
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22007  | https://doi.org/10.1038/s41598-021-00975-3

www.nature.com/scientificreports

Comparative analysis of default 
mode networks in major psychiatric 
disorders using resting‑state EEG
Kang‑Min Choi1,2,8, Jeong‑Youn Kim3,8, Yong‑Wook Kim1,4, Jung‑Won Han1,5, 
Chang‑Hwan Im2,4* & Seung‑Hwan Lee1,6,7*

Default mode network (DMN) is a set of functional brain structures coherently activated when 
individuals are in resting-state. In this study, we constructed multi-frequency band resting-state 
EEG-based DMN functional network models for major psychiatric disorders to easily compare their 
pathophysiological characteristics. Phase-locking values (PLVs) were evaluated to quantify functional 
connectivity; global and nodal clustering coefficients (CCs) were evaluated to quantify global and 
local connectivity patterns of DMN nodes, respectively. DMNs of patients with post-traumatic stress 
disorder (PTSD), obsessive compulsive disorder (OCD), panic disorder, major depressive disorder 
(MDD), bipolar disorder, schizophrenia (SZ), mild cognitive impairment (MCI), and Alzheimer’s 
disease (AD) were constructed relative to their demographically-matched healthy control groups. 
Overall DMN patterns were then visualized and compared with each other. In global CCs, SZ and 
AD showed hyper-clustering in the theta band; OCD, MCI, and AD showed hypo-clustering in the 
low-alpha band; OCD and MDD showed hypo-clustering and hyper-clustering in low-beta, and high-
beta bands, respectively. In local CCs, disease-specific patterns were observed. In the PLVs, lowered 
theta-band functional connectivity between the left lingual gyrus and the left hippocampus was 
frequently observed. Our comprehensive comparisons suggest EEG-based DMN as a useful vehicle for 
understanding altered brain networks of major psychiatric disorders.

Default mode network (DMN) is a set of functional brain structures coherently activated when individuals 
are awake without engaging in any goal-directed activities1,2. With the increasing interest in so-called resting-
state functional brain activity, studies of the resting-state DMN have been gradually paid attention to for sev-
eral years3,4. Comparison of multiple psychiatric disorders is one of the promising research areas in functional 
networks. There are several advantages for the study of resting-state functional network of DMN because an 
individual does not need to be involved in specific tasks requiring attention, which could be easily affected by 
interrupting factors such as lack of attention due to low motivation or mind wandering5.

Relying on numerous advantages, DMN studies have been performed with a variety of modalities such as 
functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and electroencephalog-
raphy (EEG)6–10. Among them, EEG, which is believed to reflect brain electrical activity directly11,12, has recently 
been regarded as one of the competitive noninvasive and cost-effective modalities for construction of DMN13,14. 
In addition, it can be analyzed into multiple frequency bands, allowing for diverse interpretations according 
to the characteristics of each frequency band. These beneficial properties help to possess potentials to become 
employed as a universal evaluation framework of psychiatric disease.

There have been some resting-state EEG-based DMN studies to compare psychiatric disorders and healthy 
controls (HC). For example, Hsiao et al.15 compared resting-state EEG between patients with mild cognitive 
disorder (MCI) and Alzheimer’s disease (AD) in the DMN, showing various altered interconnections between 
them. Miraglia et al.16 longitudinally compared two types of MCI, one for those who were converted to AD, 
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and the other for those not converted, by the small-worldness index of the DMN. Meanwhile, Krukow et al.17 
observed theta-band DMN hyperconnectivity in first-episode schizophrenia (SZ) patients, suggesting that it 
might interfere with efficient cognitive function. Yazdi-Ravandi et al.18 also compared multiband EEG-based 
DMN between patients with obsessive compulsive disorder (OCD) and HC. Likewise, most of the EEG-based 
DMN studies have focused on the abnormalities of the specific disorder. More recently, a few studies focused on 
different types of psychiatric disorders. For instance, Zhang et al.19 tried to simultaneously identify the subtypes 
of post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) to predict the treatment effect 
for them. Cea-Canas et al.20 tried to simultaneously compare EEG-based DMN between patients with SZ and 
bipolar disorder (BD), with the demography of BD not matched with the SZ and HC groups. These simultaneous 
cross-disorder comparison studies are thought to be more suitable to derive reliable biomarkers from various 
psychiatric spectra and facilitate association of the analysis results with the neurobiological characteristics, which 
could broaden the knowledge of the EEG-based DMN. Nevertheless, the studies aiming to compare numerous 
psychiatric disorders comprehensively are lack until recent times. For example, comparison of DMN between 
SZ and AD has been actively conducted in the fMRI-based DMN studies owing to their considerable similarity 
in social deficits21; however, it has not been conducted in the EEG-based DMN studies.

