.

Measured ASSR components in the EEG.  Table 1 shows the nonlinear interactions between the four 
stimulus input frequencies up to 6th order, and the corresponding frequencies that could potentially be present 
in the measured ASSR. The odd-order distortion products (around 500 Hz and higher; e.g., 2f1 − f2 ) fall above 
the pre-processed EEG bandwidth (< 200 Hz). In this study, we used the same four frequencies (with differ-
ent SPLs) as stimuli for both ears. As a result, all potential binaural beats (BBs, if significant) overlap with the 
monaural beats (MBs), whereas MBs often show much larger ASSR amplitudes than BBs40. Therefore, the ASSRs 
analyzed in this study are the result from a superposition of MBs and potential BBs, but are mainly dominated by 
the MBs. This study therefore focused only on the method to estimate ASSR latencies, rather than to disentangle 
the contribution of MBs vs. BBs.

In the ASSRs, two predominant MBs (i.e., 33, 39 Hz) were generated by the second-order difference of the 
two louder pure tones in each ear. Their full 2nd-order interactions (including harmonics and their inter-mod-
ulations, i.e., a subset of 4th-order interactions of the input frequencies) and 3rd-order interactions (i.e., a subset 
of 6th-order interactions of the input frequencies) also show high SNRs. Note that Table 1 shows a subset (< 200 
Hz) of theoretical ASSR frequencies corresponding to each system order. In addition to the 4th-order output 
frequencies shown in Table 1, more 4th-order output frequencies could potentially be generated among the full 
set of 2nd-order output frequencies, e.g., 29 and 35 Hz. Such output frequencies, however, were not considered 
in this study because of much lower SNRs.

Figure 9 shows that, in the measured EEG, the theoretical ASSRs all exceeded the background (i.e., non-ASSR 
integer frequency components) of 6.3 (± 0.6) dB and the threshold of 7.492 dB (p = 0.01). To avoid the potential 
detrimental effect of EMG artifacts, we averaged the top-3rd SNRs on each integer frequency across ten subjects, 

Table 1.   ASSR components generated by the nonlinear interaction The four stimulus tones were sinusoids of 
f1 =461, f2 = 500, f3 =504, f4 =537 Hz to both ears. The principal monaural beat frequencies MB1 (33 Hz) and 
MB2 (39 Hz) were generated by the two louder tones in the right and the left ears, respectively (see Methods; 
see also Fig. A2 in Supplemental Material).

Order Nonlinear interaction Output frequencies (Hz)

2nd
∣

∣fi − fj
∣

∣, i �= j
i, j ∈ {1, 2, 3, 4}

33, 39;
4, 37, 43, 76

4th 2MB1/2 , |MB1 ±MB2| 6, 72, 78, 66

6th 3MB1/2 , 
∣

∣2MB1/2 ±MB2/1
∣

∣ 99, 117, 45, 27, 111, 105

Figure 9.   Grand average SNRs (n = 10 subjects on recording days 1 and 2, top panel) and grand averaging scalp 
topography (n = 20 measurements over two days, bottom panel) on ten major ASSR components indicated 
by arrows. The third-largest SNR (out of 61 channels) on each integer frequency was averaged across 10 
subjects measured on day 1 or day 2. To calculate the grand average of the scalp topography, the SNR of each 
measurement was normalized between 0 and 1 to enable a direct comparison of each subject’s contribution.
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measured on both recording days. The measurements of day 1 and day 2 showed highly similar SNR values. The 
grand average (n = 20, day 1 and 2) SNR across all 61 EEG channels showed that ASSRs tended to have their 
maximum activation at both temporal lobes and frontal-central regions (bottom panel of Fig. 9). Results from 
the individual subjects are provided in the Suplemental Material, section D.

Estimated latencies from ASSRs.  The MB frequencies showed a higher SNR (or LCI) than the other 
ASSR components. Therefore, in applying ALPC-SFS, we estimated latencies by starting with a pair of MB fre-
quencies (i.e., 33 and 39 Hz). The MB frequency pair can determine a search direction for SFS, so that it finds 
the involved ASSR components that have a common latency. Similarly, we evaluated the underlying latencies 
dominated by higher frequencies (HF) (> 80 Hz) by using SFS starting with the 3MB frequencies (i.e., 99 and 
117 Hz). The ten subjects yielded similar results for the measurements on both days. The results of day 2 are 
shown in Fig. 10, where the phase extraction was performed by taking the ‘AVG EEG’ procedure (see Methods).

