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OpenWeedLocator (OWL): 
an open‑source, low‑cost device 
for fallow weed detection
Guy Coleman*, William Salter & Michael Walsh

The use of a fallow phase is an important tool for maximizing crop yield potential in moisture 
limited agricultural environments, with a focus on removing weeds to optimize fallow efficiency. 
Repeated whole field herbicide treatments to control low-density weed populations is expensive 
and wasteful. Site-specific herbicide applications to low-density fallow weed populations is currently 
facilitated by proprietary, sensor-based spray booms. The use of image analysis for fallow weed 
detection is an opportunity to develop a system with potential for in-crop weed recognition. Here 
we present OpenWeedLocator (OWL), an open-source, low-cost and image-based device for fallow 
weed detection that improves accessibility to this technology for the weed control community. A 
comprehensive GitHub repository was developed, promoting community engagement with site-
specific weed control methods. Validation of OWL as a low-cost tool was achieved using four, existing 
colour-based algorithms over seven fallow fields in New South Wales, Australia. The four algorithms 
were similarly effective in detecting weeds with average precision of 79% and recall of 52%. In 
individual transects up to 92% precision and 74% recall indicate the performance potential of OWL in 
fallow fields. OWL represents an opportunity to redefine the approach to weed detection by enabling 
community-driven technology development in agriculture.

In Australian large-scale conservation cropping systems, where growing season rainfall generally limits crop 
yields, fallow phases are incorporated in rotations to conserve soil moisture for subsequent crops1,2. These phases 
provide an opportunity for improved weed and disease control3,4 and nutrient conservation5,6. To maximise stored 
soil moisture growers prioritise maintaining weed free fallows7, which frequently results in repeated applications 
of whole-field herbicide treatments to low density (< 1.0 plant 10 m−2) weed populations. The development of 
reflectance and fluorescence-based weed detection technologies that enabled site-specific weed control (SSWC) of 
low weed densities in fallow fields, began in the early 1980s8–11 (for an overview see review by Peteinatos et al.12). 
As all living plants in fallows are considered weeds, these detection systems use spectral filters and photodiode 
sensors to detect chlorophyll fluorescence10. For over two decades sensor-based weed detection has been used 
in the development of spot-spraying systems that are now widely used for fallow weed control by Australian 
growers13,14. These spot-spraying systems can effectively control low density weed populations to realise weed 
control savings of up to 90%15.

The effective application of site-specific treatments has enabled a more efficient approach to fallow weed 
control and created interest in the development of this approach for in-crop use. In addressing the threat of her-
bicide resistant weed populations in their production systems, Australian growers have been reducing in-crop 
weed densities through the diligent use of diverse weed control treatments16. Low in-crop weed densities have 
increased the interest in specifically targeting these weeds to achieve similar savings in weed control inputs as 
those realised with fallow SSWC. However, sensor-based fallow weed detection technologies are only suitable 
for detecting growing plants, with little opportunity for further development to discriminate between crop and 
weed plants12,13. The use of digital, visual spectrum imagery has long been identified as an approach to collect 
the type and quantity of data required for accurate discrimination between crop and weed plants17,18. Imaging 
sensors offer detailed data streams with standard, visible spectrum digital cameras providing three channels (red, 
green and blue [RGB] images) of spatial and spectral intensity information. The richer data collected by these 
systems can be used for the more challenging task of in-crop weed recognition, with substantial research efforts 
focussed on developing this opportunity for large-scale systems19.

The introduction of durable, small-scale, low-cost computing and digital camera systems has created the 
potential to develop simple algorithm-based weed detection systems for fallow weed control in large-scale 
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cropping systems. The Raspberry Pi is an example of a low-cost single board computer that was developed as a 
teaching resource to promote computer science in schools20. When coupled with a digital camera, the Raspberry 
Pi can be used in simple computer vision related tasks, including fallow and in-crop weed detection. For fallow 
weed detection, where differences between the target weed and soil or stubble background are clear, simple plant 
colour-based detection methods may be sufficient for weed detection. A number of studies have developed weed 
detection algorithms based on specific plant features such as colour18,21,22, shape23,24, texture25,26 or a combina-
tion of these features27–29. Importantly, non-machine learning algorithms typically have lower computational 
requirements and perform faster on less powerful processors, such as the Raspberry Pi, improving the likelihood 
of real-time operation in large-scale cropping systems30,31. Critically, the computational requirements of the 
algorithm determine the framerate and hence the real-time capability of the device. Coupling low-cost hardware 
with an open-source and community led approach to software development provides an opportunity to rapidly 
progress the development of these technologies for weed detection in cropping systems. Similar approaches 
have been effective in industries including medical research32, autonomous vehicles33, machine learning34 and 
implemented by software companies such as Microsoft35.