In this exploratory study, we tried to construct EEG-based DMN functional network models based on a 
graph theory for a variety of major psychiatric disorder groups. We wanted to visualize the DMN patterns to 
readily compare each other, which comprised PTSD, OCD, panic disorder (PD), MDD, BD, SZ, MCI, and AD. 
We hypothesized that the DMN patterns could easily contrast the characteristics of major psychiatric disorders, 
and they could reflect the pathophysiology of major psychiatric disorders.

Methods and materials
Participants.  A database in which patients were diagnosed as having psychiatric disorders from January 
2006 to December 2018 from the Inje University Ilsan Paik Hospital was used. A diagnosis of these disorders was 
based on a clinical evaluation by trained psychiatrists using the Structured Clinical Interview for DSM-IV or V 
Axis I Disorders (SCID-I) or Mini international neuropsychiatric interview (MINI). Meanwhile, patients who 
possess neurological or comorbid disorders, other organic brain damage, or impairment in sensory or motor 
function were excluded from the analysis. Additionally, patients who were in pregnancy were also excluded. 
Finally, 104 SZ, 74 PTSD, 82 PD, 29 OCD, 69 MDD, 60 BD, 34 MCI, and 29 AD patients were included and ana-
lyzed in this study (see Supplementary Table S1 for detailed demographic information and see Supplementary 
Table S2 for medicine dosage information).

A total of 250 healthy participants were recruited from the local community using advertisements. They satis-
fied neither the DSM-IV nor V-based lifetime diagnostic criteria for any major psychiatric disorders, as screened 
by the SCID-I Non-Patient Edition (SCID-NP) nor MINI-based diagnostic criteria. For each disorder group, 
its corresponding HC participants were selected in pseudorandom for demographic information including age, 
sex, and education to be matched (Supplementary Table S1).

The ethical approval was made by Inje University Ilsan Paik Hospital Institutional Review Board (IRB no. 
2018-12-012-013). The study was carried out in accordance with relevant guidelines and regulations. Because 
this study was conducted by retrospective data inspection, the informed written consent of patients was waived 
by the Inje University Ilsan Paik Hospital Institutional Review Board. Data from healthy participants were col-
lected as a study purpose with the written consent (IRB no. 2015-07-025).

Signal acquisition and pre‑processing.  Resting-state EEG was recorded for 4 min while the participants 
closed their eyes in this study. The EEG signal was acquired using the SynAmps amplifier (Neuroscan, Com-
pumedics USA, Charlotte, NC, USA) with 62 Ag/AgCl electrodes mounted on NeuroScan Quik-cap according 
to the international extended 10–20 system. The additional electrooculogram (EOG) signal was acquired with 
two electrodes, each attached below the right eye and to the right of the outer canthus. The sampling rate of the 
equipment was set at 1000 Hz. The recorded signal was band-pass filtered at 0.1–100 Hz and notch-filtered at 
60 Hz to remove powerline noise using analogue filter. The impedance of each electrode was maintained below 
5 kΩ during the whole experimental period. The ground and reference electrodes were placed on the forehead 
and both mastoids, respectively.

The acquired EEG data were manually inspected to eliminate segments contaminated by environmental or 
physiological noises. The eye movement artifact was removed using the mathematical procedure22. Subsequently, 
the signal was applied to common average reference, baseline correction by removing DC offset for each channel, 
and then segmented into 2 s epochs without an overlap. These series of pre-processing steps were performed using 
CURRY 7 software (Compumedics NeuroScan; Hamburg, Germany). Among the segmented data, 45 epochs 
were randomly selected for each participant from the epochs with the maximum absolute value not exceeding 
100 μV using MATLAB R2019b (MathWorks; Natick, MA, USA). It is to be noted that no digital filtering was 
applied in the pre-processing step.

