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Contribution of on‑road 
transportation to PM2.5
Chao Li & Shunsuke Managi*

Fine particulate matter (PM2.5) mainly originates from combustion emissions. On-road transportation 
is considered one of the primary sources of PM2.5 emission. The relationship between on-road 
transportation and PM2.5 concentration varies temporally and spatially, and the estimation for 
this variation is important for policymaking. Here, we reveal the quantitative association of PM2.5 
concentration with on-road transportation by the spatial panel Durbin model and the geographical 
and temporal weighted regression. We find that 6.17 billion kilometres (km) per km2 on-road 
transportation increase is associated with a 1-μg/m3 county-level PM2.5 concentration increase in the 
contiguous United States. On-road transportation marginally contributes to PM2.5, only 1.09% on 
average. Approximately 3605 premature deaths are attributed to PM2.5 from on-road transportation in 
2010, and about a total of 50,223 premature deaths ascribe to PM2.5 taking 6.49% from 2003 to 2016. 
Our findings shed light on the necessity of the county-level policies considering the temporal and 
spatial variability of the relationship to further mitigate PM2.5 from on-road transportation.

Air pollution, especially fine particulate matter (PM2.5), is a severe issue globally that adversely affects human 
mortality1–4, well-being5,6, physical health7,8, mental health9, among others. Several diseases of pulmonary, 
cardiac, vascular, and neurological systems, including acute lower respiratory illness, cerebrovascular disease, 
ischaemic heart disease, chronic obstructive pulmonary disease, and lung cancer, are related to PM2.5

10. About 
3.3 million premature deaths per year worldwide are attributable to outdoor air pollution, mostly PM2.5, and 
54,730 of them in the contiguous United States (CONUS, 54,905 in the whole U.S.)2. Additionally, other stud-
ies demonstrate a more negative situation that roughly 200,000 premature deaths per year are estimated to be 
caused by PM2.5 from combustion emission, and approximately 53,000 deaths are associated with PM2.5 from 
road transportation11. Moreover, another report indicates that PM2.5 is responsible for 107,000 premature deaths 
in 2010 in the U.S., and 28% is attributed to transportation12. Therefore, PM2.5 negatively impacts human health, 
and road transportation is one of the main reasons for air pollution11,12.

On-road transportation is considered one of the primary sources of toxic air pollutants, especially PM2.5
13,14. 

However, the quantitative association of on-road transportation with measured county-level PM2.5 concentration 
in the CONUS varies temporally and spatially, and the estimation for this variation is important for policymak-
ing. The U.S. Environmental Protection Agency (EPA) claims that transportation is responsible for less than 10% 
of PM2.5 emissions15. According to the EPA, the emission sectors of hazardous air pollutants are classified into 
four types: biogenics, fires, mobile, and stationary16. Mobile type of the air pollution emission sectors is generally 
deemed transportation, which includes aircraft, commercial marine vessels, locomotives, non-road equipment, 
and on-road vehicles. Previous studies point out that roughly a quarter of PM2.5-related mortalities is linked to 
road transportation in the U.S.11,12. Nevertheless, the number of researches on the contribution of the emission 
sector, on-road vehicles, to PM2.5 regarding the U.S. is still limited.

To abate the public health burden, controlling and reducing air pollution emissions from fossil-fuel traf-
fic are practical and beneficial ways17,18. The widely implemented strategies include air pollution removal and 
source control measures. Natural areas, such as forestlands and shrublands, are deemed effective in removing air 
pollution19,20. For instance, 17.4 million tons of air pollution are removed by the trees and forests in the U.S. in 
201020. Moreover, the emission source control measures, such as the end-of-pipe control policies and the energy-
climate policies, are successful approaches to improve air quality21,22. In fact, the average county-level PM2.5 
concentration in the CONUS continues to decrease obviously from 2001 to 2016, even though counties’ average 
on-road carbon dioxide (CO2) emissions remain relatively stable during this period (as shown in Fig. 1). By the 
beneficial air pollution control policies, air pollution declined dramatically in the U.S. over the past twenty years, 
without strongly adversely affecting human daily life23. To further mitigate air pollution in future, more detailed 
information regarding specific emission sectors, e.g., on-road transportation, is desired12. Determinations of the 
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primary air pollution sources and estimations of the effectiveness of reduction methods enable policy-makers to 
formulate reasonable environmental policies without strongly influencing daily human life.