Image-based weed recognition for SSWC represents a fundamental shift in the approach to weed control 
for large-scale growers in Australia. A practical understanding of the limitations and realistic opportunities of 
this new approach by growers and the wider weed control community is an important aspect of the effective 
development and use of this new technology. Growers are generally regarded as Bayesian learners, where an 
understanding of technology is best achieved through practical “hands-on” use36. The general objective of this 
research was to develop and validate an open-source and low-cost option for weed detection in fallow fields, with 
potential for upgrades and improvement with future software and hardware innovations. Specifically, we aimed 
to (1) develop the OpenWeedLocator (OWL) as a low-cost image-based weed detection system; (2) advance 
weed control industry understanding and familiarity in the use of digital image-based weed detection systems; 
and (3) validate the baseline efficacy of OWL using colour-based algorithms for fallow weed detection.

In the following section, OWL configuration and the parameters under which the design process was guided 
are described. The validation of the OWL for fallow weed detection using colour-based algorithms and the impli-
cations of the device for SSWC are discussed in further sections. All software, hardware designs and a guide to 
build the OWL are available at https://​github.​com/​geeza​colem​an/​OpenW​eedLo​cator.

OWL configuration and system development
Establishing design parameters and configuring OWL for weed detection.  Five key design 
parameters for the OWL units were identified that facilitated the development of OWL units within the scope of 
improving community understanding and familiarity with use of imaging and algorithm-based weed detection 
systems. Specifically, the OWL platform needed to include (1) low-cost and accessible “off-the-shelf ” hardware 
components; (2) simple designs with minimal use of specialised electrical tools; (3) 3D printable enclosures and 
mounts for accessible and customisable production; (4) modular and simple image-based software for ease of 
contribution and explanation; and (5) validated performance using simple and existing colour-based algorithms 
in fallow scenarios at relevant levels for weed detection, addressed in the algorithm assessment component of 
this research.

The image processing components of OWL consist of a Raspberry Pi 4 (Raspberry Pi Foundation, Cambridge, 
UK) 8 GB computer coupled to a Raspberry Pi HQ Camera with a Sony IMX477 CMOS sensor. This camera 
provides a maximum sensor resolution of 4056 × 3040 pixels with a 7.9 mm optical format and a rolling shutter. 
Images are resized to 416 × 320 pixels to ensure high processing throughput on the Raspberry Pi platform. The 
HQ camera connects to the Raspberry Pi using the camera serial interface (CSI) cable and port, whilst operat-
ing the camera is completed with the inbuilt picamera Python API. A 6 mm focal length C/CS lens (Raspberry 
Pi Foundation) was used with the camera, providing a 1 m horizontal field of view (FOV) on the ground at an 
operational height of 0.82 m above the soil surface. Camera settings, including white balance, exposure and 
shutter speed, remained automatic as default, whilst focus was set manually during setup of the system. Based 
on the detection outputs from the selected algorithm, the pixel coordinates of each detection determine the 
allocation to one of four 25 cm wide zones covering the 1 m on-ground FOV. A unique general purpose input/
output (GPIO) pin is assigned to each zone, which is activated for a specified duration if the weed is detected 
within that zone. A generic and low-cost relay control board enables the low current, low voltage GPIO signal 
to drive higher power devices including, but not limited to, water and hydraulic solenoids for targeted weed 
control, such as spot spraying or site-specific tillage (Fig. 1). The system is powered by a 12 V DC input with a 
voltage regulator (POLOLU-4091; Pololu Corporation, Las Vegas, NV, USA) providing 5 V power to the Rasp-
berry Pi and associated components. Although optional for the purposes of weed control, we included a real 
time clock (RTC) module (ADA3386; Adafruit Industries, New York, NY, USA), a buzzer and several LEDs in 
our test system for timekeeping, system alerts and monitoring system status, respectively. The Python code and 
detailed installation instructions are provided in the OWL open-source repository (https://​github.​com/​geeza​
colem​an/​OpenW​eedLo​cator).