The estimated latencies resulted to vary with the location of the EEG channels. Table 2 includes the estimated 
latencies for three representative EEG channels: P7 (left TL), FCz (FC region) and P8 (right TL). Channels FCz 
and P8 were chosen because they yielded the largest grand-average LCI. P7 is located contralateral to P8, and 
was selected for comparison.

The results based on AVG phase and AVG EEG were quite comparable (see Fig. 11). The estimated latencies 
for the low-frequency distortion products (LF) on EEG channels FCz and P7 had a non-Gaussian distribution, 
so that we report their median values and percentiles. The MPEs at the estimated latencies were low (< 10%) 
and at a similar level for all estimates of the two LF- and HF-dominated systems, which is indicative for a reli-
able estimation. The most consistent latencies were obtained from EEG channel P8, which yielded a large ASSR 
response (i.e., high SNRs and LCIs). As the power of high-order responses (e.g., 4th and 6th orders) tended to 
decrease, the corresponding ASSR components were not significant on certain EEG channels, causing a less 
reliable estimated latency. We thus selected a subject-specific best channel with the largest LCI value instead 
of using P7 for estimating the HF-dominated latencies, showing a median latency of 21.1 ms, with 19.9 and 
24.3 ms as the 25% and 75% percentiles, respectively. The ‘best ch’ is mainly selected from the FC region, thus 

Figure 10.   Estimated latencies of 10 subjects on EEG channel P8. The left-hand panel shows the latencies 
determined when SFS started with the MB frequencies (33 and 39 Hz), which overlap considerably because of 
a stable slope (latency estimate) across subjects; the right-hand panel shows the result when SFS started with 
the 3MB components. The minimum mean phase error (MPE) within the imposed prior range (< 100 ms) 
corresponds to the estimated latency, which is proportional to the slope of the fitted lines in the bottom panels.

Table 2.   Estimated latencies, MPE, and LCI on LF- and HF- dominated systems (n = 20). TL: temporal lobe; 
FC: frontal central. MPE: mean phase error at the estimated latency. MPE ∈ [0, 2] . Note the low values for the 
MPE, indicating high confidence in the estimates. *Median values, and 25% and 75% percentiles, respectively.

EEG channel

LF (m, ± sd) HF (m, ± sd)

Latency* MPE LCI (MBs) Latency* MPE LCI (3 MBs)

P8 (right TL) 40.8 (38.8, 41.3) 0.14 (± 0.03) 0.29 (± 0.12) 26.7 (25.2, 34.6) 0.11 (± 0.06) 0.056 (± 0.032)

FCz (FC) 51.7 (27.6, 54.4) 0.16 (± 0.05) 0.37 (± 0.08) 20.6 (16.7, 26.8) 0.14 (± 0.04) 0.076 (± 0.044)

P7 (left TL) 42.5 (40.6, 68.2) 0.13 (± 0.05) 0.26 (± 0.14) – – 0.047 (± 0.038)
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it shows a similar median value as FCz. The HF-dominated latency generally showed a larger variance than the 
LF-dominated latency, which relates to a smaller LCI of the HF components.

The LCI was computed on K = 1200 (100 trials * 12 s) EEG epochs with 1-sec duration for each ASSR com-
ponent. According to the theoretical threshold of 

√
3/K  (see Methods), the 95% confidence threshold for a sig-

nificant LCI was 0.05. We used the average LCI of MBs and 3MBs for the LF and HF components. Table 2 shows 
that the LCIs for LF components were significantly higher than for HF components, which is mainly due to the 
decreased SNRs of the higher-order ASSRs (see Fig. 9). The lower LCIs on the HF components partly explains 
the larger variance on the estimated latencies.