Construction of the DMN functional network model.  Regions of interest (ROI).  The determination 
of the regions of interest (ROIs) and their coordinates was made based on 17 highly cited (> 500) articles that 
include coordinate information. Among a variety of candidate regions, those referred by more than three times 
regardless of the hemisphere were selected as the ROIs for DMN. Consequently, 25 DMN ROIs were determined 
(Fig. 1a), including cingulate (Region 1 ~ 5; R1 ~ 5), frontal (R6 ~ 9), occipital (R10 ~ 13), parietal (R14 ~ 19), and 
temporal (R20 ~ 23) cortices, and hippocampus (R24 ~ 25). Each coordinate of the ROI was determined as the 
center of all coordinates for the candidate ROIs.
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Source localization.  To calculate the source activities of ROIs from the recorded scalp EEG signals, a depth-
weighted L2-norm estimator implemented in the Brainstorm toolbox23 was employed. The Colin27 MRI brain 
template and the deep brain structures provided by the Brainstorm toolbox were employed to estimate cortical 
activities and hippocampal activities, respectively. The lead field matrix was constructed using a three-layer 
boundary element model provided by the OpenMEEG project software24. Among the 30,020 nodes each with 
the estimated cortical current density values, those located within a 5 mm distance from the coordinates of each 
ROI were selected, and consequently, 25 clusters of nodes corresponding to 25 DMN ROIs were constructed. The 
source signal of each ROI was then obtained by applying the principal component analysis to the source signals 
of all nodes in each ROI.

Network construction.  The DMN functional network model was constructed in accordance with a typi-
cal procedure described below: First, the source signals of 25 ROIs (Fig. 1) were evaluated for each epoch as 
described in the previous paragraph. Second, the source signals of each ROI were decomposed into the follow-
ing five frequency bands: theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (12–18 Hz), and beta 2 
(18–30 Hz). This signal decomposition was accomplished by using a 6th order zero-phase Butterworth infinite 
impulse response (IIR) band-pass filter implemented in the MATLAB Signal Processing toolbox, with the cutoff 
frequencies equal to the borders of each frequency band. Third, the functional connectivity between every pair 
of the ROIs was evaluated by the phase-locking value (PLV) that has been widely employed to evaluate phase 
synchronization25. The PLV between each ROI pair was evaluated by averaging PLVs of all 45 epochs for each 
patient. Fourth, after the functional connectivity network was constructed for each frequency band, the local 
clustering coefficient (CC) was evaluated to measure the local functional segregation status indicating a degree 

Figure 1.   The ROIs of the DMN and an exemplary DMN pattern with significance levels indicated. (a) 25 
DMN regions are displayed on the brain structure. The presented brain image was acquired from the Brainstorm 
toolbox. (b) The visualized DMN pattern illustrates significantly different local CC index and PLV connectivity 
of the disorder group compared with its demographically-matched HC group. In the visualization of both 
properties, red colors indicate the increased properties of the disease groups, while blue colors indicate the 
opposite case. The external capital letters denote brain regions (C: cingulate, F: frontal, O: occipital, P: parietal, 
T: temporal, H: hippocampal). (c) The significance levels of the CC indices are indicated by the color intensity 
with five levels. (d) The significance level of the PLV connectivity was indicated by the thickness of the curve 
with the logarithmic scale of the p-value. It is to be noted that only the PLV connectivities, the p-value of which 
is smaller than 0.01, were illustrated in the pattern. For example in the pattern (b), right hippocampus (R25) 
and right precuneus (R17) showed strong PLV under-connectivity, and right anterior cingulate cortex (R2) 
showed relatively weak but significant CC hyper-clustering. It is noted that only the connectivities possessing 
significance levels p < 0.01 were displayed. †p < 0.05, *p < 0.01, ††p < 0.005, **p < 0.001, †††p < 0.0005, ***p < 0.0001, 
****p < 0.00001.
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of nodal clustering within its neighboring nodes26. Finally, global CC was evaluated to quantify the overall clus-
tering level of a network.