System development and an open‑source platform for community engagement.  OWL ena-
bles weed detection and potential targeting by integrating the within-image location of each detected weed 
with a defined channel (GPIO pin) on the Raspberry Pi and subsequently a relay on the connected relay board. 
To address the first three design parameters, four OWL units were assembled using simple, “off-the-shelf ” and 
low-cost items, with an approximate cost of AU$400 per unit. The critical components in the system, namely 
the Raspberry Pi, camera, voltage regulator and relay control board are easily accessible due to their extensive 
use in other industries. Activating an OWL unit requires connection to a 12 V DC power source, a voltage com-
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monly available on most vehicles and powered farm equipment. The design is simple to assemble with minimal 
soldering or specialist tools required. It is also modular, with the ability to replace individual components and 
maintain functionality without changes to form or software. For example, given the use of generic GPIO-based 
trigger of the relay control board, the Raspberry Pi could be swapped with other embedded computers such as 
the Jetson Nano or Jetson Xavier for access to more powerful processing without substantial changes to software 
or hardware. Internally, all electrical connections are made using terminal blocks and press fit connections. The 
OWL enclosure and all mounting parts are 3D printable and all 3D model files are freely available for use and 
customisation (https://​www.​tinke​rcad.​com/​things/​3An6a​3MtL9C). An important aspect of using widely acces-
sible components is the existing widespread support by the ‘maker’ community with respect to more general 
issues and upgrades of Raspberry Pi hardware and Python software. These resources improve problem solving 
availability for end users with reduced risk of obsolescence.

The fourth design parameter, the modularity, customisability and interpretability of the OWL detection and 
actuation software, was the focus of software development. The Python language-based software enables the 
selection of all tested algorithms (see “Methods”), adjustment of threshold parameters, minimum detection size 
requirements (in pixels) and other features, such as frame saving for dataset development, video recording and 
visualisation of the detection process. The incorporation of new algorithms is fundamental to ongoing develop-
ment. The modular design of the software allows new algorithms to only require an image as an input and return 
a grayscale image as an output. This allows further improvements or additions of new algorithms to be made 
easily without restructuring of the code base.

The OWL system is supported by an open-source software repository to create a pathway for feedback and 
ongoing development, whilst providing a practical device on which to learn about image-based weed detection. 
Specific instructions and extensive guides are available for self-guided assembly, with the widely used platform 
GitHub selected as an avenue to engage with community feedback and development whilst providing accessi-
bility to the code and instructions (https://​github.​com/​geeza​colem​an/​OpenW​eedLo​cator). The online platform 

Figure 1.   Overview of the OpenWeedLocator (OWL) (a) software and (b) hardware, which combines weed 
detection with an actionable output. Detection is achieved with a Raspberry Pi 4 8 GB and HQ camera with 
actuation achieved using 12 V relays on the relay control board. A real time clock (RTC) module is used for 
accurate timekeeping. A 12 V DC source is required to power the system, with a voltage regulator providing 5 V 
power for the Raspberry Pi computer. A six-pin weatherproof connector is used to connect the OWL unit to 
the 12 V power supply and to connect the relays to four external devices. The buzzer and LEDs provide status 
information.

https://www.tinkercad.com/things/3An6a3MtL9C
https://github.com/geezacoleman/OpenWeedLocator
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also supports logging of issues and tracking of changes over time with the release of new software versions as 
improvements are incorporated.

Validation of OWL with colour‑based weed detection algorithms
The four algorithms used to validate OWL, namely excess green (ExG), normalized ExG (NExG), hue saturation 
value (HSV), and a combined ExG and HSV (ExHSV), performed equally well across the seven fields on the 
low-cost, Raspberry Pi-based OWL hardware, with no statistical differences found for either the precision or the 
recall (P > 0.05) (Fig. 2). The mean recall—the percentage of true weeds detected—was 52.2 ± 5.1% (mean ± SEM) 
whilst the mean precision—the proportion of detections that were correct—was 78.8 ± 3.6% (mean ± SEM). 
Across the seven transects, median recall rates for ExG, NExG, HSV and ExHSV were 68.1, 45.5, 47.0 and 47.7%, 
respectively. Median precision values were 70.2, 90.6, 96.6 and 91.1%, respectively. Although no algorithm clearly 
outperformed the others, ExG appeared more sensitive to weed detection, albeit with reduced precision. HSV 
and ExHSV appeared to have lower rates of false positive detections (Fig. 2). In five of the seven transects, the 
maximum recall was observed with the ExG algorithm (Table 1). In all five daylight transects, ExHSV had the 
maximum precision, whilst HSV had precision of 100% in both night-time, artificially illuminated transects. 
The normalised ExG algorithm (NExG) did not outperform the other three algorithms in any of the transects for 
any performance metric, with complete loss of detection under NIGHT2 conditions using the parameters tested.