The contribution of transportation to PM2.5 concentration varies spatially12. Previous studies intensively 
understand the association of transportation with air pollution in the atmosphere. For example, in Guangdong 
Province, China, mobile type takes 19.3% responsibility of ambient PM2.5

24; in four main cities in China, Bei-
jing, Shanghai, Guangzhou, and Xi’an, on average 7% PM2.5 comes from traffic in January 201325; in a Central 
European city, Warsaw, Poland, traffic emits about 21% PM2.5

26; and in Hamburg urban area, Germany, traffic 
contributes with 18% to PM2.5 exposure27. Furthermore, during different periods, the contributions of on-road 
transportation to PM2.5 concentrations are dissimilar, i.e., the relationship between on-road transportation and 
PM2.5 concentration temporally varies. For instance, because of the advanced end-of-pipe control technologies, 
air pollution declines in the past 50 years in the U.S., even though the vehicles miles travelled increase23. There-
fore, both spatial and temporal variation of the relationship between on-road transportation and PM2.5 should 
be considered in the analysis.

The relationship between annually county-level PM2.5 concentration and on-road CO2 emissions per square 
kilometre (km2) in 3017 counties of the CONUS is investigated based on the panel data from 2001 to 2016. 
The counties’ geographically average on-road CO2 emission each year is employed as the indicator of on-road 
transportation. As the areas of the counties are noticeably different, the on-road CO2 emission per km2 is more 
reasonable than the total value. Because forests and other natural lands reduce air pollution20, the land cover data 
are also controlled. Additionally, the county-level population density, average temperature and relative humidity 
are taken into account. In the statistical analyses, the fixed effects model (FEM) is performed at first. However, 
according to previous studies, air pollution significantly impacts distant places rather than only within a region28. 
Spatial dependence tests are applied to the FEM, and the test results show that significantly spatial lag and error 
correlations exist. The spatial panel Durbin model (SPDM) based on FEM is utilised to estimate the association 
of air pollution with on-road transportation (detailed reasons for using SPDM in the “Methods” section). Because 
the SPDM is a typically global model, the estimated parameters are spatially and temporally stationary. The spatial 
and temporal variability of the relationship between on-road transportation and PM2.5 concentration is detected 
by the geographical and temporal weighted regression (GTWR), based on the spatio-temporally weighted matrix. 
The results of the GTWR model illustrate that the relationship does vary spatially and temporally. Accordingly, 
the air pollution mitigation and reduction policies should be adapted to the local situations.

Results
Impacts of on‑road transportation on PM2.5.  Figure 2 illustrates the estimated parameters of the inde-
pendent variables, adopting the county-level PM2.5 concentration as the dependent variable based on the SPDM. 
The coefficient of the CO2 emissions per km2 in a county on PM2.5 concentration is 0.646 (95% confidence inter-
val: 0.593–0.699). For convenience, CO2 emissions are converted into the mileage of typical passage vehicles, 
where 1 million tons of CO2 emissions are roughly equivalent to 3.98 billion km mileage. According to the EPA, 

Figure 1.   Means of on-road CO2 emissions, PM2.5 concentrations in the counties of the CONUS (2001–2016) 
(the means of on-road CO2 emissions are the average values of county-level geographically average on-road CO2 
emissions in the CONUS. The means of PM2.5 concentrations are annually average values in each county, based 
on daily data).
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the average passenger vehicle emits approximately 404 g of CO2 per mile (1 mile = 1.61 km. Hereinafter, mileage 
unit is based on the average passenger vehicle.). Hence, a 6.17 (95% CI: 5.70–6.71) billion km per km2 increase 
in total mileage in a specific county is associated with a 1-μg/m3 increase in the county’s annually average PM2.5 
concentration (Detailed calculation process is shown in the “Methods” section, Contribution of On-Road Trans-
portation to PM2.5 part).

The coefficients of the other control variables in the SPDM are also meaningful. The land cover pattern, popu-
lation density, and weather conditions are included in the analyses. The percentages of low- and high-intensity 
developed areas in the counties are positively associated with the air pollution concentrations. In contrast, the 
percentages of medium-intensity developed areas and developed open space areas are negatively related to the 
PM2.5 concentration. A 1% increase in open space developed area is related to a 0.045-μg/m3 increase in the 
PM2.5 concentration and a 1% increase in medium-intensity developed area is associated with a 0.030-μg/m3 
increase in the PM2.5 concentration. In contrast, a 1% increase in low-intensity developed area is correlated with 
a 0.026-μg/m3 decrease in the PM2.5 concentration. Accordingly, maintaining a rational development intensity is 
a significantly more effective approach to reduce air pollution from on-road transportation. In other words, an 
urban development intensity that is either too high or too low is related to more air pollution, especially PM2.5. 
Emergent herbaceous wetlands, shrublands, and grasslands are negatively associated with PM2.5 concentration, 
but deciduous forestlands are positively correlated with PM2.5. High temperature and high relative humidity are 
associated with more PM2.5 concentration in the air.