Effect of epoch filtering.  We excluded poorly phase-locked epochs by applying epoch filtering (see Meth-
ods) and compared the results for four different thresholds ( θ = 0, 0.4, 0.6, and 0.8) for the phase-lock values 
(PLV). These PLV thresholds were chosen empirically, ( θ = 0 means that 100% of the EEG epochs were included), 
such that the included EEG epochs were around 60%, 30% and 10% for θ = 0.4, 0.6, and 0.8, respectively. The 
estimated latencies were robust for different values of θ , as shown in Fig. 11. The cause for this stability is that 
the ALPC-SFS method employs multiple ASSR frequencies to determine a latency, and among them the MB 
frequencies show generally stable phase values across subjects. As a result, the Average EEG and Average Phase 
extraction methods both yielded similar results. Around 10% of all EEG epochs (i.e., θ =  0.8) generated similar 
results to that using all EEG epochs, which indicates that the latency is mainly determined by EEG epochs that 
are strongly phase-locked to the stimuli. On the other hand, using fewer EEG epochs increased the variance of 
estimated latency across subjects.

A comparison with the MSPC method.  We compared our ALPC-SFS method with the MSPC method 
for estimating the ASSR latencies from the recorded EEG. Figure 12 shows the results obtained from one rep-
resentative subject. The ALPC-SFS method selects a group of ASSR frequencies that share a common latency 
across different potential system orders (panel b). In contrast, the MSPC method computes a latency by assum-
ing a specific system order. All significant ASSRs (i.e., LCI > 0.05) were used. Note that the LCI is mathematically 
equivalent to the phase-coupling strength employed in the MSPC method (see Methods). The latter method, 
however, led to larger MPEs, because the ASSRs of the same order could have been generated by subsystems 
with different latencies, yielding poorer linear regression results for the relation between phase lag vs. frequency 
(see Fig. 12).

Table 3 shows the estimated latencies from the MSPC method for 20 measurements on two EEG channels: 
FCz and P8, on which subjects showed generally more significant ASSRs. Compared with the ALPC-SFS based 
MPE values in Table 2, the MPE values (> 0.3) in Table 3 indicate that the estimated latencies from the MSPC 
method were not reliable. In addition, the low LCI values show that many ASSRs were weak and not significant 
(i.e., LCI < 0.05), and were excluded for estimating latencies. Note that the median values of the ALPC-SFS 
vs. MSPC-based latencies were similar (e.g., when based on 2nd-order outputs). The ALPC method becomes 
mathematically equivalent to the MSPC method when the assumed system information is correct. However, 
compared with the ALPC-SFS method, the MSPC method lacks the procedure of ASSR frequency selection, 
and instead relies on a prior assumption regarding the system order to group frequencies (see Fig. 12). Such an 
assumption may be appropriate for the skeletal motor system20, but may be less suitable for analyzing the human 
auditory system. For example, looking at the 4th-order distortion products, the MSPC method would include 
2MBs, which are already generated at the cochlea, as well as the difference frequencies (e.g., 6 Hz) of MBs from 
both ears, which are generated at higher levels in the binaural auditory pathways (e.g., at the inferior colliculus, 
or at auditory cortical levels). Possibly, these different components may have different latencies, and should not 
be lumped into the same subsystem for estimating a latency.

Figure 11.   Effect of epoch filtering (LF-dominated latency as an example (n = 20)). We applied EEG epoch (1 
s) filtering with four thresholds of the PLV ( θ = 0, 0.4, 0.6, and 0.8). Both phase-extraction methods (AVG EEG 
and AVG phase) yielded highly similar latency estimates.
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Discussion
Advantages of the proposed method and stimuli.  ALPC combined with SFS and time compensation 
has three major advantages compared with existing methods: (i) It requires no prior assumptions of the underly-
ing nonlinear systems (e.g., system orders, or the number of subsystems) to calculate the unknown phase infor-
mation of the ASSR components through phase compensation, and is therefore easier to implement. (ii) It allows 
for the estimation of multiple underlying latencies. (iii) It allows for the analysis of different nonlinear (sub)

Figure 12.   An example using one channel EEG signals (FCz, 100 trials) from Subj#1 to demonstrate the 
difference in results between the ALPC-SFS and MSPC methods. (a) shows the average EEG across 100 trials, 
its spectrum, and the neighboring SNR (see Methods). (b), ALPC-SFS starts from two MB frequencies (33, 
39 Hz), and automatically selects the ASSR frequencies that have a similar latency (error < 5 ms), leading to a 
MPE < 0.5. ALPC-SFS applied time compensation, which leads to the negative slope that corresponds to the 
pseudo latency. The MSPC method estimated the latencies by assuming specific system orders (panel c: order 2) 
and (panel d: order 4) (see also Table 1). However, the lumped 2 nd-order ASSRs did not yield a reliable latency 
estimate, although all selected ASSRs were significant (i.e., LCI > 0.05). In contrast, the ALPC-SFS procedure 
identifies its latencies across system orders, and generated a subset of ASSRs with the same latency from both 
2nd order (33, 39, 43 Hz) and 4th order system outputs (66, 72, 78 Hz).