Across the seven fields, the performance of the weed detection algorithms varied substantially (Table 1). 
The minimum precision for all algorithms tested was found in field HEN1 whilst the maximum precision was 
found in WAG1. HEN1 had substantial canola stubble present, which under strong sunlight conditions resulted 
in bright white reflections and frequent false positive detections (indicated by mean precision of 26.6 ± 4.3%). 
WAG1 on the other hand had a high weed density, sparser lupin stubble and red soil, resulting in a reduced rate 
of false positive detections (indicated by mean precision of 95.65 ± 1.5%).

Given the colour-based nature of the algorithms, small annual sowthistle (Sonchus oleraceus) that was grey-
green or purple-green in colour was not well detected (Fig. 3). Similarly, the thin leaves of small rigid ryegrass 
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Figure 2.   Comparison of weed detection performance metrics precision and recall across ExG, NExG, HSV 
and ExHSV algorithms. Values presented are based on all seven field sites visited to indicate variability. Boxplots 
present the median and interquartile range with the boxes, and the range and outlier points (if more than 1.5 
times the interquartile range) with the lines and points.

Table 1.   Summary of algorithm performance across seven field test sites during the day (n = 5) and night 
(n = 2) with artificial lighting using precision and recall. The highest result for each performance metric within 
each field is bolded.

Algorithm ExG NExG HSV ExHSV

Location Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

HEN1 18.0 94.7 27.7 75.8 22.6 76.3 37.9 71.6

HEN2 46.5 73.2 90.2 53.3 87.7 50.5 94.4 54.4

WAG1 91.8 73.8 95.1 47.8 96.6 39.9 99.1 47.7

WAG2 70.2 68.1 90.9 36.1 91.0 48.8 91.1 43.4

COB1 98.0 39.3 98.0 20.2 100 47.0 100 23.1

NIGHT1 64.5 48.9 47.7 42.5 100 23.8 80.6 34.7

NIGHT2 96.4 62.7 – – 100 35.7 90.6 76.6
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(Lolium rigidum) and other grass weeds, including volunteer wheat (Triticum aestivum) and barley (Hordeum 
vulgare), were poorly detected and often missed. Small, medium and large broadleaf weeds with strong green 
colouring, including wild radish (Raphanus raphanistrum), sowthistle, volunteer canola (Brassica napus), vol-
unteer faba bean (Vicia faba), billygoat weed (Ageratum conyzoides) and catsear (Hypochaeris radiata), were 
confidently detected, however, obstruction by heavy stubble increased the likelihood of the weed being missed.

Frame rates were recorded to assess the processing demand of each algorithm and the likelihood of real-time 
operation. This is important for OWL, given the relatively limited processing power of the Raspberry Pi. HSV had 
the highest framerate of 35.3 FPS (P < 0.01), indicating that it had the lowest processing requirements. ExG had 
the second highest framerate of 22.6 FPS (P < 0.01), whilst ExHSV and NExG were the slowest of the algorithms 
with framerates of 15.4 FPS and 16.6 FPS, respectively.

Discussion
OWL capitalises on recent developments of low cost and small form factor computing systems, digital imaging 
sensors, so-called “maker” hardware and open-source software packages. The original Raspberry Pi computer 
was released in 2012 with the explicit focus of teaching basic computer science to ‘young people’ and igniting 
interest in programming20. Technological advancements to the Raspberry Pi system in the years since, including 
more powerful processors, increased memory, and networking capabilities, have allowed for increasingly com-
plex projects to be developed using the system. This has led to a large online community of “makers”, who have 
found a multitude of uses for the Raspberry Pi, ranging from environmental monitoring37 to cloud computing 
infrastructure38, and who, with the help of platforms such as GitHub and StackOverflow, can provide support 
for hardware and software related issues and improve the development process39. The Raspberry Pi was an obvi-
ous choice for preliminary development of OWL, due to its widespread availability, low-cost, educational roots, 
interfacing options (through GPIO pins) and computational power, as well as existing and extensive online 
support communities. Coupling the GPIO pins of the Raspberry Pi with a relay control board makes identifi-
able interactions between the camera input, image-based detection output and actuation. The use of the OWL 
for SSWC requires coupling with external actuators such as solenoids for spot spraying or targeted tillage40. The 
OWL platform combines simple assembly and software designs with practical fallow field detection outcomes.