Visualization as DMN pattern.  The significance levels of the PLVs and local CCs were expressed by the thick-
ness of the curve between a pair of nodes and the color intensity of the node region (Fig. 1), respectively. In 
the visualization of both properties, red (or blue) colors in the patterns indicated that the disease group shows 
significantly higher (or lower) values compared to its corresponding HC group.

Statistical analysis.  All absolute values of skewness were lower than 2, and that of kurtosis was lower than 
7 for every demographic distribution, satisfying the normality assumption of those distributions27. Two-tailed 
Student t test was used to examine for age, sex, and education between comparing groups. To avoid multiple test 
issues, cluster-based permutation test (n = 10,000) was used to test the significance of PLV (n = 12,000) or CC 
(n = 1040) between pairing groups28.

Results
There were no significant differences between each pair of groups in terms of demographic characteristics, 
including age, sex, and education (Supplementary Table S1). The functional network model of the DMN was 
constructed and then visualized based on the determined ROIs (Fig. 1). The significantly different local cluster-
ing coefficient (CC) indices and phase-locking value (PLV) connectivity of each disorder group are illustrated 
at a glance, compared with its demographically matched HC group (Fig. 2). The global CC indices are provided 
to compare major psychiatric disorders (Fig. 3). DMN patterns of 5 frequency bands were presented based on 
the frequency bands: theta, alpha1, alpha2, beta1, beta2.

DMN patterns at a glance.  Several differences and similarities were observed in DMN patterns among 
the disease groups (Fig. 2). First, in CC indices, general homogenous clustering tendencies were found in dis-
ease-specific manners. For example, AD, MCI, SZ, and BD showed relative CC hyper-clustering of theta band 
compared to other disorders. MDD, PD, and PTSD showed relative CC hyper-clustering of beta 2 band com-
pared to other disorders. Second, in PLV connectivity, heterogeneous (mixed) patterns were found in disease-
specific manners. For example, SZ and PTSD showed the high and low mixed regional connectivity patterns in 
theta and beta 2 frequency bands. These mixed connectivity patterns were also observed in beta1 band of MDD.

Disease‑specific patterns of CC indices.  Globally, some disease groups showed significantly different 
global CC indices compared to their corresponding HC groups (Fig. 3; see Supplementary Table S3 for compari-
son of actual global CC values). In the theta band DMN, significantly higher global CC indices were observed in 
SZ (p = 0.017) and AD (p = 0.007) groups. In the alpha1 band, significantly lower global CC index was observed 
in AD (p = 0.036) group; in addition, marginally significantly lower global CC indices were observed in MCI 
(p = 0.067) and OCD (p = 0.050) groups. In the beta1 band, significantly lower global CC index was observed 
for OCD (p = 0.022) group; while in the beta2 band, significantly higher global CC index was observed for MCI 
(p = 0.031) group.

Locally, further analyses were performed with some DMN patterns showing aforementioned globally 
abnormal CC tendencies. In the theta band DMN, SZ and AD groups exhibited similar CC patterns (Fig. 4a): 
several regions were consistently hyper-clustered in both groups, particularly for left superior frontal gyrus 
(R8, p = 0.0034 for both groups), left middle occipital gyrus (R12, p = 0.0072 for SZ; p = 0.0013 for AD), right 
precuneus (R17, p = 0.0014 for SZ; p = 0.0045 for AD), and right superior temporal sulcus (R23, p = 0.0024 for 
SZ; p = 0.0019 for AD). In the alpha1 band, OCD, MCI, and AD groups exhibited widespread lower local CC 
patterns (Fig. 4b). Although each of them exhibited a common CC hypo-clustering in left lingual gyrus (R10, 
p = 0.0449 for MCI; p = 0.0100 for AD; p = 0.0033 for OCD), the DMN patterns were quite different from each 
other. For Example, the OCD group showed significantly lower CC indices mainly in the posterior cingulate 
cortex (R3 ~ 5), whereas MCI and AD groups showed little difference in the regions. Meanwhile, the AD group 
showed widespread hypo-clustered regions compared to the MCI group. In the beta1 band, the OCD group 
showed strong CC hypo-clustering in the right superior temporal sulcus (R23, p = 0.0030; Fig. 4c). In the beta2 
band, the MDD group showed strong CC hyper-clustering in the right lingual gyrus (R11, p = 0.0013; Fig. 4d). 
These high frequency band DMN patterns exhibited focal abnormal CC characteristics.