Table 3.   Estimated latencies with the MSPC method for three system orders LCI here is mathematically 
equivalent to the MSPC value used in20. MPE mean phase error, ∈ [0, 2] , at the estimated latency. *Median 
value, and the 25% and 75% percentiles.

System order

FCz P8

Latency* MPE (m, ±sd) LCI (m, ±sd) Latency* MPE (m, ±sd) LCI (m, ±sd)

2nd 55.3 (52.2, 84.7) 0.68 (±0.24) 0.16 (±0.02) 40.7 (15.8, 41.5) 0.63 (±0.25) 0.12 (±0.04)

4th 40.3 (37.1, 50.4) 0.31 (±0.19) 0.07 (±0.04) 42.3 (32.2, 55.5) 0.48 (±0.26) 0.06 (±0.03)

6th 22.0 (12.1, 31.1) 0.38 (±0.22) 0.05 (±0.02) 45.2 (25.2, 46.6) 0.33 (±0.25) 0.04 (±0.02)



16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2150  | https://doi.org/10.1038/s41598-021-81232-5

www.nature.com/scientificreports/

systems with different nonlinearities in one pass, and automatically selects the contributing ASSR components 
with the same latency (and potential common generators). Therefore, ALPC-SFS is better suited for analyzing 
nonlinear, higher-order ASSRs that are thought to underlie complex brain functions.

Moreover, the use of multi-cosine stimuli with all initial phases set to zero provides two additional advantages. 
(i) Compared to stimuli with arbitrary initial phases, it avoids the complicated procedure of phase compensation, 
and thus requires no prior assumptions regarding the underlying system nonlinearities. Note that the stimuli 
should preferably be cosine (not sine) with initial phase at zero, because for multi-cosine stimuli, arbitrary-order 
(even and odd) nonlinear distortion products all have zero initial phase, so that one can readily apply ALPC-SFS 
with time compensation. As shown in Appendix C of the Supplemental Material, a sum of sines only maintains 
a common initial phase for a specific subset of distortion products only, because the nonlinear distortions of the 
sine will generate phase shifts ∈ [0, π/2 , π , or 3π/2 ] that depend on system order and nonlinear interactions. 
(ii) The estimated latency for zero-phase distortions will be more robust against the unavoidable small system 
errors (e.g., small delays caused by tubes and the measurement devices). It is often difficult to directly measure 
the exact phase values of the stimulus carriers at the onset of experimental trials, i.e., the exact time at which 
sound stimuli hit the ear drums. As a result, even a small timing error of one millisecond will already significantly 
change the phases of high-frequency stimuli (e.g., > 1 kHz). Consequently, small errors in the stimulus phases 
may lead to an unreliable latency estimate for methods that require exact initial phase values of the stimuli. In 
contrast, for multi-cosine stimuli the exact onset phase at the ears is not critical, as the estimated latency will be 
the sum of the true latency and the unknown (small) system delay, which can be readily incorporated as a fixed 
time compensation (described in Methods).

Therefore, to evaluate higher-order ASSRs, our proposed cosine stimuli with zero phase serve as a convenient 
alternative to multiple-sine stimuli with arbitrary initial phases; the ALPC-SFS method can also be applied to 
amplitude-modulated stimuli, provided that the initial phases of the modulation frequencies are all set to zero.

The ALPC-SFS method is a phase-based latency-estimation method. In addition to the phase-based methods, 
amplitude-based methods have been developed, in which the latency is estimated by the time shift that maximizes 
the statistical correlation between the envelope of the stimulus signal (e.g., a frequency modulation) and the 
response41,42. In general, phase-based latency-estimation methods are suitable when a limited number of ASSR 
frequencies is present. The amplitude-based methods are appropriate for broadband response signals, consisting 
of a continuous frequency spectrum. However, it is worth noting that in order to analyze higher-order ASSRs, 
phase-based methods may outperform amplitude-based methods, because the latter are applied to analyze the 
envelope of the stimuli and responses, which are limited to only 2nd-order nonlinear distortion products.