Figure 3.   Representative weeds that were either correctly detected (green) or missed (red) at each of the seven 
field sites based on the ExHSV algorithm. Images of weeds shown were taken directly from concurrent video 
collected with a Samsung S8 phone camera and have not been rescaled, suggesting relative size is accurate.
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OWL represents a novel opportunity for community-driven development of weed recognition capability 
using existing ‘off-the-shelf ’ hardware and simple yet effective image-based algorithms. The combination of the 
OWL device, supporting documentation and repository create a channel for practical education of key image-
based weed detection and actuation concepts for growers and the wider weed control community. The topic 
is of particular importance now, given the emergence of image-based in-crop weed recognition technologies. 
OWL has been designed as a community focussed educational platform that will grow over time with initial 
baseline validation performed in the present research. The platform relies heavily on the principles of first- and 
second-order learning41. The term “first-order learning" refers to the education of growers, where users of a new 
technology learn with hands-on experience, in this case how image-based weed detection systems work by build-
ing and using an OWL unit. Early exposure to novel precision agricultural technologies in this manner has been 
shown to be strongly correlated with the adoption of new precision agricultural tools36. The term “second-order 
learning” refers to the education of SSWC technology developers based upon feedback from users and specific 
user needs. This has also been coined the “learning by using” approach42. The open-source availability facilitates 
such an approach, allowing continual development of OWL, weed recognition technologies more generally, and 
ongoing educational opportunities for the broader weed control community. Similar open-source approaches 
to software and hardware development have been used successfully in other industries, including machine 
learning34,43,44, medical sciences32,45, scientific imaging46,47 and autonomous driving48,49 to improve development 
speed, adoption of technology, reproducibility and error management35,50. In agriculture, practical implemen-
tations of grower-ready open-source systems are more limited, though include AgOpenGPS51 and FarmOS52, 
and now OWL. The GitHub platform selected for engagement with growers enables both the dissemination of 
instructions in an easy-to-read format and facilitates community contribution through licensed replication, 
adjustment and change tracking and has been successfully used in the transition of closed source to open source 
software35. The approach is in line with similar open-source dataset and code publications such DeepWeeds53, 
pybonirob54 and OpenSourceOV55.

The algorithms chosen to validate the baseline in field performance of OWL represent widely used methods 
of colour segmentation56 or vegetation index generation18. Despite the challenging scenarios and low cost of 
hardware, maximum rates of precision of 100% and recall of 94.7% were recorded by ExHSV/HSV and ExG algo-
rithms, respectively, demonstrating clear potential for the use of image-based weed detection in fallow systems. 
Precision and recall means across all fields were lower than expected, likely a result of established limitations 
of using colour-only algorithms in highly complex and diverse environmental conditions with variable weed 
colour19,57. Based on qualitative assessment of weed characteristics, it is likely that variable weed appearance, in 
particular stressed, purple-green annual sowthistle  and thin grass weeds on diverse soil and stubble backgrounds, 
contributed to the reduced performance of colour-only algorithms. Factors such as image blur, resulting from 
slow shutter speeds and the rolling shutter of the Raspberry Pi HQ camera are likely to have contributed to low 
recall. High image blur results in the green pixels from small or thin-leaved weeds being averaged with neigh-
bouring background pixels, resulting in missed detections and poorer performance of colour-based algorithms58. 
Immediate improvements would likely be observed with more advanced global shutter cameras and brighter, 
more uniform illumination for faster shutter speeds59. Deep learning algorithms have been found to be more 
tolerant to blur, lighting and colour variability60, though would likely run too slow on Raspberry Pi devices and 
require large image datasets for training and generalization. Exploiting the colour differences between growing 
weeds and background is a simple method to validate the OWL system. Whilst substantial advances in useability 
of deep learning systems continue to be made, supporting these algorithms increases both the complexity and cost 
of the system, with a requirement for more powerful embedded computers. Nonetheless, the modular nature of 
the OWL system allows future versions to utilise more powerful processors running more advanced algorithms.

Whilst no differences (P > 0.05) were found among algorithms when compared across all seven transects, 
trends in performance and algorithm variability suggested field-scale differences in performance would be likely. 
ExG appeared more sensitive to weed detection than the other algorithms, which would result in fewer weeds 
being missed. The low variability in precision of ExHSV, coupled with the ability to refine sensitivity in two colour 
spaces suggests it is a better option for large-scale weed detection in environments where weeds are large and 
green. Similarly, Kawamura et al. found combining HSV and ExG features improved performance of a machine 
learning model over other models trained on HSV alone61. Using ExG instead of NExG in the composite ExHSV 
algorithm may be advantageous based on the results presented here, however, others have found non-normalized 
RGB chromatic coordinates to be highly variable18, resulting in poorer performance. Additionally, managing 
bright reflection from white stubble is critical in environments with bright sunlight, where the use of specular 
reflection management approaches such as that developed by Morgand and Tamaazousti62, would likely reduce 
false positives in heavy stubble conditions. Nevertheless, under current settings it appears that the precision 
of ExHSV offers a reduced risk of excessive false positives in stubble. Further analyses with more field trials in 
defined environments would improve our ability to confidently determine the most effective algorithm, however, 
the adjustment of colour-based algorithms to suit individual environmental circumstances is a well-known 
drawback of these approaches57. This may be required for consistently effective use as a fallow weed control 
tool. The benefit of OWL is that there are opportunities to include additional reduced sensitivity options when 
used under brightly sunlit, heavy stubble conditions, such as those at field site HEN1, where precision across 
all algorithms is substantially reduced. Whilst the very high precision recorded for all algorithms at the WAG1 
field site is encouraging, the result is likely due to the high density of weeds, where the frame is already filled by 
green objects with few opportunities for false positives. Based on the experiences of other industries, the use of 
image-based weed detection is likely to expand as a result of community engagement from open-source avail-
ability, leading to rapid progression in SSWC for fallow crop production systems. Importantly, the detection of 
green plants does not limit the OWL to fallow spraying. Inter-row use of the device for weed control in wide 
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row crops or the site-specific application of weed control, fertiliser, desiccants and irrigation in crops may also 
be viable uses, demonstrating the wide-ranging potential of the device.

