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Automatic vertebrae localization 
and segmentation in CT 
with a two‑stage Dense‑U‑Net
Pengfei Cheng*, Yusheng Yang, Huiqiang Yu & Yongyi He

Automatic vertebrae localization and segmentation in computed tomography (CT) are fundamental 
for spinal image analysis and spine surgery with computer-assisted surgery systems. But they remain 
challenging due to high variation in spinal anatomy among patients. In this paper, we proposed a 
deep-learning approach for automatic CT vertebrae localization and segmentation with a two-stage 
Dense-U-Net. The first stage used a 2D-Dense-U-Net to localize vertebrae by detecting the vertebrae 
centroids with dense labels and 2D slices. The second stage segmented the specific vertebra within a 
region-of-interest identified based on the centroid using 3D-Dense-U-Net. Finally, each segmented 
vertebra was merged into a complete spine and resampled to original resolution. We evaluated our 
method on the dataset from the CSI 2014 Workshop with 6 metrics: location error (1.69 ± 0.78 mm), 
detection rate (100%) for vertebrae localization; the dice coefficient (0.953 ± 0.014), intersection 
over union (0.911 ± 0.025), Hausdorff distance (4.013 ± 2.128 mm), pixel accuracy (0.998 ± 0.001) 
for vertebrae segmentation. The experimental results demonstrated the efficiency of the proposed 
method. Furthermore, evaluation on the dataset from the xVertSeg challenge with location error 
(4.12 ± 2.31), detection rate (100%), dice coefficient (0.877 ± 0.035) shows the generalizability of our 
method. In summary, our solution localized the vertebrae successfully by detecting the centroids of 
vertebrae and implemented instance segmentation of vertebrae in the whole spine.

The vertebra, which is one of the main components of the spine, plays an important role in supporting the human 
body’s walk, twist and move. The structure of the vertebra is very complicated, and its state has an essential influ-
ence on the body’s health. Identifying the pathologies of the vertebra not only helps to prevent the deterioration of 
the spine-related disease in the early phase of the treatment but also provides essential information for the doctor 
to design the therapeutic schedule. One common approach to acquire the status of the vertebra is scanning it 
with the computed tomography (CT) technology, and the captured CT spinal images are used in the subsequent 
pathology analysis. However, the shape of the vertebra is irregular, and its architecture varies among different 
people. Furthermore, the adjacent vertebrae and ribs have similar structures. All these factors post challenges 
for localizing the vertebra and segmenting the vertebra from CT images.

Vertebrae localization and segmentation from CT spinal images are fundamental for spine image analysis 
and 3D spine reconstruction applications, such as identifying spine abnormalities1, photogrammetry-based 
biomechanical modeling2, and image-guided spine intervention3. Since there are many slices, i.e., images, for CT 
scanning, localizing and segmenting vertebrae manually will be very time-consuming, and the inter- and intra- 
observer errors are inevitable among different operators. In the past decades, many automatic localization and 
segmentation methods were proposed to improve localization precision and increase the segmentation efficiency.

For vertebrae localization, traditional methods usually combine random forests with other statistical graphical 
models4,5 and appearance information6. Due to the advances of deep learning7, recent best-performing methods 
for vertebrae localization are based on convolutional neural networks (CNNs). In 2017, Yang et al8 generated 
predictions for vertebrae localization by incorporating a pre-trained model of neighboring landmarks into their 
CNN. Liao et al.9 published a solution that regresses the centroids of the vertebrae using a CNN and recurrent 
neural network (RNN) to capture the order of the vertebrae and to incorporate long-range contextual informa-
tion. One of the state-of-the-art methods was proposed by McCouat et al.10 who improves the accuracy of the 
vertebrae centroid detection and localization with a revised approach to dense labeling from sparse centroid 
annotations.

For vertebrae segmentation, the early approaches typically are based on traditional image processing methods 
that could be classified into region growing methods11, the level set method12, clustering approaches13, energy 
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minimization methods14, statistical shape model methods15, atlas-based methods16, etc. After some CT spine 
datasets were public17, researchers began to combine deep-learning methods with statistical modeling or other 
traditional methods which showed better performance18,19. Recently published vertebrae segmentation methods 
have replaced explicit modeling of the vertebral shape and appearance with convolutional neural networks. For 
example, Zhou et al.20 described an N-shaped 3D fully convolution network (FCN). Kolařík et al21 validated the 
superior performance of 3D-Dense-U-Net in medical image segmentation. But both Zhou et al.20 and Kolařík21 
failed to separately segment vertebrae from the adjacent vertebrae in their work.