Geographical and temporal variations of the impacts.  To illustrate the spatial and temporal vari-
ability of the coefficients of on-road CO2 emissions on the county-level PM2.5 concentration, the GTWR is per-
formed. The R2 value of the GTWR is higher than that of the global model, which is 0.808. The average impacts 
of on-road CO2 emissions on the PM2.5 concentration vary, spatially from east to west, statistically from 0.197 
to 0.328 (illustrated in Supplementary Material Fig. S1). Higher values of the coefficients of on-road CO2 emis-
sions indicate that on-road transportation exerts greater impacts on air pollution. For example, a unit of on-road 
transportation increase in New England or the Mideast is associated with a smaller increase in the concentra-
tion of PM2.5 than in the other regions. In other words, the other air pollution emission sources, except on-road 
transportation, matter more. Figure 3 shows the average contribution of on-road transportation to air pollution, 
statistically ranging from 0.002 to 37.765%. Because on-road transportation varies in each county, the spatial 
distribution of the contribution of on-road transportation to air pollution differs from the spatial distribution 
of the average effects of on-road transportation. The average contributions of on-road transportation in metro-
politan areas, such as New York, San Francisco, Denver, and St. Louis, exceed 20%. In contrast, in rural areas, 
the average contributions are lower than 1%. In addition, the average contribution of on-road transportation to 
air pollution reaches only 1.09% (95% CI: 1.06–1.11%), which is lower than the value estimated by the EPA15.

Furthermore, the impacts of on-road transportation on air pollution temporally vary based on the results of 
the GTWR. According to Table 1, the average annual on-road CO2 emissions in the counties remain relatively sta-
ble, which indicates that on-road transportation did not change dramatically. However, the average contribution 
of on-road transportation to air pollution reached the lowest point in 2008, only 0.60% on average. These results 

Figure 2.   Estimated marginal effects on PM2.5 concentration.
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demonstrate that the structure of air pollution sources might change in 2008 due to the financial crisis (Figure S2 
shows the spatial distribution of the annual contribution of on-road transportation to county-level PM2.5).

PM2.5‑related premature deaths due to on‑road transportation.  Figure 4 illustrates the spatial dis-
tribution of the estimated mortality caused by PM2.5 stemming from on-road transportation in each county. The 
numbers of premature mortalities in each county range from 0 to 1750 in 2010. Moreover, the conditions are 
severe in metropolitan areas. Approximately 3605 deaths are caused by air pollution originating from on-road 
transportation, which accounted for 6.59% of the total PM2.5-related mortalities (54,730 deaths) in 2010. From 

Figure 3.   Average contribution of CO2 emissions on road to counties’ PM2.5 concentration from 2003 to 2016 
(this figure is created by R 4.0.4, https://​cran.r-​proje​ct.​org/​bin/​windo​ws/​base/​old/4.​0.4/).

Table 1.   Mean of on-road CO2 emission, coefficients of on-road CO2 emission on air pollution, and 
contribution of on-road transportation. The unit of on-road CO2 emission is 104 t/km2, and the contribution of 
on-road CO2 emission on air pollution is the percentage. The coefficients in the table indicate the relationship 
between on-road CO2 emission and annually county-level concentration, according to the estimation of the 
GTWR. Because the local model, GTWR, provide temporally and spatially non-stationary coefficients, the 
coefficients should be different county by county, year by year. We calculate the means and standard deviations 
of coefficients in each county annually. The contributions are the means and standard deviations of the 
contributions in each county annually, based on the calculation of Eq. (9).