Disease‑specific patterns of PLV connectivity.  Interestingly, lowered functional connectivity of theta 
band between left lingual gyrus (R10: region number 10 in Fig. 1a,b) and left hippocampus (R24: region number 
24 in Fig. 1a,b) was frequently observed over all disease (Fig. 5). However, statistically significant differences 
were found in the PTSD, BD, and SZ groups (p < 0.001 for BD and PTSD groups; p < 0.0001 for SZ group), and 
in the PD and MDD (p = 0.016, and p = 0.030, respectively).

Discussion
In the present study, EEG-based DMN functional network models were constructed for eight major psychiatric 
disorders based on a graph theory. The constructed DMNs were visualized, and then their DMN patterns were 
compared with each other. Overall DMN patterns were well visualized at a glance. Abnormal DMN patterns can 
be discussed in three types of properties, compared to the values of HCs. First, global hyper (hypo)-clustering 
reflects overall higher (lower) functional connectivity tendencies within the network. Second, distinctive local 
hyper (hypo)-clustering compared to other regions might reflect abnormally higher (lower) activation or function 
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centering around the specific region of the brain. Third, higher (lower) PLV connectivity between a couple of 
regions reflects increased (decreased) functional connectivity itself between them. Hence, the disease-specific 
global DMN patterns were discussed first and then several key local CC and PLV patterns were discussed.

DMN patterns at a glance.  DMN CC indices exhibited homogeneous alteration patterns according to 
their specific symptom. Disease groups known to show cognitive decline such as AD, MCI, SZ, and BD17,29 
exhibited relatively hyper-clustering patterns of theta band compared to the others (discussed in the following 

Figure 2.   The DMN patterns at a glance in major psychiatric disorders for various frequency bands. The 
significance levels are illustrated in line with Fig. 1b. (PTSD posttraumatic stress disorder, OCD obsessive 
compulsive disorder, PD panic disorder, MDD major depressive disorder, BD bipolar disorder, SZ schizophrenia, 
MCI mild cognitive impairment, AD Alzheimer’s disease).
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section). On the other hand, disease groups known to show anxiety symptoms exhibited relatively hyper-cluster-
ing patterns of high frequency bands compared to the others. For example, PTSD, PD, and MDD showed rela-
tively higher CC indices of beta2 frequency band; OCD showed relatively higher CC indices of alpha2 frequency 
band. These symptom-dependent alterations of the local CC tendencies in a specific frequency band are thought 
to be associated with particular pathophysiological symptoms (more detail in the following section).

Most PLV connectivity showed mixed patterns, which may imply distinct region-specific activation patterns, 
even in single frequency bands in a specific disease. These mixed patterns were dominantly observed in MDD 
and SZ. MDD and SZ are very heterogeneous disease entities among psychiatric disorders30,31. Even in single 
diagnostic entity, each patient could show a distinct clustering pattern in DMN brain regions31. Our results 
agree with the previous studies reporting that MDD and SZ exhibited abnormal mixed functional patterns32,33.

Disease‑specific patterns of CC indices.  In the theta band CC, the SZ and AD groups showed predomi-
nant global hyper-clustering. Our results agree with the previous reports in which dominantly hyper-clustered 
theta band DMN might reflect inefficient cognitive function34. Additional previous studies reported that whole-
brain theta band functional connectivity increased in the patients with SZ and AD34,35. In our study, both SZ 
and AD showed particularly higher CC indices for some common ROIs, including the left superior frontal 
gyrus (R8), left middle occipital gyrus (R12), right precuneus (R17), and right superior temporal gyrus (R23). 
The theta band hyper-clustering of fronto-temporo-patietal regions has been consistently reported in SZ and 
AD34,35, which is linked to working and verbal memory. Theta hyper-clustering of the occipital cortex might 
involve psychiatric symptoms such as dysfunction (i.e. illusion or hallucination) of the visual system36, which is 
commonly observed in both disorders. However, the AD group showed more widespread hyper-clustering than 
the SZ group, implying more severe neuronal degeneration.

