
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24522  | https://doi.org/10.1038/s41598-021-04293-6

www.nature.com/scientificreports

Electrostatic theory of rectangular 
waveguides filled with anisotropic 
media
Afshin Moradi

The electrostatic (or, in a better word, quasi-electrostatic) theory of waves propagation in a long, 
rectangular waveguide having perfect electric conductor walls that filled with an anisotropic 
medium (here, a medium of nanowire-based hyperbolic metamaterials) is presented. Some data 
on characteristics of these waves are prepared. The presented results include electrostatic field 
configurations (modes) that can be supported by such structures and their corresponding cutoff 
frequencies, group velocities, power flows and storage energies.

A rectangular waveguide is a long hollow tube (compared with its cross section) of rectangular cross section 
with four perfect electric conductor (PEC) walls. Investigation of electromagnetic properties of waveguides with 
PEC boundaries and filled with various anisotropic media, based on full Maxwell’s equations, has been receiv-
ing considerable interests for decades1–7. For instance, Van Trier1 studied how the well-known electromagnetic 
modes in a waveguide are modified in the presence of a magnetized plasma into the waveguide. Also, the field 
configurations (modes) in hollow (rectangular/circular) waveguides and cylindrical dielectric waveguides were 
presented in Refs.8,9, respectively. Furthermore, there are many interesting works in (rectangular/circular) wave-
guides filled with metamaterials10–16. For instance, Xu10 studied the characteristics of rectangular waveguides 
filled with anisotropic metamaterials and derived a general condition of the existence of TE and TM modes in 
these waveguides. In particular, Bhardwaj et al.15 investigated the propagation of electromagnetic waves in a 
cylindrical waveguide filled with hyperbolic metamaterials (HMMs). They found that such a waveguide has no 
cutoff frequency for propagating TM and TE modes.

The HMMs17–21, which form a subclass of metamaterials, has attracted the attention of many authors. More 
recently, we have used the electrostatic theory to study the propagation of electrostatic waves in unbounded22 
and bounded23–25 media of nanowire-based HMMs. A HMM exhibits a unique property of having anisotropy 
with simultaneously different signs of the permittivity tensor components, i.e, ε⊥ and ε‖19,20. In general, two types 
of HMMs can be considered. In type I, ε⊥ is positive and ε‖ is negative and then the HMM medium is called 
dielectric. In type II, ε⊥ is negative and ε‖ is positive, and HMM medium is called a metallic medium.

But, can quasi-electrostatic waves, or more commonly, electrostatic waves propagate in a waveguide with PEC 
walls? Actually, a hollow waveguide cannot support electrostatic modes, but when it is filled with an anisotropic 
medium the existence of electrostatic waves may be possible. However, despite the relatively extensive investi-
gations on electromagnetic characteristics of waveguides, to the best of our knowledge, the electrostatic wave 
propagation inside the rectangular waveguides filled with anisotropic media are less well-known in the theory 
of waveguides. For this reason, standard text and reference books present only the modal electromagnetic field 
distribution of an electromagnetic hollow waveguide26.

In the present work, we present the electrostatic theory of waves propagation in a long, rectangular waveguide 
containing an anisotropic medium, here a medium of nanowire-based HMMs. The results derived by employing 
electrostatic theory, indicates the velocity of light in free space must be much more than phase velocity27. Actually, 
the frequency term in Helmholtz equation is dropped here and the modified Laplace equation is solved instead.

Spectroscopy of electrostatic modes of a planar slab of nanowire‑based HMMs
One type of electrostatic waveguide is a planar slab of an anisotropic medium (here, a medium of nanowire-
based HMMs in the perpendicular configuration25) of height 2a with two PEC boundaries, as shown in panel 
(a) of Fig. 1. Note that in the perpendicular configuration the PEC boundaries are perpendicular to the axes of 
nanowires. The parallel configuration is another configuration, where the axes of nanowires are parallel to the 
PEC boundaries. The array of nanowires has areal density N with axes parallel to z-axis. Also, r and d = 1/

√
N  
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are the radius of a nanowire and the separation between the nanowires, respectively. To simplify the analysis 
of the structure, in this section we reduce the problem to a 2D one (its length in the y direction is infinite) so 
that ∂/∂y = 0 . Although in practice the dimensions of the structure are finite, the 2D approximation not only 
simplifies the structure but also sheds insight into the characteristics of the structure. In general case, the cross 
section of the slab is a rectangular with finite height and width.