On embedded devices such as the Raspberry Pi, the processing speed, as measured here as the framerate of 
each algorithm, is an important metric to determine maximum possible forward speed for real-time use. The low 
framerates at which ExHSV and NExG run highlight the increased computational demand of these algorithms 
compared to HSV and ExG. HSV ran at the highest framerate, which is likely due to the binary output image 
(black and white only) not requiring an additional computationally expensive adaptive threshold. This finding 
is contrary to Woebbecke et al.18, where HSV was found to be more computationally expensive, however, the 
evaluation in that study was based purely on defined thresholds rather than a combination of both defined and 
adaptive thresholds. Previous methods of green-based differentiation have employed Otsu’s thresholding29, where 
the appropriate threshold value is determined algorithmically based on image content. In large-scale, fallow 
scenarios where weeds are infrequent, relying solely on adaptive thresholds such as this may result in false posi-
tives when no clear green signal is provided by the selected algorithm. The combination of defined and adaptive 
thresholds in ExG, NExG and ExHSV was used in this study to better determine weed presence where weeds are 
infrequent. It is highly unlikely that framerate is a limiting factor for OWL, with real-time operation in large-scale 
systems (forward speed dependent) observed at framerates above 6 FPS for other systems29–31,53,63, with current 
commercial systems operating between 16 and 17 FPS for forward speeds between 2.67 and 6.67 m s−164,65. The 
performance of algorithms in the field is likely also dependent on the ambient lighting conditions, which in turn 
influence the blurriness of the video feed. Optimising these factors and measuring impacts will be important in 
determining the most effective weed detection algorithm for fallow scenarios.

Conclusion
The development of lower cost, smaller form factor and higher power computing is generating opportunities 
to deploy more accessible weed recognition technologies and embrace the potential for education and engage-
ment that open-source software and hardware brings. The validation of OWL presented here has immediate 
applications as a low-cost image-based fallow weed detection device for large-scale crop production systems. 
The open-source and community-driven nature of the system enables ongoing development and opportunities 
to further increase the complexity of detection possibilities and reliability by upgrading the algorithms, embed-
ded computer and camera hardware, and system settings. The results presented here of colour-based algorithms 
in seven separate field transects under both day (full sun, overcast) and night (artificial lighting) demonstrate 
the baseline potential for the OWL unit, with individual field performance at levels equivalent to other fallow 
detection systems. The high precision of the ExHSV combination algorithm suggests it may be relevant for use 
with large weeds in stubble, where the green signal is strong and false positives are undesirable. In contrast, the 
higher recall of the ExG algorithm suggests it may be better applied detecting smaller weeds and reducing misses. 
OWL sets an open-source path for the weed control industry, to assist in the affordable, site-specific and effective 
control of weeds in a variety of scenarios.