There are also some researchers implementing sequentially localization and segmentation with two stage 
method in their work. Sekuboyina et al.22 proposed a two-staged approach that, the first stage located the lumbar 
region using the global context and the second stage, exploited the local context in the localized lumbar region to 
segment and label the lumbar vertebrae. However, solely projected 2D views of the 3D spinal anatomy were used 
as the input of their networks. It reduces the amount of information that needs to be processed, but beneficial 
volumetric information may be lost. Janssens et al.23 relied on two consecutive networks, first using a regression 
CNN to estimate a bounding box of the lumbar region, followed by a classification CNN to perform voxel labeling 
within that bounding box to segment the lumbar vertebrae. Lessmann et al.24 presented an iterative CNN for 
successively localizing and segmenting vertebra instance-by-instance, while the network needs to incorporate 
information of already segmented vertebrae.

In this paper, we implemented a complete process to automatically localize and segment vertebrae by propos-
ing a two-stage Dense-U-Net as illustrated in Fig. 1. At the first stage, by creating sparse annotation of vertebrae 
centroids and converting them to dense labels, we built a dataset from the original dataset for vertebrae localiza-
tion. Then, combing an aggregating method to postprocess the predicted result, the centroid of the vertebrae in 
each CT image can be predicted with a 2D-Dense-U-Net, and this information is treated as the prior for the sub-
sequent instance segmentation. At the second stage, a 3D-Dense-U-Net segmented the specific vertebrae within 
the region-of-interests (ROIs) that are identified with the prior centroid information. Merging the individual 
segmented vertebrae in physiology sequence, the whole shape of the spine can be captured accordingly. We tested 
the proposed method on two datasets from CSI 2014 Workshop25 and xVertSeg challenge26 on the SpineWeb17, 
the former experimental results showed the efficiency of our solution and the later showed the generalizability.

Figure 1.   Overview of our proposed automatic vertebrae localization and segmentation method with a two-
stage Dense-U-Net.
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Material and methods
In this section, we first introduce the datasets used in this paper. Then, methods used for vertebrae localization 
and vertebrae segmentation are presented respectively in detail incl. data preparation for training and testing, 
Dense-U-Net architecture, and postprocessing of predicted results.

Dataset.  The CT spinal datasets used in this work are provided in mhd/raw format from CSI 2014 
Workshop25 and xVertSeg challenge26 on the SpineWeb17, which is a collaborative platform of spine images. We 
used the dataset from CSI 2014 Workshop (CSI dataset) to evaluate the efficiency of our method and the dataset 
from xVertSeg challenge (xVertSeg dataset) to evaluate the generalizability of our method. The CSI dataset con-
sists of 15 healthy cases that contain all thoracic and lumbar vertebrae and we divided them into two parts: case 
1-10 for training and case 11-15 for testing. The position of each vertebra and its corresponding label are shown 
in Fig. 2a. The xVertSeg dataset contains 15 lumbar spine CT images incl. non-fractured and fractured vertebrae 
of which corresponding vertebra segmentation labels and fractured grade are also provided. Therefore, it could 
be also used to evaluate the performance on pathological cases. We divided them into two parts: 10 images for 
training and 5 for testing. The in-plane resolution and the slice thickness of the datasets are different. To reduce 
the inconsistency between different images and facilitate the convolution operation to extract common features, 
all spine CT images were resampled to an isotropic resolution of 1 × 1 × 1 mm3 per voxel using linear interpola-
tion for the image and nearest interpolation for the label.

Vertebrae localization.  Data preparation.  At the first stage, we localized the vertebrae through a 2D-
Dense-U-Net to detect the centroid of each vertebra. Since both datasets used in this paper only contain the 
labels of the vertebrae and come without vertebrae centroids (sparse labels), we built dense datasets from the 
original ones by creating sparse annotation of vertebrae centroids and converting them to dense labels. The 
building algorithm is inspired by McCouat et al.10 and shown in detail as in Table 1 Algorithm 1. Especially, to 
distinguish the vertebrae from each other in transversal direction obviously, a coefficient pj given by

was taken to keep the center slice of the vertebra more focused than other adjacent slices, where dmax is the 
approximated radii of the ith vertebra Vi , vj is the coordinate of the jth pixel in the ith vertebra Vi , ci is the coordi-
nate of vertebra centroid of the ith vertebra Vi , z is the z component of the coordinate, dj is the Euclidean distance 
between vj and ci , hi is the approximated height of the ith vertebra Vi . The symbols that appear in Algorithm 1 
and Fig. 2 have the same meaning as aforementioned. A vertebra with its centroid is shown in Fig. 2b. A partial 

(1)pj =
(
dmax − dj

)
×

(
1 − tan

|||||

z of vj − z of ci

hi

|||||
×
�

2

)

Figure 2.   (a) The position of each vertebra and its corresponding label of CSI dataset. (b) A vertebra with its 
centroid. (c) A partial sagittal dense label of vertebrae centroids. (d), (e) Transversal slice and its corresponding 
dense label respectively used as the input and output of 2D-Dense-U-Net.
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sagittal dense label of vertebrae centroids is shown in Fig. 2c. Transversal slice and its corresponding dense label 
respectively used as the input and output of 2D-Dense-U-Net are shown in Fig. 2d and e.