Year N

On-road CO2 emission Coefficient Contribution

Mean SD Mean SD Mean SD

2003 3107 0.412 1.123 0.440 0.039 1.386 3.100

2004 3107 0.422 1.159 0.317 0.033 1.029 2.342

2005 3107 0.424 1.167 0.302 0.036 0.922 2.129

2006 3107 0.425 1.180 0.277 0.032 0.929 2.152

2007 3107 0.428 1.188 0.201 0.027 0.655 1.552

2008 3107 0.414 1.146 0.181 0.034 0.601 1.394

2009 3107 0.405 1.116 0.196 0.026 0.751 1.825

2010 3107 0.408 1.107 0.258 0.030 0.995 2.408

2011 3107 0.399 1.051 0.328 0.037 1.221 2.697

2012 3107 0.394 1.017 0.335 0.031 1.357 3.093

2013 3107 0.394 1.003 0.356 0.036 1.435 3.122

2014 3107 0.396 1.005 0.316 0.036 1.230 2.707

2015 3107 0.399 1.026 0.340 0.032 1.400 3.119

2016 3107 0.410 1.095 0.268 0.019 1.294 3.121

https://cran.r-project.org/bin/windows/base/old/4.0.4/
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2003 to 2016, approximately 50,223 premature deaths are caused by air pollution stemming from on-road trans-
portation, at 6.49% of the estimated total premature deaths caused by PM2.5 (Estimations of each year is listed in 
Table 2, calculation process can be found in the “Methods” section, Impacts of PM2.5 from On-road Transporta-
tion on Premature Mortality part).

Discussion
On-road transportation is associated with PM2.5 concentrations in the counties, but it is not the dominant source 
of air pollution in the U.S. Furthermore, the negative impact of on-road transportation on air quality is not so 
strong as that reported by the government15. An increase in vehicle usage of approximately 6.17 billion km per 
km2 is related to only a 1-μg/m3 increase in PM2.5 concentration in the counties of the CONUS, and on-road 
transportation only contributes 1.09% (95% CI: 1.06–1.11%) to PM2.5 on average. Additionally, only 6.49% of 
PM2.5-related premature mortalities are attributed to on-road transportation in the CONUS from 2003 to 2016.

Figure 4.   Mortality caused by PM2.5 from on-road transportation in 2010 (this figure is created by R 4.0.4, 
https://​cran.r-​proje​ct.​org/​bin/​windo​ws/​base/​old/4.​0.4/).

Table 2.   Estimated PM2.5-related premature deaths due to all sources and on-road transportation. Premature 
deaths due to PM2.5 in each county are estimated using Eq. (12), premature deaths due to PM2.5 from on-road 
transportation in each county are calculated using Eq. (11), and the percentage is assessed as Eq. (13).

Year Premature deaths due to PM2.5 Premature deaths due to PM2.5 from on-road transportation Percentage

2003 56,892 4447 7.82

2004 56,471 3423 6.06

2005 56,790 3150 5.55

2006 56,106 3217 5.73

2007 56,319 2280 4.05

2008 55,722 2125 3.81

2009 54,926 2693 4.90

2010 54,730 3605 6.59

2011 54,746 3958 7.23

2012 54,423 4361 8.01

2013 54,302 4427 8.15

2014 54,642 3818 6.99

2015 54,241 4446 8.20

2016 53,732 4274 7.96

Total 774,042 50,223 6.49

https://cran.r-project.org/bin/windows/base/old/4.0.4/
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Impacts of on‑road transportation on PM2.5.  On-road transportation is widely considered one of the 
major sources of air pollution, proved by the previous studies25,29. This study finds that on-road transportation 
CO2 emission is positively associated with the PM2.5 concentration. However, in terms of the contribution of 
on-road transportation to PM2.5, it is lower. On average, 1.09% (95% CI: 1.06–1.11%) of the PM2.5 concentration 
is attributable to on-road transportation, in line with the value lower than 10% attributed to all transportation 
reported by the EPA15, in a way. Furthermore, our analysis reveals that an approximately 6.17 billion km per 
km2 reduction of on-road transportation is associated with a 1-μg/m3 reduction in PM2.5. Therefore, the out-
comes of strategies striving to reduce on-road vehicle usage should be marginal. Moreover, only 6.49% of the 
air pollution-related mortality, namely, 50,223 deaths, is associated with air pollution originating from on-road 
transportation from 2003 to 2016. Most of these deaths occur in metropolitan areas due to the high contribution 
of on-road transportation to air pollution and high population density.

Temporal variation of the impacts on PM2.5.  Additionally, the composition of the air pollution sources 
is seemingly related to the economic situation. During the 2008 financial crisis, the contribution of on-road 
transportation to air pollution was the lowest in the 14 years. The contribution of on-road transportation con-
tinued to decrease from 2003 to 2008 and increased after 2008. This contribution decrease might be caused by 
the change in the composition of air pollution sources23. The abovementioned change suggests that the enhanced 
effects of other air pollution sources might affect more during this economic recession period. Furthermore, 
the EPA published the Final Rule for Control of Hazardous Air Pollutants from Mobile Sources in 2007 to fur-
ther reduce air pollutants from mobile sources22. However, on-road transportation remained stable during this 
period. Therefore, the variation in other air pollution emission sectors might be the main reason for the temporal 
variation of the contributions of on-road transportation to air pollution. In a way, the investments in the reduc-
tion of other pollution sources should be more effective.