Limitations of the method.  The proposed ALPC-SFS method can estimate multiple ASSR latencies from 
a single EEG channel. However, it has two major limitations. First, the estimated latency is directly associated 
with ASSR frequencies, rather than underlying discrete neural sources. Thus, the method cannot disentangle the 
contributions from multiple neural generators. Instead, to reveal the potential ASSR sources from the estimated 
latencies, it will require prior information about the relationship between ASSR frequencies and potential neural 
sources. Second, when the same ASSR frequencies stem from multiple sources (which can be measured from the 
EEG), the ALPC-SFS estimate will fall between the two true latencies, where the exact value will be determined 
by the relative ASSR amplitudes of the original systems (Fig. 8).

One of our future goals will be to associate a potential latency change (even to infinite, i.e., no response) with 
(dys)function of the auditory system of the hearing impaired. To this end, in addition to estimate (and longitu-
dinally follow) the ASSR latencies, we also need to evaluate the underlying neural generators. For that, it will be 
helpful to take advantage of the multiple electrode setup, and to employ sophisticated source-localization tech-
niques and methodologies, which enable a better spatial resolution7, Bayesian model averaging43, beamforming 
techniques44, as well as multivariate source separation45.

Pitfalls of EEG montage.  For the preprocessing of EEG signals, it is detrimental to re-reference all chan-
nels to an EEG channel that is not neutral to ASSRs, since a re-reference EEG channel containing strong ASSRs 
will affect all other EEG channels. For example, Fig. 13 shows phase values of all EEG channels at one MB fre-
quency. After re-referencing to EEG channel Cz (carrying a large SNR of ASSRs), the distribution of SNR and 
phase values clearly changed. The phase of all EEG channels became similar to that on Cz. Therefore, it is recom-
mended to either use the CAR montage34, or to re-reference to a neutral electrode. On the other hand, also the 
CAR montage has its drawbacks, as it may cause phase ambiguity on the EEG channels on which ASSRs are rela-
tively low. Certain ASSR components might be reversed, resulting in a phase shift of π . For that reason, the EEG 
channel P7 shows a larger variance on the estimated latency. To avoid the influence of such phase ambiguity, it 
is good practice to use the EEG channels that show relatively stronger ASSRs, e.g., at the frontal-central (FC) 
and the right temporal-lobe regions. Note that completely reversing an EEG channel (i.e., y = -x) will cause the 
same phase shift of π on all frequency components. It thus only changes the bias term of a fitted line (phase lag 
vs frequency) without changing the slope. Therefore, it does not affect the results of ALPC, or apparent latency.

Multiple latencies of ASSRs.  To estimate reliable latencies with the ALPC-SFS method, several important 
issues should be considered: (i) select the starting parameters for the SFS; (ii) use only EEG channels with a rela-
tively high SNR (or LCI), and (iii) use EEG epochs that show high phase-locked values. An important parameter 
for the SFS is the starting frequency. SFS is a suboptimal method, and the starting frequency (or frequency pair) 
determines the direction of the heuristic search. It is good practice to start with those ASSR components with 
the highest SNR (or LCI), like the two major MB frequencies (33 and 39 Hz) in our experiments. Our simulation 
results demonstrate that the SNR of ASSRs affect the probability that two subsystems can indeed be separated 
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(see Table A1 of Supplemental Material.). Starting the SFS with these two MB components also identified the 
other ASSR components with the same latency. We also started the SFS from 2MBs or from the (4, 6) Hz pair. 
However, only when the SFS started from the major MBs or from 3MBs, we obtained consistent results across 
subjects. ASSRs at 4 and 6 Hz are weak in most subjects, so that no reliable phase values are available for estimat-
ing the latency.