In the alpha1 band CC, the OCD, MCI, and AD groups showed consistent global hypo-clustering. In the 
previous studies, interregional alpha band synchrony is thought to be related to the coordinating functional 
integration37. The deterioration of functional integration can easily affect the cognitive decline. Therefore, our 
findings support that cognitive function decline is one of the consistent symptoms not only in patients with MCI 
and AD but also in patients with OCD35,38. Considering this significant deterioration was not observed in the 

Figure 3.   The global CC indices for various frequency bands. The global CC values of each group were 
normalized to those of the corresponding HC group, using z-transformation. Each bar indicates the averaged 
z-score of the global CC value of the disorder group. The error-bars indicate standard error. †p < 0.07, *p < 0.05, 
**p < 0. (PTSD posttraumatic stress disorder, OCD obsessive compulsive disorder, PD panic disorder, MDD 
major depressive disorder, BD bipolar disorder, SZ schizophrenia, MCI mild cognitive impairment, AD 
Alzheimer’s disease).
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alpha2 band, the integrational function might be more related to the low alpha (alpha 1) band synchrony. Locally, 
our study revealed that the left lingual gyrus (R10) was commonly hypo-clustered in all groups. The lingual gyrus 
is linked to the visual system39,40. Meanwhile, in the MCI group, the hypo-clustered regions include mainly the 
parietotemporal cortex, especially for the right middle temporal cortex (R21). However, in the AD group, the 
regions were more spread broadly including the fronto-occipital cortex and hippocampus. The regional broaden-
ing involved suggests a progression of neuronal degeneration from MCI to AD. Generally, it is well known that 
structural or functional abnormality begins at the temporal lobe in the patients with early state MCI, and then 
gradually broadened to other brain regions in patients with AD39. In the OCD group, the main hypo-clustered 
region was the posterior cingulate cortex, distinctively from other disease groups. Previous works reported that 
the gray matter volume and resting-state metabolism of the posterior cingulate cortex consistently increased in 
OCD patients41,42, different from the other groups. Consequently, it can be presumed that resting-state functional 
hypo-clustering of the posterior cingulate cortex in the OCD group is actually caused by excessive mental load 
such as obsessive rumination.

In the beta1 band CC, the OCD group showed predominant global hypo-clustering, particularly in the 
right superior temporal sulcus. Meanwhile, in the beta2 band CC, the MDD group showed predominant global 
hyperactivation, particularly in the right lingual gyrus. These region-specific differences were also reported in 
previous brain volumetric studies. The cortical volume of the right superior temporal gyrus (R23) was decreased 
in the patients with OCD40, and that of the right lingual gyrus (R11) was increased in the patients with MDD43. 
Our results showing the differences in local CC index might be attributed to the brain morphological differences.

Disease‑specific patterns of PLV connectivity.  The lowered functional connectivity of theta band 
between the left lingual gyrus (R10) and the left hippocampus (R24) in the theta band DMN was predominantly 
observed in the BD, SZ, PTSD, PD, and MDD groups. Hippocampal theta rhythm is associated with episodic 
memory44, and lingual gyrus is linked to encoding and retrieval of the visual memory39,45. Meanwhile, cogni-
tive decline is well known pathophysiology of those psychiatric disorders, including PTSD39,46–52. Although a 
cognitive decline of PTSD could be a somewhat controversial issue, there are many studies documenting it, 
ranging from young adults46 to the elderly with PTSD47,48. Furthermore, a cognitive decline of PTSD might also 