2D‑Dense‑U‑Net architecture.  The 2D-Dense-U-Net architecture for vertebrae localization is presented in 
Fig.  3. It is designed by adding interconnections to the U-Net architecture29, incl. residual interconnections 
(green links in Fig. 3) to transmit information over whole down or up-sampling blocks and dense interconnec-
tions (blue links in Fig. 3) to pass unprocessed information to the middle layer of down and up-sampling blocks. 
This is advantageous to improve the accuracy since these structures not only efficiently alleviate the vanishing 
gradient problem and strengthen feature propagation but also transfer back the fine-grained detail that other-
wise would be lost in the down-sampling path. To cover 3D information in the 2D network, the input of the 
network is designed as 2k + 1 slices (k represents the amounts of slices, it is set as 4 in this paper) generated from 
one transversal slice (as shown in Fig. 2d) and its 2k adjacent slices. In particular, if the slice is at the start or the 
end of the spine CT images in the transversal direction, the missing adjacent slices are filled with zero. Each slice 
(In Fig. 2d) has a dense label (In Fig. 2e), containing 0s (for background) and floating-point numbers between 
0 and 1 (for different proximity between each pixel and the centroid of the vertebra), for the network to learn 
from. At last, sigmoid activation was used on the output network layer and the binary cross-entropy was used as 
a loss function for the network.

Table 1.   Algorithm 1: Pseudocode of building dataset for vertebrae localization.

Input: V, Ground-truth labels of vertebrae in 3D spine CT 
images

Output: c, The coordinates of vertebrae centroids L, ground-
truth dense labels of vertebrae centroids in 3D spine CT images

01: for each i ∈
[
0, nv

]
 do

02:    ci ← Get Centroid of Vi in 3D Slicer27

03:    c.append
(
ci
)

04:    dmax ← Get the approximated radii of each vertebra Vi
28

05:    for vj in Vi do

06:    dj ←
‖‖‖vj − ci

‖‖‖
07:       if dj > dmax then dj ← dmax

08:    pj ← Get pj by Eq. 1

09:    vj ←
pj

dmax

× 255

10:    Li .append
(
vj
)

11:    end for

12:    L.append
(
Li
)

13: end for

Figure 3.   2D-Dense-U-Net architecture for vertebrae localization.
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Postprocessing.  After the dense results (As in Fig. 2e) are deduced from 2D-Dense-U-Net, these results are 
aggregated to estimate the vertebrae centroids by Algorithm 2 as shown in Table 2. As depicted in Fig. 4, first, 
the max gray value vmax i of each slice is calculated to make a complete curve listmax . Second, the Savitzky-Golay 
filter30 is applied to filter out outliers and obtain a smoothed curve listSGmax . Third, peaks of the curve listSGmax 
are captured as the coordinates ẑc of the predicted centroids which represent the position of the nearest trans-
versal slices to their centroids as depicted in Fig. 4a. Forth, to filter out some smaller erroneous predictions 
produced by the network, we apply a threshold of 50 on each slice L̂i (in Fig. 4b) on coordinates ẑc and obtain the 
thresholded slice Ŝi (in Fig. 4c). Then, we extract five circle-like contours Cj (in Fig. 4d) between the maximum 
Smax and minimum Smin of the slice Ŝi and fit the centers 

(
yj , xj

)
 (in Fig. 4e) of these contours by the least-squares 

method. Finally, the mean coordinates 
(
ŷci , x̂ci

)
 (in Fig. 4f) of these centers are taken as the coordinates y and x 

of the final predicted vertebra centroid, respectively.

Vertebrae segmentation.  Data preparation.  To further segment each vertebra, the ROI of each vertebra 
needs to be identified at the second stage. Based on the final centroid estimates from the first stage, we cropped 
ROIs from the resampled dataset with size z × y × x(80 × 128 × 112) for images and its ground-truth labels, 
respectively as shown in Fig. 5a, b. To avoid overfitting and increase the amount of 3D spine CT images, data 
augmentation techniques are adopted. First, we elastically deform each ROI using the elastic deform python 

Figure 4.   Aggregating method to estimate vertebra centroid.

Table 2.   Algorithm 2: Pseudocode for aggregating the dense results to estimate each vertebra centroid.