We now investigate the behaviors of electrostatic bulk modes of a planar slab of nanowire-based HMMs, based 
on the field analysis. Let us assume that the waves are traveling in the x direction, and the structure is infinite in 
that direction as illustrated in panel (a) of Fig. 1. We shall obtain the general expression for dispersion relation 
of the electrostatic waves. For the present problem, the relative dielectric tensor of the anisotropic medium is

where ε⊥ and ε‖ that are the effective transversal and longitudinal permittivities, respectively, may be expressed 
by19

where εm = ε∞ − ω2
p/ω(ω + iγ ) shows the relative permittivity of a nanowire (for example a narrow-gap semi-

conductor nanowire such as InSb27,28), ε∞ is the high-frequency bulk permittivity, ωp is the electron plasma 
angular frequency, γ is the damping constant, f = πr2N is the filling factor of nanowires in the xy section of  
medium and εd is the relative permittivity of insulator host.

Under the electrostatic approximation, the electric field can be represented by the gradient of an electric 
potential � . The Maxwell’s equation ∇ ·D = 0 , gives the wave equation for the electrostatic potential of an 
unbounded medium of nanowire-based HMMs

(1)ε(ω) =

(

ε⊥ 0 0
0 ε⊥ 0
0 0 ε�

)

,

(2)ε⊥ = εd
(1+ f )εm + (1− f )εd

(1− f )εm + (1+ f )εd
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(3)ε� = f εm + (1− f )εd,
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Figure 1.   (a) Side view of a planar slab of nanowire-based HMMs. The array of nanowires has areal density 
N with axes parallel to z-axis. Also, r is the radius of a nanowire and d = 1/

√
N  is the separation between the 

nanowires. The PEC interfaces separating the slab ( −a ≤ z ≤ a ). (b) Isometric view of a rectangular waveguide 
filled with a medium of nanowire-based HMMs with its appropriate dimensions and PEC boundaries.
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where all the field quantities are assumed to have the harmonic time dependence of the form exp(−iωt) . Note 
that ω is angular frequency of an electrostatic wave in the system.

In deriving the electrostatic mode spectrum of a planar slab of nanowire-based HMMs, we use the following 
general separated-variable solution for traveling waves in the +x direction

Substituting this into Eq. (4), we get

Equation (6) shows that a homogeneous bulk electrostatic plane wave corresponding to real k and κ is possible 
only when ε⊥/ε� is negative. Field existing within this waveguide must be characterized by zero tangential compo-
nents of electric field at the PEC walls. However, the boundary conditions at the two PEC walls can be written as

Now, by applying the mentioned boundary conditions we can find the relationship between the constants 
A and B, as

To satisfy Eq. (8) we consider separately two categories: even and odd modes. For an even mode A = 0 and 
κa = (n+ 1/2)π with n = 0, 1, 2, . . . Therefore κa = (n+ 1/2)π is the dispersion relation for electrostatic waves 
with symmetric potential functions. For an odd mode B = 0 and we have κa = nπ that is the dispersion relation 
for electrostatic waves with anti-symmetric potential functions. The even and odd mode dispersion relations can 
be combined into a single equation. The result is

where this equation corresponds to an even mode for n odd, and to an odd mode for n even. In the special case, 
for ε∞ = 1 = εd and γ = 0 , from Eq. (9), we find

If k → 0 , then ω+ →
√

1− fωp/
√
2 and ω− →

√

fωp . If k → ∞ , then ω+ →
√

1+ fωp/
√
2 and 

ω− → 0 . This means that this system represents a bulk electrostatic band filter with the frequency bands 
√

1− f /
√
2 ≤ ω+/ωp ≤

√

1+ f /
√
2 and 0 < ω−/ωp ≤

√

f  . Note that the mentioned effective medium 
approximation that we use in the present study is valid when the radius of a nanowire is a lot smaller than the 
wavelength of the waves under consideration. Also the nanowires must be well separated. In particular, the 
conductor walls must behave as PEC walls and thus they must have constant potential. Therefore, the angular 
frequency is assumed to be restricted to the range 0 < ω−/ωp ≤

√

f  with the consequence that we can choose 
the appropriate frequency of plane electrostatic wave in the microwave regime and appropriate radius of a 
nanowire in the present HMM medium. For instance, for InSb wires the electron plasma frequency ωp/2π = 4.9

THz27,28 is approximately 61 µ m in wavelength. If one uses the angular frequency region of ω− ≈
√

fωp , the 
wavelength under consideration is 61/

√

f µ m. Thus, for r = 5 nm and d = 1 µ m, we find 
√

f ≈ 8.8× 10−3 and 
therefore � ≫ r, d which indicates the mentioned effective medium approximation is valid in the present study. 
Furthermore, we find ω−/2π ≤ 43.4GHz and therefore one may conclude the condition that conductor walls 
must behave as PEC walls is satisfied. Note that for the angular frequency range 0 < ω−/ωp ≤

√

f  , one can find 
that ε⊥ is positive and ε‖ is negative, thus the present system for our purpose is a HMM of type I.