Spatial variation of the impacts on PM2.5.  Natural environments, such as vegetated areas, are criti-
cal ways to control and prevent air pollution diffusion19,20. Air pollutants, especially PM2.5, mainly originate 
from precursor emissions, such as nitrogen oxides, sulfur oxides, and ammonia, through atmospheric chemi-
cal reactions30,31. According to this study, the contribution of on-road transportation to air pollution is higher 
in metropolitan areas than that in other areas, consistent with previous studies12. Thus, air pollution restric-
tions on on-road transportation should be strict in urban areas, while the policies could be loose in rural areas. 
The traffic volume in metropolitan areas is much higher than that in other areas, while less natural land cover 
occurs. A key reason might be that the natural purification ability is exceeded in those areas. In addition, widely 
implemented clean fuels and stringent vehicle engine regulations are the critical factors in precursor pollutants 
emissions reduction22. Specifically, the same amount of combustion produces less toxic and lower pollutants 
emissions, eventually reducing air pollution without dramatically influencing daily human life. However, the 
reduction mainly attributed to other pollutant sources is also reasonable because the air pollutants discharged by 
polluting industries and factories are ignored due to a lack of data. Owing to stringent regulations and economic 
globalisation, the air pollutants originating from polluting industries and factories might notably be reduced23. 
The increase in air pollution stemming from on-road transportation is masked by reducing emissions from 
industries and factories. Therefore, we might underestimate the effects of on-road transportation on air pollu-
tion, although we adopted spatial models to reduce this possibility.

Future research.  Overlooking the air pollutant emissions of polluting industries and factories is a signifi-
cant limitation. In addition, the considered air pollution data are county-level records, which might cause eco-
logical fallacy. Finally, the chemical mechanisms of the impacts of on-road transportation on air pollution are 
not considered, so the results cannot be greatly and further explained. In future studies, the mechanism between 
on-road transportation and the ground-level air pollution concentration should be added to the analyses. More 
detailed remote sensing data with high temporal and spatial resolution should be generated and applied to 
monitor other emission sectors. Furthermore, more information about vehicles, such as vehicle type, fuel types, 
quantity, the technology of engines, among others, should be considered to examine the causes of temporal and 
spatial variation of the contribution of on-road transportation to PM2.5 in future. Additionally, the relationships 
between land cover patterns and air pollution require further examination, providing informative suggestions 
for urban planning strategies.

Conclusion
Our study illustrates the quantitative relationship between on-road transportation and PM2.5 concentration, tak-
ing temporal and spatial variability into account. On-road transportation contributes to PM2.5, but the impact 
of transportation is marginal, which is only 1.09% on average. We also find that a 6.17 billion km per km2 on-
road transportation increase is associated with a 1-μg/m3 county-level PM2.5 concentration increase. Moreover, 
from 2003 to 2016, about a total of 50,223 premature deaths are attributable to PM2.5 stemming from on-road 
transportation, which takes 6.49% of estimated PM2.5-related premature deaths. Most of them are located in 
metropolitan areas. In addition, the relationship does vary temporally, and economic status and environmental 
policies might be the reasons for this variation. County-level strategies aiming at reducing PM2.5 from on-road 
transportation should account for the temporal and spatial variability of the relationship.
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Materials and methods
Materials.  County‑level PM2.5 concentrations.  The county-level fine particulate matter (PM2.5) concentra-
tion in the contiguous United States (CONUS) is applied as the dependent variable in all regression models. The 
data are obtained from the Centers for Disease Control and Prevention, as estimated with the downscaler model 
by the Environmental Protection Agency (EPA) (more details about this dataset: https://​www.​cdc.​gov/​nceh/​
track​ing/​topics/​AirQu​ality.​htm). The data include the estimated daily PM2.5 concentration in each county from 
2001 to 2016. We calculate the mean annual PM2.5 concentration in each county, and the unit is microgram per 
cubic metre (μg/m3). Because the on-road carbon dioxide (CO2) emission data, land cover data, and population 
density data are annual, lacking daily variation, the PM2.5 concentration is converted into an annual average 
value.