Input: L̂ , Predicted dense results of vertebrae centroids in 3D spine CT images

Output: ĉ
(

ẑc , ŷc , x̂c
)

 , Coordinates of aggregated vertebrae centroids

01: for each i ∈
[
0, ns

]
 do

02:    vmax i ← Get maximum of each slice L̂i
03:    listmax.append

(
vmax i

)

04: end for

05: listSGmax ← Apply Savitzky-Golay filter30 to listmax

06: ẑc ← Get peaks of listSGmax

07: for each i ∈ ẑc do

08:    Ŝi ← Apply a threshold to L̂i
09:    Smax, Smin ← Get maximum and minimum of Ŝi
10:       for each j ∈ [2, 6) do

11:      Cj ← Get values in the range 
(
Smin × 0.1 × j + Smax × 0.1 × (10 − j)

)
± 5 of Ŝi

12:      
(
yj , xj

)
← Fit the center of Cj with least-squares method

13:      y.append
(
yj
)
, x.append

(
xj
)

14:       end for

15:    
(
ŷci , x̂ci

)
← Get the mean value of (y, x)

16:    ŷc .append
(
ŷci
)
, x̂c .append

(
x̂ci

)

17: end for

18: ĉ ←
(
ẑc , ŷc , x̂c

)
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package31 on a 3 × 3 × 3 grid as shown in Fig. 5c, d; Second, after elastically deformed, Gaussian noise with � as 
the mean and � as the standard deviation was added to the ROIs, where � = 0 and variance � obeys the uniform 
distribution U (0, 0.1) as shown in Fig. 5e, f. Especially, if the ROI covers the region beyond the boundary of the 
3D spine CT images, the outside part was filled with 0s (black) as shown in Fig. 5g, h.

Figure 5.   (a), (b) Sagittal image and label of ROI for segmentation. (c), (d) Elastically deforming of ROI. (e), (f) 
Adding Gaussian noise to ROI, (g), (h) Filling with 0s (black) beyond the boundary.

Figure 6.   3D-Dense-U-Net architecture for vertebrae segmentation (Blue boxes represent feature maps. The 
number of channels is denoted above each feature map. The numbers in the circle from 1 to 5 are joints between 
(a) and (b)). (a), (b) The contracting and expansive path of 3D-Dense-U-Net.
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3D‑Dense‑U‑Net architecture.  To segment the vertebrae within the ROIs, 3D-Dense-U-Net is designed based 
on original U-Net implementation29 and 3D U-Net version32 but with added interconnections between layers 
processing the same feature size as shown in Fig. 6. To maintain the resolution of the figure, the contracting and 
the expansive path of 3D-Dense-U-Net are separately depicted in Fig. 6a and b, and the numbers in the circle 
from 1 to 5 are joints between them. The interconnections also include residual interconnection (green links in 
Fig. 6) to transmit information over whole down or up-sampling blocks and dense interconnections (blue links 
in Fig. 6) to pass unprocessed information to the middle layer of down and up-sampling blocks but in 3D mode. 
We used sigmoid activation on the output network layer and binary cross-entropy as the loss function, the out-
put of the network is not labeled by just discrete values i.e., 0 or 1, but with continuous values in the range from 0 
to 1. Therefore, after prediction, we used thresholding as post-processing on predicted data. Considering the dif-
ferent size of vertebrae and small size vertebra may lose information in respective large ROI , all pixels lesser than 
0.5 were labeled as 0 and greater than 0.5 as 1 for T1 to T9; all pixels lesser than 0.9 were labeled as 0 and greater 
than 0.9 as 1 for T10 to L5. Because the ROI contains adjacent vertebrae which may cause some artifacts in the 
prediction, we had to threshold the predicted result to remove all stand-alone objects smaller than 500 voxels. 
This ensured the quality output without any artifacts in the segmented image. Through these steps, vertebrae are 
successfully segmented from the background and the adjacent vertebrae by 3D-Dense-U-Net within the ROIs.

Postprocessing.  Finally, the predicted vertebrae were merged into a complete spine and resampled to original 
resolution. Moreover, to better display the segmented result and interaction with surgeons, the whole spine was 
reconstructed in 3D. Especially, since the segmentation of adjacent vertebrae is separated and independent, one 
pixel may be assigned to both vertebrae. To solve this conflict, in merging process, we created an empty CT scan, 
then each segmented vertebra is sequentially assigned to the empty CT scan based on the coordinates of its ver-
tebral centroids pixel by piexl with the condition that the position of corresponding pixel is empty. In summary, 
with the mode of first localization in 2D slices and then segmentation in 3D ROIs, we finished vertebrae instance 
segmentation and didn’t need to process the whole spine CT images in the segmentation task, so the usage of 
GPU and memory could be saved and spatial semantic information for vertebrae segmentation isn’t lost.