ASSR sources locate in multiple cortical as well as subcortical regions: ASSRs (< 20 Hz) originate from the 
auditory cortex; ASSRs around 40 Hz may arise from multiple locations including the brainstem, thalamus and 
the auditory cortex, while high frequency ASSRs (80 - 100 Hz) are supposed to dominate from the upper region 
of the brainstem2,47. Our analysis revealed two major latencies from the ASSR components. The LF-dominant 
system (near 40 Hz) showed longer latencies than the HF-dominant system (>80 Hz). This finding corroborates 
previous studies using amplitude modulation (AM) stimuli on EEG or MEG signals1,22. LF and HF -components 
correspond to the frequency ranges where maximum activation of ASSRs are thought to arise from the cortex 
( ≈ 45 Hz) and the brainstem ( ≈ 90 Hz), respectively27. For the LF-dominant system, the two TL regions showed 
similar latencies ( ≈ 41 ms) whereas the FC region was endowed with a slightly longer latency ( ≈ 52 ms). This 
observation is consistent with the results from an EEG-based, binaural hearing study46. A longer latency sug-
gests an origin in the upper stages of the ascending pathways of the auditory system. Thus, the longer latency 
in the FC region could perhaps arise from binaural interactions in the cortex, following monaural interactions. 
For the HF-dominant system, however, the estimated latency on the FC region (near FCz) was shorter than at 
both TL regions (P7 and P8), which is similar as reported by22. For these HF components, the brainstem has 
been considered as the major underlying source27. In the monaural auditory pathway, the signal may propagate 
from the lower brainstem, through the upper brainstem (which is anatomically located near the FC region), to 
the auditory cortex (located near the TLs).

It is further interesting to note that both LF and HF-dominant systems contained some overlapping ASSR 
components (see Fig. 10). This finding suggests that multiple neural mechanisms, characterized by different 
frequency ranges, may still enter a phase-locked status and thus shows a common latency. This finding is in 
line with the observed phase synchronization across multiple brain regions and function stages in the hearing 
pathways and high-level cortex3,48.

ASSRs are right-lateralized, i.e., right-hemisphere response exceeds the left-hemisphere response, which has 
been reported by several ASSR studies7,12. We also found it in this study for both LF and HF ASSRs (see Table 2), 
thus the EEG channel at P8 showed similar latency but smaller variance than on location P7 (see Fig. 11). In 
addition, the frontal-central (FC) brain region (near FCz) showed the strongest ASSRs. However, the latencies 
estimated from FCz had a larger variance than on P8. In particular, Fig. 11 shows two latency clusters, one major 
cluster around 52 ms and a smaller one around 25 ms. The major latency is longer than the TL region latency 
(around 40 ms), which might represent a binaural cortical interaction, i.e., the 4th and 6th-order distortion 

Figure 13.   SNR and phase topography of the average EEG of 100-trials at an MB frequency of 33 Hz (data 
from subj#1). The left-hand column shows the common average reference (CAR) montage, while the right-
hand column shows the result after re-referencing to EEG channel Cz. Note that the phase topography of the 
CAR shows a typical fronto-occipital phase delay, which is in line with46. In contrast, the phases of many EEG 
channels (right-hand column) are changed by Cz, thus may leading to biased estimate of latencies.
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frequencies are mainly generated from interaction between the beat frequencies of both ears. The smaller cluster 
(n = 6 out of 20 measurements) should not be simply considered as outliers, because the FC brain region may 
represent the superposition of responses from multiple underlying sources (resulting in a weighted average 
latency estimate for brainstem and cortex). Furthermore, some subjects may have produced stronger ASSRs 
from the upper brainstem than from cortex, which would affect the estimated latency, as the brainstem-related 
latency is much smaller than the cortex-related latency21,49.

Possible applications.  The ascending auditory system, from auditory nerve to auditory cortex, contains 
several parallel pathways of acoustic signal processing, which eventually reach the cortical areas. For example, 
the localization of a sound source requires the neural processing of three types of acoustic cues, which are 
extracted by independent neural circuits within the auditory brainstem: interaural time differences (ITDs) and 
interaural level differences (ILDs) for locations in the horizontal plane, and direction-dependent spectral-shape 
cues from the pinna for directions in the vertical plane (Fig. 14)50.