On‑road county‑level CO2 emissions.  The average annual CO2 emissions per square kilometre (km2) in each 
county are adopted as the critical independent variable. First, we obtain the annual on-road CO2 emissions at 
a 1-km resolution from 2001 to 2016 from the National Aeronautics and Space Administration (more details 
about this dataset: https://​daac.​ornl.​gov/​cgi-​bin/​dsvie​wer.​pl?​ds_​id=​1735)32. The county boundaries in the 
CONUS are acquired from the U.S. Census Bureau, created in 2016. The on-road county-level CO2 emissions 
are expressed in units of million tons per km2. Because the areas of the different counties vary dramatically, the 
total CO2 emissions in each county cannot be compared. In this case, the total CO2 emissions in each county are 
not strongly associated with the air pollution concentration, but the CO2 emissions per km2 in each county are. 
Additionally, CO2 emissions are predicted based on data retrieved from the Federal Highway Administration’s 
Highway Performance Monitoring System expressed in roadway-level vehicle miles33,34. In other words, the CO2 
emissions in the counties indicate vehicle usage35.

Land cover data.  We exploit in 2001, 2004, 2006, 2008, 2011, 2013, and 2016 land cover datasets36,37 with a 
30-m resolution in the CONUS acquired from the National Land Cover Dataset (NLCD: https://​www.​mrlc.​gov/​
data/​nlcd-​land-​cover-​conus-​all-​years). The NLCD includes 16 land types: open water, perennial ice, developed 
open spaces, low-intensity developed areas, medium-intensity developed areas, high-intensity developed areas, 
barren areas, deciduous forestlands, evergreen forestlands, mixed forestlands, shrublands, grasslands, pastures, 
cultivated croplands, woody wetlands, and emergent herbaceous wetlands. The land cover variables are the per-
centages of each land type in every county. We linearly interpolate the data in missing years.

Other control variables.  The population density, mean daily summer and winter temperatures, and means of 
relative humidity in summer and winter in every county are also controlled. The population density data are the 
raster data provided by the University of Southampton from 2001 to 2016 with a 100-m resolution and estimated 
via unconstrained top-down methods (details about WorldPop: https://​www.​world​pop.​org/​proje​ct/​categ​ories?​
id=​18). The unit of the population density is thousand people per km238. Meteorological variables are also the 
grid data, such as the temperature and relative humidity in winter and summer, from 2001 to 2016 with a 4-km 
grid size in each county (more details about meteorological variables: http://​www.​clima​tolog​ylab.​org/​gridm​et.​
html, a statistical data summary is provided in Table S1, and the data sources are listed in the Table S2).

Methods.  To explore the role of spatial heterogeneity in the relationship between vehicle usage and county-
level PM2.5 concentration, five regression models are employed in our research, including the fixed effects model 
(FEM), spatial panel autoregressive model (SPAM), spatial panel error model (SPEM), spatial panel Durbin 
model (SPDM)39, and geographical and temporal weighted regression (GTWR)40.

FEM.  The FEM is the basic regression model among all five models. The FEM is preferred in this research, 
according to a series of statistical tests. Based on the F test for individual effects, the results are significant, adopt-
ing PM2.5 concentration as the dependent variable, which indicates that the FEM is better than the ordinary least 
square (OLS) method. According to the Breusch–Pagan Lagrange Multiplier Test for balanced panel data, the 
significant results indicate that the random effects model (REM) is also better than the OLS method. Finally, in 
the view of the Hausman test, the significant results demonstrate that the FEM performs better than the REM. 
The FEM can be expressed as:

where APit denotes the mean PM2.5 concentration (μg/m3) in county i during year t  , X it denotes a vector of the 
independent variables in county i during year t  , αi denotes the unobserved time-invariant individual effect, µit 
denotes the idiosyncratic error, and β1 is a vector of the parameters to be estimated. The vector, X, of independ-
ent variables includes on-road CO2 emission (million tons/km2), open space developed area (%), low intensity 
developed areas (%), medium intensity developed areas (%), high intensity developed areas (%), open water (%), 
woody wetlands (%), emergent herbaceous wetlands (%), deciduous forest (%), evergreen forest (%), mixed for-
est (%), shrub (%), grassland (%), pasture (%), cultivated crops (%), population density (thousand capita/km2), 
mean of daily temperature in summer (K°), mean of daily temperature in winter (K°), mean of relative humidity 
in summer (%), and mean of relative humidity in winter (%) (the data statistic summary is shown in Table S1).

The FEM assumes that the observations and error terms are independent, similar to the OLS method. How-
ever, air pollutants can diffuse in air, resulting in cross-county and even cross-state impacts28. In other words, 
the observations exhibit spatial correlations, which the FEM ignores. Therefore, we also apply four other models, 
including the SPAM, SPEM, SPDM, and GTWR, to investigate the spatial relationships among the variables.