Experiments and results
Experiment setup.  Our experiments were conducted on a workstation operated under Ubuntu 20.04 sys-
tem. The workstation is embedded with an Intel(R) Xeon(R) CPU, 64 GB memory, and two NVIDIA GeForce 
GTX 1080Ti GPU using CUDA 11.0. Our network was implemented in Keras 2.4.3 with TensorFlow 2.4.0 as the 
backend in the Python 3.8 environment. Specifically, as for the parameters in the training, we set the batch size 
as 1 and adopted the Adam optimizer33 with the learning rate equals to 10−5 , beta1 to 0.9, beta2 to 0.999, epsilon 
to 10−8 and decay to 1.99 × 10−7 separately. The epochs processed by the 2D-Dense-U-Net and 3D-Dense-U-Net 
are 30 and 50, respectively.

Evaluation criteria.  The result of vertebrae localization was evaluated in terms of the location error (LE) 
and detection rate (DR). Specifically, LE represents the Euclidean distance between the predicted centroid ĉ and 
ground-truth centroid c of the vertebra and the DR means the proportion of the vertebra contained in the ROI 
and its whole vertebraas repectively as given in

where ‖c − ĉ‖ means the Euclidean distance between c and ĉ , VROI represents the partial vertebra contained in 
the ROI, V represents the whole vertebra.

As for the accuracy of vertebrae segmentation, four different criteria, incl. the dice coefficient (DC)34, the 
intersection over union (IoU)35, the Hausdorff distance (HD)36, and the pixel accuracy (PA)37 were evaluated. 
All results were computed by using the Visceral segmentation tool38. The DC and IoU that represent the amount 
of spatial overlap between the predicted region and the ground-truth region are calculated in different ways as

where X and Y stand for the number of positive pixels/voxels on the ground-truth and predicted result, separately.
The HD, which describes the distance between each surface voxel of the segmented surface P from the closest 

surface voxel in the ground-truth G, is defined by

where h(G, P) is called the directed Hausdorff distance, ‖g − p‖ means the Euclidean distance between g and p.
The last criterion for vertebra segmentation is the PA, as given in

where TP stands for true positive pixels or voxels, TN means true negative, FP means false positive, and FN 
represents the false negative.

(2)LE(c, ĉ) = ‖c − ĉ‖, DR
�
VROI ,V

�
=

VROI

V
× 100%,

(3)DC(X,Y ) =
2|X ∩ Y |
|X| + |Y |

, IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

,

(4)HD(G, P) = max(h(G, P), h(P,G)), h(G, P) = max
g∈G

min
p∈P

‖g − p‖,

(5)PA =
TP + TN

TP + FP + TN + FN
,
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Results and discussion.  Since the proposed approach was carried out in two-stage, their experiments were 
conducted and evaluated separately on CSI dataset. First, we evaluated the accuracy of vertebrae localization; 
next, the second experiments respectively evaluating the accuracy of vertebrae segmentation qualitatively and 
quantitatively were conducted and the results were also compared with some state-of-the-art methods. Moreo-
ver, to further evaluate the generalizability and the performance on pathological cases, we conducted experi-
ments on xVertSeg dataset in terms of evaluation on LE, DR and DC.

For vertebrae localization, the predicted vertebra centroid ĉ at the first stage is used for identifying the ROI 
for subsequent vertebrae segmentation. If the location of vertebra centroid ĉ is wrongly predicted, the ROI may 
only contain partial vertebra and result in information being lost. Thus, the location errors and detection rates 
were adopted to evaluate whether the ROI contained the whole vertebra as shown in Fig. 7. Figure 7a shows 
that the whole vertebra is contained in the ROI if the LE is small i.e., DR is 100% and by contrast Fig. 7b shows 

Figure 7.   Visual demonstration of different LE and DR (the purple box is the identified ROI according to the 
predicted vertebra centroid ĉ ). (a) DR: 100%. (b) DR: 95%. (c) ROI identified by the predicted vertebra centroid 
of case15/L3.

Table 3.   The location errors of the predicted vertebrae centroids. Bold values indicates maximum and 
minimum values of the corresponding column or row.

LE Case 11 (mm) Case 12 (mm) Case 13 (mm) Case 14 (mm) Case 15 (mm) All (mm)