Methods
Field data collection.  Video data were collected in cropping fields with varying weed plant morphology 
and density, and different background conditions of soil colour, stubble and lighting for the validation of OWL 
using four separate colour-based algorithms. The collection of data was designed to replicate the in-field video 
environment of the OWL unit as closely as practicable. Landowners provided field access and permission to 
record videos in each field transect. Videos were collected using a handheld apparatus, which enabled concur-
rent collection of video data from two Raspberry Pi HQ cameras. Algorithms were selected via a rotary switch 
for each transect. Both computer-camera pairs were powered with a 12 V battery and a 5 V, 5 A voltage regula-
tor (POLOLU-4091; Pololu Corporation). Recorded videos as well as average frame rates were stored on the 
onboard 64 GB micro-SD card and offloaded after each data collection. Real time clock modules (ADA3386; 
Adafruit Industries) ensured accurate timestamps of recorded videos. Five transects were recorded in daylight 
at five distinct field locations (Fig. 4), with a further two sites (including one used for daylight collection) used 
for collection of video data under artificial illumination with a Stedi C-4 Black Edition LED Light Cube. The 
40 W light provides 4,200 Lm with a colour temperature of 5700 K and similar field of illumination to the FOV 
of the camera. The field sites represented likely use cases for fallow weed control, including canola, barley and 
wheat stubble and tilled soil at six locations in southern New South Wales, Australia (Table 2). Transects of 50 m 
were traversed by walking at a target speed of approximately 4 km h−1, with the walking time for each transect 
recorded to determine true average speed (Table 2). Based on the 1 m FOV of the camera each transect covered 
a total area of 50 m2, which was used to calculate weed density. The authors undertook in situ visual inspection of 
growth stage and identification of the weeds growing in the field at each of the sites where videos were collected. 
As all weeds identified are commonly occurring species with recognizable features no plant specimens were col-
lected for subsequent formal identification (Table 2).

In field validation and evaluation of weed detection algorithms.  Four colour-based algorithms 
that exploited the greenness of weeds for detection were used to validate OWL hardware. The algorithms were 
selected based on ease of implementation, alignment with human colour perception56 and use in weed detec-
tion and vegetation segmentation19,66–68: (1) raw excess green (ExG); (2) normalised excess green (NExG); (3) 
hue, saturation, value (HSV). A combined ExG and HSV (4) algorithm (ExHSV) (Fig. 5) was implemented to 
manage the sensitivity of ExG to expected changes in brightness in field conditions. Algorithm indices were 
calculated on a frame-by-frame basis by splitting each image into colour channels. Thresholds were then applied 
in conjunction with morphological operations to remove image noise. Remaining areas were marked as positive 
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Figure 4.   Representative images of the variable background and lighting conditions for seven image collection 
scenarios, (a) HEN1, (b) HEN2, (c) NIGHT1, (d) NIGHT2, (e) WAG1, (f) WAG2 and (g) COB1, used to 
evaluate the performance of colour-based weed detection.

Table 2.   Summary of field locations, weed species, background conditions, weed growth stage range and 
image collection speeds (n = 5) in fields used for video data collection and analysis.

Field ID Location Coordinates Light conditions Background Weeds present
Weed density 
(plants m−2)

Weed growth 
stages

Average speed 
(m s−1 ± SE)

HEN1 Henty, NSW − 35.517102, 
147.034436

Clear, morning 
full sun

Canola stubble, 
red–orange soil

annual sowthistle 
(Sonchus olera-
ceus), volunteer 
canola (Brassica 
napus), annual 
ryegrass (Lolium 
rigidum), volunteer 
faba bean (Vicia 
faba)

3.1 2-leaf to flowering 1.14 ± 0.02

HEN2 Henty, NSW − 35.517102, 
147.034436

Clear, afternoon 
full sun

Heavy wheat stub-
ble, red soil

Volunteer wheat 
(Triticum aesti-
vum), annual sow-
thistle, annual 
ryegrass

9.3 2-leaf to late 
tillering 1.16 ± 0.01

WAG1 Wagga Wagga, 
NSW

− 35.056986, 
147.351146

Clear, morning 
full sun

Lupin stubble, red–
orange soil

Volunteer nar-
rowleaf lupins 
(Lupinus angus-
tifolius), annual 
sowthistle

18.7 2-leaf to flowering 1.14 ± 0.01

WAG2 Wagga Wagga, 
NSW

− 35.056986, 
147.351146

Clear, morning 
full sun

Grazed barley 
stubble

Volunteer barley 
(Hordeum vulgare), 
annual sowthistle

3.3 2-leaf to 8-leaf 1.24 ± 0.03

COB1 Cobbitty, NSW − 34.021914, 
150.662655 Overcast

Dark brown soil, 
freshly tilled, no 
soil cover

Wild rad-
ish (Raphanus 
raphanistrum), 
fumitory (Fumaria 
officinalis), large 
crabgrass (Digitaria 
sanguinalis), bil-
lygoat weed (Agera-
tum conyzoides), 
stagger weed 
(Stachys arvensis)

9.8 Cotyledon to 
6-leaf 1.07 ± 0.01

NIGHT1 Culcairn, NSW − 35.667692, 
147.036800 Night Canola stubble

annual sowthistle, 
khaki weed 
(Alternanthera 
pungens), awnless 
barnyardgrass 
(Echinocloa 
colona), annual 
ryegrass, common 
catsear (Hypocha-
eris radicata)

9.6 2-leaf to flowering 1.23 ± 0.01

NIGT2 Cobbitty, NSW − 34.021914, 
150.662655 Night

Dark brown soil, 
freshly tilled, no 
soil cover

Wild radish, 
fumitory, large 
crabgrass, billygoat 
weed, stagger weed

7.8 Cotyledon to 
6-leaf 0.83 ± 0.01
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detections. All image processing software was written in Python 3.669 and completed using OpenCV70, NumPy71 
and imutils72 in addition to inbuilt libraries.