(1)APit = β1X
′

it + αi + µit

https://www.cdc.gov/nceh/tracking/topics/AirQuality.htm
https://www.cdc.gov/nceh/tracking/topics/AirQuality.htm
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1735
https://www.mrlc.gov/data/nlcd-land-cover-conus-all-years
https://www.mrlc.gov/data/nlcd-land-cover-conus-all-years
https://www.worldpop.org/project/categories?id=18
https://www.worldpop.org/project/categories?id=18
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21320  | https://doi.org/10.1038/s41598-021-00862-x

www.nature.com/scientificreports/

SPAM.  The SPAM assumes that a spatial correlation exists between the dependent variable of a given observa-
tion and its neighbours39. In our research, the average PM2.5 concentration in a county is related to the county-
level air pollutant concentration in its surrounding counties. As an improvement of the FEM, a spatial autore-
gressive part is added to the SPAM. According to the locally robust Lagrange Multiplier test to determine spatial 
lag correlations, the result is significant, adopting PM2.5 concentration as the dependent variable. Therefore, the 
SPAM for analysing our dataset to detect the relationship between on-road transportation and the PM2.5 concen-
tration in the counties is reasonable. The SPAM is expressed as follows:

where W i is a vector of the spatial weights of the neighbours of county i , NEAPit is a vector of the county-level 
PM2.5 concentrations (μg/m3) in the neighbouring counties of county i during year t  , and � is the spatial lag 
parameter to be estimated. The Queen method is employed to calculate the spatial weight vectors of each county. 
If two counties share only one point, they are deemed contiguous in the Queen method41. The spatial weights in 
vector W i is the quotient of 1 and the count of the elements in vector NEAPit . In the SPAM, the neighbouring 
counties affect county i , but the county i also reversely influences these neighbouring counties. Therefore, the 
SPAM involves an iterative calculation process to figure out the spatial spillover function42. According to the 
recommendation of the package maker, the number of iterations is generally set to 500 to estimate the regres-
sion coefficients correctly39.

SPEM.  The SPEM supposes that there is a spatial dependence in the error term of the FEM39. Thus, the error 
term of the FEM is divided into a spatially related part and a spatially unrelated part. According to the locally 
robust Lagrange Multiplier test to determine spatial error correlations, the result is significant, adopting PM2.5 as 
the dependent variable. The SPEM is, thus, reasonable for the analysis. The SPEM is expressed as follows:

where εit denotes the spatially related error term of county i during year t  , υit denotes the spatially unrelated 
error term of county i during year t  , and ρ is the spatial correlation parameter to be estimated.

SPDM.  The SPDM accepts the assumptions of both the SPAM and SPEM. The SPDM is expressed as:

where � and ρ are the spatial correlation parameters to be estimated. Additionally, because of the spatial spillover 
effect, the number of iterations is set to 500. When the results of the locally robust Lagrange Multiplier tests to 
determine spatial lag and spatial error correlations are significant, the SPDM is considered the best global model.

GTWR model.  To account for the local effects of the independent variables in our research, the GTWR 
model is also exploited. The GTWR model is extended from the geographically weighted regression (GWR) 
model based on spatial panel data. The current GWR model generally employs the OLS method as the basic 
algorithm to estimate local coefficients. However, our dataset contains balanced panel data, so any local effects 
in time should also be considered. In contrast to the GWR model, the GTWR model assumes that the relation-
ships between the dependent and independent variables are spatially and temporally non-stationary40,43. The 
GTWR model divides the total sample into numerous subsamples according to the spatial context and temporal 
extent. The critical issue of this division is to decide the subsample size, namely, the bandwidth40. In this study, 
the cross-validation method is applied to minimise the sum of the squared error44. In addition, the bandwidth 
is an adaptive spatio-temporal distance, rather than a fixed spatio-temporal distance, to guarantee that each 
subsample exhibits the same size. The GTWR model is expressed by:

where APitk denotes the annually average PM2.5 concentration (μg/m3) in county i during year t  in the k th sub-
sample, X itk denotes a vector of the independent variables in county i during year t  in the k th subsample, β0itk 
is the intercept in county i during year t  of the k th regression, β itk denotes a vector of the parameters in k th 
regression in the county i , n denotes the number of observations in the k th regression, and εi is the error term.