T1 1.76 1.65 2.15 0.69 1.94 1.64

T2 0.96 2.22 2.12 1.25 2.30 1.77

T3 1.45 0.88 1.40 2.31 1.54 1.52

T4 1.19 2.52 0.72 0.55 1.81 1.36

T5 2.54 2.51 1.40 2.26 0.95 1.93

T6 0.47 2.00 2.11 1.30 1.38 1.45

T7 1.35 0.69 1.42 1.41 0.83 1.14

T8 2.66 1.17 1.10 0.40 0.97 1.26

T9 1.36 2.45 0.65 0.22 0.84 1.10

T10 1.16 2.07 2.66 0.85 2.30 1.81

T11 1.42 2.78 2.86 1.12 2.94 2.22

T12 1.04 3.31 2.72 2.06 1.81 2.19

L1 2.38 1.40 0.94 1.31 1.98 1.60

L2 0.97 1.89 1.99 1.15 1.8 1.56

L3 1.64 1.79 2.90 2.01 4.35 2.54

L4 1.69 1.04 2.78 0.85 2.87 1.85

L5 0.74 1.56 2.30 2.75 1.98 1.87

Mean 1.46 ± 0.61 1.88 ± 0.72 1.90 ± 0.77 1.32 ± 0.73 1.92 ± 0.90 1.69 ± 0.78

Table 4.   The detection rates of vertebrae localization.

Case 11 Case 12 Case 13 Case 14 Case 15

DR 100% 100% 100% 100% 100%
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that too large LE (DR is 95%) causes the ROI only contains partial vertebra, and some valid information lost as 
shown in the blue oval circle. The location errors of all predicted vertebrae centroids are presented in Table 3. 
The mean location error of each vertebra is concluded in the last column “All” and all of them are under 3 mm. 
The mean location error of each case is concluded in the last row “Mean”. It can be found that the mean location 
error among five testing cases is 1.69 ± 0.78 mm. The maximum location error appears in case 15/L3 which is 4.35 
mm, therefore, the ROI identified by its predicted centroid is visually demonstrated as in Fig. 7c. Although the 
location error of case15/L3 is the largest, the DR is still 100%, which means that the ROI still contains the whole 
vertebra. Furthermore, the detection rates of five testing cases were evaluated as shown in Table 4. It indicates 
that the detection rates are 100% for all cases, i.e., there is no valid information loss and all ROIs can be used as 
the input for the subsequent vertebrae segmentation.  

To demonstrate the effectiveness and accuracy of the proposed vertebrae localization method, we also com-
pared the location error of thoracic and lumbar with several start-of-the-art methods, incl. Chen et al.39, Liao 
et al.9, and McCouat et al.10. As presented in Table 5, the location errors of our method are smaller than other 
methods both in thoracic, lumbar and mean value of all vertebrae (row “Mean”). However, the dataset we used 
is different from the dataset used by the compared methods, since all of them conducted their methods on the 
dataset that is only for vertebrae localization and identification5 that can’t be used for our subsequent segmenta-
tion task. Therefore, the result only represents that we localized the centroids effectively and reached the accu-
racy of the state-of-the-art on our refined dataset. In summary, the first stage 2D-Dense-U-Net can localize the 
vertebrae successfully by detecting the vertebrae centroids and the accuracy of localization can provide valid 
ROIs for subsequent segmentation.

For vertebrae segmentation, each ROI of the vertebra was identified according to the predicted vertebra 
centroid ĉ . Then, the ROI was fed into the 3D-Dense-U-Net for vertebra segmentation. Taking case15/L3 as a 
visual example, the predicted result and the corresponding ground-truth are demonstrated in Fig. 8. It shows that 
3D-Dense-U-Net successfully segmented the vertebra from the background and the adjacent vertebrae within 

Table 5.   Comparison of location errors on thoracic and lumbar.

Chen et al.39 Liao et al.9 McCouat et al.10 Our Method

Thoracic 11.39 ± 16.48 7.78 ± 10.17 6.61 ± 7.40 1.62 ± 0.75

Lumbar 8.42 ± 8.62 5.61 ± 7.68 5.39 ± 8.70 1.88 ± 0.82

Mean 8.82 ± 13.04 6.47 ± 8.56 5.60 ± 7.10 1.69 ± 0.78

a

ROI

b

c d

Figure 8.   Visual demonstration of the predicted (blue) and the ground-truth (yellow) of case15/L3. (a) 3D 
model. (b) Transversal plane. (c) Sagittal plane. (d) Coronal plane.
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the ROI. However, the result also shows that there are still some pixels that were not correctly predicted (pixels 
nonoverlapping in 3D model, transversal plane, sagittal plane, and coronal plane as locally enlarged depicted in 
Fig. 8). Therefore, four metrics (DC, IoU, HD, and PA) were used for quantified evaluation of the segmentation 
results, and their results among five testing cases are given in Table 6. The mean DC of all cases is 0.953 ± 0.014, 
and the mean IoU is found to be 0.911 ± 0.025. HD represents the distance between each surface voxel of the 
segmented surface from the closest surface voxel in the ground-truth, the larger the performance is worse. Case 
15 has the largest HD, which is 5.443 ± 4.509 mm. HD in case 14 is the smallest and can reach 3.156 ± 1.241mm. 
The mean PA result of all testing cases is impressive, which can reach up to 0.998 ± 0.001. Since PA considers the 
TN i.e., true negative pixels or voxels which represent background in the ROI and occupy most of the space in 
the ROI, the large value of PA most likely credited to these pixels or voxels were correctly predicted. 