For (1) ExG, the algorithm is adapted from Woebbecke et al.18:

where G, R and B represent the raw pixel intensities for the green, red and blue channels, respectively of the digital 
camera image. The raw channel intensities may be influenced by environmental lighting conditions, which can 
be minimised by normalising individual channel values by the sum of all channels:

The resultant values from 0 to 1 were scaled by 255. The (2) NExG algorithm was calculated using the nor-
malized channel intensities:

On the resultant grayscale image within the threshold bounds of both ExG and NExG, an adaptive threshold 
was applied generating a binary (black and white only) masking image.

For (3) HSV, the colour space was converted from the RGB colour space to HSV using inbuilt OpenCV 
functions, with thresholds applied to each of the channels (Table 3). The minimum and maximum values for 
each threshold were manually selected to minimise over sensitivity, whilst maximising the number of true posi-
tives. The combined (4) ExHSV algorithm required a value to be both within the NExG threshold and the HSV 
binary region.

For the resultant binary images, the within-image coordinates and size of each detection were returned for 
allocation to specific activation zones (Fig. 1a). The frame rates for each algorithm were recorded over five sepa-
rate transects each 60 s in duration to ensure consistency in reporting.

(1)ExG = 2G − R − B

(2)r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B

(3)NExG = 2g − r − b

Figure 5.   Overview of the frame-by-frame analysis process. Each 416 × 320 image is split into either red, green 
and blue (RGB) or hue, saturation and value (HSV) channels, and the ExG, NExG, ExHSV or HSV algorithm 
applied. A defined threshold is applied to the processed image followed by an adaptive threshold on the result 
(except HSV which is already binary) followed by contour detection and the generation of minimum enclosing 
rectangles for weed centre calculation.

Table 3.   Threshold parameters used for each of the four algorithms, where relevant. Values represent pixel 
intensities for zero-indexed 8-bit arrays with a range of 0–255. Pixel values that did not sit within the ranges 
were excluded, hence leaving only green pixels as the detected object. Separate thresholds were used for the day 
and night videos. A minimum object size was implemented to reduce noise and is based on the area of each 
detected object. Values were selected manually to optimize algorithm performance.

Parameters

Day Night

ExG/NExG ExHSV HSV ExG/NExG ExHSV HSV

Min Max Min Max Min Max Min Max Min Max Min Max

ExG 13 200 13 200 – – 29 200 29 200 – –

Hue – – 30 92 35 84 – – 30 92 45 80

Saturation – – 4 250 10 220 – – 10 250 75 200

Value – – 15 250 50 200 – – 60 250 46 240

Object size (pixels) 10 – 10 – 10 – 10 – 10 – 10 –
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Video analysis of algorithm performance.  Videos collected by the handheld video apparatus at a reso-
lution of 416 × 320 pixels were analysed using standard, desktop computers on a frame-by-frame basis. Each 
frame was processed using the respective algorithms and threshold settings (Table 3), whereby detections were 
displayed as red boxes (Fig. 5). A separate, high-definition video of the transect was used to count all weeds 
within the field of view for the ground-truth data. True and false positives were recorded by comparison with the 
high-definition video. Algorithm performance was measured by calculating recall (Eq. 4) and precision (Eq. 5). 
Recall refers to the proportion of weeds detected when compared with all those present in the transect. Precision 
refers to the proportion of detections that were correct.

Statistical analysis.  A one-way analysis of variance (ANOVA) was used to compare means of precision, 
recall and framerates across all fields implemented in RStudio73,74. The Shapiro–Wilkes test (P > 0.05) was used to 
test for normality. Precision data were transformed using a fifth power due to a negative skew in the distribution. 
Homogeneity of variance for recall and the transformed precision data were assessed with the Bartlett (P > 0.05) 
and Fligner–Killeen tests (P > 0.05). Data were visualised with ggplot275 in RStudio. Pair-wise comparisons of 
framerates were made with the Agricolae package76. Illustrative figures were composed in Adobe Illustrator (v 
24.4.1; Adobe Inc., San Jose, CA, USA).
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