The dispersion curves of modes of a planar slab of nanowire-based HMMs with r = 5nm, d = 1 µ m for vari-
ous values of n, using Eq. (10) are depicted in Fig. 2. An infinite number of bulk electrostatic waves with different 
values of n can exist in the slab, which depend on the conditions of excitation. It is clear from Fig. 2 that the 
frequency of an electrostatic mode decreases monotonically with wavenumber throughout the allowed frequency 
range 0 < ω− ≤

√

fωp . Therefore, these electrostatic modes are backward waves. Furthermore, all backward 
modes have equal cutoff frequency ω− =

√

fωp . Hence, there is no frequency band where only a single mode 
propagates. Note that using the simple formula vg = dω/dk the group velocity of bulk modes of the system can 
be simply computed in an analytical way.

Spectroscopy of electrostatic modes of a rectangular waveguides filled 
with a medium of nanowire‑based HMMs
Now, consider a long, rectangular waveguide of nanowire-based HMM having PEC walls of dimensions w and 
h in the y and z directions respectively. Geometry of the problem is presented in panel (b) of Fig. 1. It is our pur-
pose to determine the various electrostatic modes that can exist inside this rectangular electrostatic waveguide.

In this case, the wave equation for the electrostatic potential inside the HMM medium can be written as
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Again, the solution to Eq. (11) can be obtained by using the separation of variables method. In general, the 
solution to �(x, y, z) for traveling electrostatic waves in the +x direction can be written as

Substituting this equation into Eq. (11), we get

Note that C, D, E, and F are constants that will be evaluated by the appropriate boundary conditions on the 
walls of the waveguide. Here, the boundary conditions at the four PEC walls are

To satisfy the above boundary conditions for electrostatic modes, we choose

where m and n are integers. Only the trivial solution � = 0 is possible when m = 0 or/and n = 0 . The electric 
potential and electric field components are

The dispersion equation for the modes can be written as

Since there are infinite combinations of m and n, an infinite number of electrostatic modes can be found. In 
the special case, for ε∞ = 1 = εd and γ = 0 , from Eq. (22), we find
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Figure 2.   Dispersion curves of the first ten bulk electrostatic modes of a planar slab of nanowire-based HMMs 
with r = 5nm, d = 1 µ m and PEC boundaries, using Eq. (10). The modes n = 1, 3, 5, 7, 9 are even (symmetric) 
modes and n = 2, 4, 6, 8 are odd (anti-symmetric) modes. The slope of curves is negative in the frequency range 
0 < ω− ≤

√

fωp for all mode orders. Therefore, these modes called backward waves. For a backward wave, the 
directions of group velocity (power flow) and phase velocity (phase propagation) are mutually opposite.
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where ϒr = m2 +
(

kw

π

)2

 . Again, we take the symbol “−” in Eq. (23) that is in agreement with our model 

throughout the allowed frequency range 0 < ω− ≤
√

fωp . Assuming h = w = 2a , the dispersion relation of a 
square waveguide can be written as
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Figure 3.   Dispersion curves of electrostatic modes (m, n) of a waveguide filled with a medium of nanowire-
based HMMs with r = 5nm, d = 1 µ m and PEC boundaries, for n = 1, 2, 3 , and m = 1, 2, 3 . (a) A rectangular 
waveguide ( 2h = 2a = w ), using Eq. (23). (b) A square waveguide ( h = 2a = w ), using Eq. (24).
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where ϒs = m2 +
(

2ka

π

)2

 . The dispersion curves for electrostatic modes (m, n) ( n = 1, 2, 3 and m = 1, 2, 3 ) of 

a waveguide filled with a medium of nanowire-based HMMs with r = 5nm, d = 1 µ m are depicted in panels 
(a) and (b) of Fig. 3. Panel (a) shows the results for a rectangular waveguide ( 2h = 2a = w ), using Eq. (23) and 
panel (b) shows the results for a square waveguide ( h = 2a = w ), using Eq. (24). Furthermore, the values of 
normalized cutoff frequencies for a rectangular waveguide ( w = 2h = 2a ), using Eq. (23) and a square waveguide 
( w = h = 2a ) using Eq. (24) are listed in Table 1. We see that mode (3, 1) is the dominate mode for electrostatic 

Table 1.   Normalized cutoff frequencies for electrostatic modes (m, n) ( n = 1, 2, 3 and m = 1, 2, 3 ) of a 
waveguide filled with a medium of nanowire-based HMMs with r = 5nm, d = 1µ m, using Eqs. (23) and (24).