The binaural difference cues operate on complementary frequency bands: as the ITD for humans varies from 
about − 600 μs (sound at the far left) to + 600 μs (sound at the far right), this cue only provides unambiguous 
phase information for sound frequencies up to ~ 1500 Hz. For these low frequencies, phase-locked neurons 
in the auditory nerve, the anteroventral cochlear nucleus (AVCN), and the medial superior olive (MSO) carry 
precise phase information about the carrier frequency. In the MSO, neurons respond to the interaural phase 
difference at their characteristic frequency. Because the phase difference is frequency-dependent for a given 
delay ( �ϕ = 2π f�τ ), MSO neurons that are tuned to a specific frequency and phase difference thus encode 
a particular inter-aural absolute delay, and hence a particular direction in the horizontal plane. Recently, a 
periodic representation of ITDs has also been demonstrated for human cortex51. Neurons that are tuned to the 
same direction in azimuth, but are sensitive to other frequencies, will be tuned to different phase differences. 
In this way, the neuronal processing resembles the ALPC algorithm, which also relies on frequency-dependent 
phase-differences to estimate the unique underlying (characteristic) delay50,52,53.

A second pathway processes the ILDs that arise for frequencies above ~ 3 kHz because of the head shadow 
effect. Cells in the lateral superior olive (LSO) are tuned to the ILD for a particular frequency. The ILD cue 
depends strongly on the sound’s frequency: the higher the frequency, the stronger the head-shadow effect. 
Combining the responses from a population of neurons, tuned to different frequencies, is needed to estimate the 
veridical azimuth angle of the sound source. It is conceivable that the final stage in estimating the sound’s azimuth 
angle involves nonlinear integrative mechanisms for both binaural pathways. Finally, the dorsal cochlear nucleus 
(DCN) feeds a monaural signal pathway via the central nucleus of the Inferior Colliculus (ICC) to the cortex, 
and is possibly involved in the localization of source elevation (spectral cue extraction), and pitch perception.

It is conceivable that the different auditory processing mechanisms may be endowed with different delays 
and different nonlinear processes. As the sound-localization mechanisms operate in different frequency bands, 
they could potentially introduce their own nonlinear distortions, and these may, in principle, be separated by our 
ALPC-SFS method, by applying specific frequency combinations to either ear. Similarly, the ALPC-SFS method 
may be used to test quantitative models of the ascending auditory system19,54.

In addition to evaluating the steady-state dynamics of the ASSRs (as done in the present study), the ALPC-
SFS method could be extended to determine the latencies associated with the instantaneous phases of the ASSR 
frequencies, obtained by either Gabor wavelets or the Hilbert transform55,56. Such an extension could help to 

Figure 14.   Sound localization relies on three independent monaural and binaural pathways that use largely 
non-overlapping frequency bands. All sounds are initially processed by a monaural stage at the auditory nerve 
(AN) and antero-ventral and dorsal subdivisions of the cochlear nucleus (AVCN and DCN). Low carrier 
frequencies (LF) are processed by the medial superior olive (MSO), which computes the interaural time 
difference (ITD); the high frequencies (HF) follow the lateral superior olive (LSO) pathway, which determines 
the interaural level difference (ILD). The DCN is part of a monaural path to the midbrain Inferior Colliculus 
(ICC) and cortex. All stages may introduce nonlinearities in the signal paths that are represented as unique 
frequency distortion products, �fn , in the EEG.
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assess the neural mechanisms within the transition phases of the auditory (or visual) processing, as may be 
observed immediately after stimulus onset33 or offset57.

Conclusions
We proposed a nonparametric method, ALPC-SFS with time compensation, to estimate multiple latencies of 
the auditory system from ASSRs recorded on a single EEG channel. Compared with existing methods, our 
method requires no prior assumptions of the underlying nonlinearity (e.g., system orders), and can be readily 
implemented to analyze higher-order ASSRs, when combined with a zero-phase cosine stimulus complex. We 
illustrated our method on recorded EEG signals and it successfully identified two major (LF and HF -dominated) 
latencies that were stable across subjects and between measurement days. The LF-dominated latencies were longer 
than the HF-dominated latencies and may be putatively related to different brain regions (e.g., central brain 
or temporal-lobe regions). The LF-dominated latency is mainly determined by EEG epochs that are strongly 
phase-locked to the stimuli. ALPC-SFS is promising as an objective measure for the ASSR latencies and for the 
underlying nonlinearities of both primary and non-primary auditory cortex (dys)function.

Data availability
The Matlab scripts for the ALPC-SFS method is available here: https​://githu​b.com/ieeeW​ang/ALPC-SFS-metho​
d-Matla​b-scrip​ts.
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