Figure 4.   DMN CC index analysis results. Only the results showing significantly different global CC indices are 
presented. For each frequency band, key ROIs are highlighted on the brain image left side; additionally, if more 
than one is included, common key ROIs are also illustrated as a form of DMN pattern. DMN patterns and the 
comparisons of global CC indices are presented right side. In the bar charts, red bars indicate disorder groups, 
and blue bars show HC groups. The error-bars indicate standard error. (a) In the theta band DMN, SZ and AD 
commonly showed strong hyper-clustering in four regions: left superior frontal gyrus (R8), left middle occipital 
gyrus (R12), right precuneus (R17), and right superior temporal sulcus (R23). (b) In the alpha1 band DMN, 
MCI, OCD, and AD commonly showed hypo-clustering in the left lingual gyrus (R10). (c) In the beta1 band 
DMN, OCD showed strong hypo-clustering in the right superior temporal sulcus (R23). (d) In the beta2 band 
DMN, MDD showed strong hyper-clustering in the right lingual gyrus (R11). †p < 0.07, *p < 0.05, **p < 0.01 (SZ 
schizophrenia, AD Alzheimer’s disease, OCD obsessive compulsive disorder, MCI mild cognitive impairment, 
MDD major depressive disorder, HC healthy control).
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be inferred from a study reporting that patients with PTSD are more vulnerable to future dementia53. Thus, our 
results might be related to the decline of cognitive function.

Effects of the psychotropic medication.  The effects of the psychotropic medication on a cognitive 
functioning and EEG have not been reached to the consensus, due to the highly heterogeneous results or lack of 
studies54–58. For example, the relationship between cognition and antipsychotics medication still remains con-
troversial: some studies reported the beneficial effect, but other studies even reported the adverse effects on 
cognition54. The effects on the band power of EEG were not totally reached to the consensus59: not only the 
inter-drug studies for the same type such as lithium, carbamazepine, lamotrigine, and valproate, all of which 
are included in the mood stabilizer; but intra-drug studies, such as haloperidol, a type of antipsychotics agent. 
Although some studies reported no significant effects20, the effects on the functional connectivity show het-
erogeneous results, which rendered it difficult to reach the consensus60. To sum up, the effects of psychotropic 
medication on cognitive functioning and EEG are known to be very difficult to be specified due to the heteroge-
neous results. Further studies are required to control the quantitative effect of the drugs to provide more reliable 
experimental results.

There are some limitations in our study. First, some disease groups have relatively small numbers of par-
ticipants. Second, the patients were not obtained in the drug naive state. Third, although assuming that some 
abnormal DMN characteristics might be related to a cognitive function, we do not have a cognitive assessment 
data underpinning this argument. Hence, future studies are required to reveal the relationship between these 
findings and cognitive function. Finally, symptomatic severity was not controlled.

In conclusion, we tried to compare the resting-state multiband EEG-based DMN for major psychiatric disor-
der groups by patterning it to be visualized at a glance. As expected, a variety of disease-specific DMN patterns 
were observed, which might be linked to the neurobiological characteristics. Our results showed that EEG-based 
DMN is a clinically useful and pathologically relevant method to evaluate major psychiatric disorders. Future 
work is needed to explore the relationship between DMN and symptomatic severity.

Figure 5.   Comparison of theta band PLV connectivity between left lingual gyrus (R10) and left hippocampus 
(R24) for all disorder groups (red boxes) with their corresponding HC groups (blue boxes). The connectivity 
is illustrated as a form of DMN pattern (top left), which is highlighted on the brain image (top right). In the 
box plots (bottom), the black midlines indicate median values, the boxes indicate interquartile range (IQR), 
whiskers indicate the maximum and minimum value in the 1.5 times of IQR, and crosses (+) indicate outliers. 
The comparison results are displayed with three classes: the first class (SZ, BD, and PTSD) showed strongly 
decreased connectivity (p < 0.001); the second class (PD and MDD) showed relatively weak but significantly 
decreased connectivity (p < 0.05); and the third class (OCD, MCI, and AD) showed no significantly different 
connectivity. (SZ schizophrenia, BD bipolar disorder, PTSD posttraumatic stress disorder, PD panic disorder, 
MDD major depressive disorder, OCD obsessive compulsive disorder, MCI mild cognitive impairment, AD 
Alzheimer’s disease, HC healthy control).
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