(m, n) ω
−
/ωp

(w = 2h = 2a)
ω
−
/ωp

(w = h = 2a)

(3, 1) 7.0× 10−3 2.8× 10−3

(2, 1) 7.9× 10−3 3.9× 10−3

(3, 2) 8.2× 10−3 4.9× 10−3

(1, 1)
(2, 2)
(3, 3)

8.5× 10−3 6.2× 10−3

(2, 3) 8.7× 10−3 7.4× 10−3

(1, 3) 8.8× 10−3 8.4× 10−3

Figure 4.   Electric field patterns (blue lines) and their corresponding cross sections of equipotential surfaces 
(red lines) for the first nine electrostatic modes of a square waveguide ( h = w ) with PEC boundaries and filled 
with an anisotropic medium, for example a medium of nanowire-based HMMs.
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modes (m, n) (with n = 1, 2, 3 and m = 1, 2, 3 ). Also, modes (1, 1), (2, 2), and (3, 3) have equal cutoff frequencies. 
In particular, the yz cross section electric field and their corresponding cross sections of equipotential surfaces 
for the first nine electrostatic modes of a square waveguide are plotted in Fig. 4. Field configurations of a rectan-
gular waveguide are very similar with Fig. 4 (not shown here). By comparing the results in Fig. 4 of8 with Fig. 4 
in the present work, one can conclude that the electric field pattern of electrostatic mode (m, n) is similar with 
electric field pattern of TMmn modes for a hollow waveguide. Furthermore, in Fig. 5 we show the yz cross section 
of bulk charge density of a square waveguide corresponding to the Fig. 4. The white color corresponds to positive 
charge and black color to negative charge.

The electrostatic waves that are created and propagating inside the present waveguide have power associated 
with them. To find the power flowing down the waveguide, it is first necessary to find the cycle-averaged of power 
density directed along the axis of the waveguide. The power flowing along the waveguide can then be obtained 
by integrating the axial directed power density over the cross section of the waveguide.

For the waveguide geometry of Fig. 1, the x-directed power density can be written as29 

in the complex-number representation, where ∗ denotes complex conjugation, and Re denotes taking the real 
part. Use of Eq. (18) into Eq. (25), allows the x-directed power density of Eq. (25) for the electrostatic modes 
can be written as

(25)Sx = −
ε0

2
Re

[

ε⊥�
∂

∂t

∂

∂x
�∗

]

,

(26)Sx = −
ε0ωk

2
ε⊥|Amn|2 sin2

(mπy

w

)

sin2
(nπz

h

)

.

Figure 5.   Cross section of bulk charge density of a square waveguide ( h = w ) with PEC boundaries and filled 
with an anisotropic medium (for example a medium of nanowire-based HMMs) corresponding to the Fig. 4. 
The white color corresponds to positive charge and black color to negative charge. The first left column (from 
top to bottom) shows modes (1, 1), (2, 1) and (3, 1), respectively, the second column shows modes (1, 2), (2, 2) 
and (3, 2), respectively and the third column shows modes (1, 3), (2, 3) and (3, 3), respectively.
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Note that ε⊥ and ε‖ are real since we neglected damping in the present study. The associated power is obtained 
by integrating Eq. (26) over the cross section A = hw of the guide, as

Also, the cycle-averaged of energy density distribution associated with the waves can be written as29 

After substitution Eq. (18) into Eq. (28), we obtain

The associated storage energy is obtained by integrating Eq. (29) over the cross section A of the waveguide, as

As mentioned before, using the simple formula vg = dω/dk and Eq. (22), the group velocity of electrostatic 
modes of the system can be simply computed. However, in the absence of the damping effects, the group velocity 
of the waves is also equal with the ratio of the power flow to the storage energy, such as

Since all investigations in this work is based on electrostatic theory, the equality of above formula with the 
result obtained using vg = dω/dk is a manifestation of self-consistency and general validity of presented results 
in the electrostatic theory.

Conclusion
We have presented the theory of electrostatic bulk waves propagation in a long, rectangular PEC waveguide 
containing an anisotropic medium (here, a medium of nanowire-based HMMs). We have derived general expres-
sion for dispersion equation of the waves and then presented the plots the electrostatic field distributions in such 
electrostatic waveguides. The results show that the electric field pattern of electrostatic modes are similar with 
electric field pattern of TMmn modes in the rectangular hollow waveguides8. Also, we have found that all modes 
with m = n have equal cutoff frequencies and mode (m = 3, n = 1) is the dominant mode for electrostatic modes 
(m, n) (with n = 1, 2, 3 and m = 1, 2, 3 ) in the electrostatic waveguides. However, in general the dominate mode 
of the system cannot be found. Finally, we have verified the obtained results by showing that group velocity of 
the waves is the same as energy velocity (i.e, the ratio of the power flow to the storage energy). Because of the 
possibility of electrostatic waves propagation in a rectangular waveguides filled with anisotropic media, they 
may be used in the development of new waveguides using guided electrostatic waves.

Data availability
The data that supports the findings of this study are available within the article.
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