Additionally, the vertebrae were grouped into three groups according to their anatomy property: (1) the upper 
thoracic group: from T1 to T6, (2) the lower thoracic group: from T7 to T12, and (3) the lumbar spine group: 
from L1 to L5. The results of DC regarding these three groups are shown in Fig. 9. The best result appears in the 
lumbar spine group that belongs to case 11, and the corresponding DC is 0.968. In contrast, the upper thoracic 
group of case 15 has the worst result of DC, which is 0.928. For all testing cases, DC on the lumbar spine has a 
better result, followed by lower thoracic, upper thoracic. It may be primarily influenced by two factors: (1) the 
vertebra size at the upper thoracic level is smaller than that at the lumbar level, and the bone density is lower as 
well. (2) The interfaces with surrounding structures are more complex at the upper thoracic level, particularly 

Table 6.   Segmentation results of different cases. Bold values indicates maximum and minimum values of the 
corresponding column or row.

Metrics DC IoU HD (mm) PA

Case11 0.951 ± 0.017 0.908 ± 0.031 3.177 ± 1.156 0.998 ± 0.001

Case12 0.955 ± 0.011 0.914 ± 0.019 4.063 ± 1.099 0.997 ± 0.001

Case13 0.950 ± 0.013 0.906 ± 0.023 4.227 ± 2.637 0.998 ± 0.001

Case14 0.958 ± 0.010 0.919 ± 0.019 3.156 ± 1.241 0.998 ± 0.001

Case15 0.952 ± 0.018 0.909 ± 0.032 5.443 ± 4.509 0.997 ± 0.001

All 0.953 ± 0.014 0.911 ± 0.025 4.013 ± 2.128 0.998 ± 0.001

case11 case12 case13 case14 case15 All
T1-T6 T7-T12 L1-L5

DC

Figure 9.   Evaluation on three groups: upper thoracic, lower thoracic and lumbar spine.

Table 7.   Comparison with some state-of-the-art traditional methods.

DC Hammernik et al.40 Korez et al.41 Our method

Upper thoracic 0.89 ± 0.05 0.913 ± 0.010 0.938 ± 0.010

Lower thoracic 0.95 ± 0.02 0.936 ± 0.005 0.957 ± 0.007

Lumbar spine 0.96 ± 0.02 0.944 ± 0.020 0.966 ± 0.005

Mean 0.93 ± 0.04 0.931 ± 0.020 0.953 ± 0.014

Table 8.   Comparison with several deep-learning state-of-the-art methods.

DC Janssens et al.23 Lessmann et al.42 Lessmann et al.24 Ours

Lumbar 0.957 ± 0.08 – – 0.966 ± 0.005

Mean – 0.948 ± 0.016 0.963 ± 0.013 0.953 ± 0.014
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at the costovertebral junctions that connect the ribs and the vertebrae25. The comparison results between our 
method and some traditional methods on these three groups are presented in Table 7. The overall mean result 
of 0.953 ± 0.014 in term of DC is better than other methods. On the three groups, our results of 0.938 ± 0.010, 
0.957 ± 0.004, 0.966 ± 0.005 also all exceeds the respective result presented by Hammernik et al40 and Korez 
et al41. 

Several state-of-the-art deep-learning algorithms for vertebrae segmentation using the same thoracolumbar 
spine CT dataset were also compared with our results as listed in Table 8. Since Janssens et al.23 only segmented 
the ROI of lumbar, the segmentation results of lumbar is listed as row “Lumbar” for comparing separately and it 
shows that our segmentation result of DC in lumbar spine exceeds the method presented by Janssens et al.23. In 
addition, our segmentation method exceeds the method presented by and Lessmann et al. (2018)42, but slightly 
worse than the performance of Lessmann et al. (2019)24. As mentioned in Lessmann et al. (2019)24, they trained 
their network on an Nvidia Titan X GPU taking about 4-5 days for 100,000 iterations. Compared with that, it 
only took 10 hours to train our network on Nvidia GTX 1080Ti with 30 epochs for vertebrae localization and 
50 epochs for vertebrae segmentation respectively. Therefore, our method requires lower GPU equipment and 
training time. Besides, our accuracy does not decrease significantly.

To further evaluate the generalizability and the performance on pathological cases, we conducted experi-
ments on xVertSeg dataset in terms of evaluation on LE, DR and DC. The experimental results are listed in the 
former three data columns of Table 9 that, the mean LE is 4.12 ± 2.31, the DR is 100 % i.e., all vertebrae are 
identified in the cropped ROI, the mean DC is 0.877 ± 0.035. We also compared our results of DC with Chuang 
et al.43 and Lessman et al.42 on xVertSeg dataset as shown in the last three columns of Table 9. It shows that the 
DC of L2, L3 are better than other methods and the mean DC exceeds Lessman et al.42 but slightly worse than 
Chuang et al.43. Compared with the mean DC on CSI dataset, the mean DC on xVertSeg dataset is a little worse. 
It may be primarily influenced by two factors: (1) The xVertSeg dataset is a lumbar dataset and the amount of 
the vertebare for the network to learn is much less than CSI dataset. (2) The xVertSeg dataset contains vertebare 
with fractures of different grade. Accordingly, the experimental results on xVertseg dataset could also be analyzed 
from the perspective about non-fractured vertebrae and vertebrae with fractures of different grade to evaluate 
the performance on pathological cases. The results of DC are separately listed according to the fractured grade 
in Table 10. Column “Grade” shows the different grade of vertebra and the higher the grade, the more severe 
fractured of the vertebra. The Column “Amount” shows the amount of vertebra with different grade used for 
evaluation. In Table 10, grade 3 has the minimun DC, grade 0 and grade 2 have the similar higher DC. Gener-
ally, evaluation on xVertSeg dataset validates the generalizability and the performance on pathological cases of 
the proposed method. 

Conclusion
In this paper, a two-stage Dense-U-Net approach was developed for vertebrae localization and segmentation. 
For vertebrae localization, first, we proposed a novel method to refine the original dataset by creating sparse 
annotation of centroids and converting them to dense labels. Then, 2D-Dense-U-Net was performed to train 
and test with 2k+1 CT transversal slices and their corresponding dense labels. Finally, an aggregating method 
was adopted to estimate each final vertebra centroid from the predicted dense result. The experimental results 
on CSI dataset demonstrated the mean location error of the predicted vertebra centroid is 1.69 ± 0.78 and the 

Table 9.   Evaluation on xVertSeg dataset in terms of location error (LE), detection rate (DR) and dice 
coefficient (DC). Bold values indicates maximum and minimum values of the corresponding column or row.

LE DR DC

Ours Ours (%) Ours Chuang et al.43 Lessman et al.42

L1 4.33 ± 2.85 100% 0.873 ± 0.058 0.883 0.881

L2 3.60 ± 2.11 100% 0.877 ± 0.042 0.861 0.874

L3 3.92 ± 1.66 100% 0.896 ± 0.020 0.862 0.816

L4 3.96 ± 1.75 100% 0.877 ± 0.029 0.892 0.724

L5 4.76 ± 3.56 100% 0.860 ± 0.012 0.926 0.881

Mean 4.12 ± 2.31 100% 0.877 ± 0.035 0.885 0.835

Table 10.   DC of non-fractured vertebrae and vertebrae with fractures of different grade. Bold values indicates 
maximum and minimum values of the corresponding column or row.

Grade Amount Mean DC

0 10 0.884 ± 0.019

1 8 0.869 ± 0.056

2 3 0.886 ± 0.021

3 4 0.867 ± 0.026
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detection rates of all testing cases are 100% in identified ROIs, which showed that all these ROIs could be used for 
subsequent segmentation task. For vertebrae segmentation, data augmentation methods incl. elastically deform 
and Gaussian noise were applied on the identified ROIs. Then, the 3D-Dense-U-Net was trained and tested with 
these ROIs as the input. The experimental results on CSI dataset in terms of DC, IoU, HD, and PA demonstrated 
that we successfully and efficiently finished instance segmentation of the vertebrae. Particularly, our method 
shows great performance of 0.953 ± 0.014 in DC and the results of DC exceed some traditional state-of-the-art 
methods on the three groups of the spine. Moreover, we compared our method with some deep-learning state-
of-the-art methods for vertebrae segmentation, it showed that we also exceeded methods presented by Janssens 
et al.23 and Lessmann et al. (2018)42 but slightly worse than Lessmann (2019)24. Furthermore, evaluation on 
xVertSeg dataset validates the generalizability and the performance on pathological cases.

The proposed method was based on the Dense-U-Net that combined with dense blocks and long skip con-
nections that are advantageous to improve the accuracy of localization and segmentation21. However, there are 
still some directions that could be improved in the future. First, 3D-Dense-U-Net used at the second stage could 
be optimized by combining the attention model. Second, since the mean DC of the upper thoracic showed a 
little worse than that of the lumbar spine, further investigation is necessary to improve the segmentation of the 
upper spinal column. Finally, hardware generations with larger memory will enable training of larger networks 
and higher resolution which might lead to further performance improvements.

Data availability
The datasets built during the current study are available from the corresponding author on reasonable request.
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