The coefficients of the GTWR are estimated as follows:

where W itk is the spatio-temporally weighted matrix of county i during year t  in the k th regression to estimate 
the coefficients. W itk is based on the spatio-temporal distance among the records40. There are 49,712 records 
in the dataset pertaining to 3,107 counties, from 2001 to 2016, so the size of W itk is roughly 2.47× 109 , which 
unfortunately exceeds the limitation of R. Thus, we have to eliminate the data of two years, namely, 2001 and 
2002. The spatio-temporally weighted matrix is calculated as follows:

(2)APit = �W iNEAP
′

it + β1X
′

it + αi + µit

(3)APit = β1X
′

it + ai + ρW iε
′

it + νit

(4)APit = �W iNEAP
′

it + β1X
′

it + αi + ρW iε
′

it + νit

(5)APitk = β0itk +
∑

k

β itkX
′

itk + εi , i = 1, . . . , n

(6)β itk =

[

X
T
W itkX

]−1

X
T
W itkY
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where dit is a vector of the combination of the geographical and temporal distances between county i and its 
neighbouring counties in the j th subsample, and  bit is the largest distance in the vector dit . bit is determined 
based on the optimal bandwidth because we use the adaptive bandwidth. The Euclidean distance is determined 
to obtain the spatio-temporal distance, and the spatio-temporal distance is calculated as follows:

where ϕS is the scale factor of the spatial distance, ϕS is the scale factor of temporal distance, dSit is a vector of 
the spatial distance between county i and its neighbouring counties in the j th subsample, and dT it is a vector of 
the temporal distance. Moreover, ϕS and ϕT can be determined once the bandwidth is selected.

Models selection.  The FEM and SPEM results are summarised in Table S3, and the R2 values of the FEM 
and SPEM are 0.366 and 0.491, respectively. The direct, indirect, and total impacts on the county-level PM2.5 
concentration are estimated by the SPAM and SPDM, respectively (listed in Tables S4 and S5). The so-called 
impact here is a term obtained from R package “spdep”42, but its real meaning is the coefficient. The direct 
impacts indicate the direct relationships between the independent and dependent variables of a given county. In 
other words, direct impacts are the coefficients estimated by Eqs. (2) or (4) without any iteration. The indirect 
impacts arise from the changes in the NEAPit , which is the dependent variable of a specific county’s neighbour-
hoods. For example, New York county’s PM2.5 concentration affects Kings county’s, but Kings county’s also influ-
ences New York county’s. In mathematics, this spillover would be endless. However, the spatial spillover function 
is monotonically increasing concave function and converges towards a certain value. The coefficients estimated 
according to spatial spillover function are called indirect impacts42. Simply speaking, the indirect impacts can be 
deemed that New York county’s on-road transportation causes PM2.5, which partially diffuses to Kings county 
and then come back again. The coefficient of the on-road transportation on the PM2.5 spread back is its indirect 
impact. The total impact is the accumulative value of the direct and indirect impacts. According to the locally 
robust panel Lagrange Multiplier tests, the spatial correlations of both dependent variable and error term are sig-
nificant at 0.1% level when adopting the PM2.5 concentration as the dependent variable. In this case, the SPDM 
is the most reasonable global model. In light of the abovementioned statistical tests and findings, the SPDM is 
deemed the best global model to analyse the relationship between the county-level PM2.5 concentration and 
on-road transportation CO2 emissions (R2 of each model and statistical tests for models selection are recorded 
in Tables S6 and S7, respectively). Additionally, to detect the spatial and temporal variability, the GTWR model 
is also considered. Among all five models, the interpretation of the GTWR is the highest (R2 = 0.808, listed in 
Table S6).

Contribution of on‑road transportation to PM2.5.  The coefficient of on-road CO2 emission is 0.646 
(0.593–0.699) based on the SPDM (see Table S5). This coefficient is the total impact, the sum of the direct and 
indirect impacts. The coefficient means a 1 million tons on-road CO2 emission increase per km2 in a specific 
county is related to a 0.646 μg/m3 increase in the county’s PM2.5 concentration. In other words, 1 μg/m3 PM2.5 
from on-road transportation in a certain county is associated with about 1.55 million tons on-road CO2 emis-
sion per km2. According to the EPA (https://​www.​epa.​gov/​green​vehic​les/​green​house-​gas-​emiss​ions-​typic​al-​
passe​nger-​vehic​le), the average passenger vehicle emits approximately 404 g of CO2 per mile (1 mile = 1.61 km). 
It must be noted that here the conversion factor is on the basis of the passenger vehicle. Thus, 1 million tons 
on-road CO2 emission is equivalent to 3.99-billion-km mileage of the average passenger vehicle. Finally, accord-
ing to the all numbers listed above, a 6.17 (5.70–6.71) billion km per km2 increase in total mileage in a specific 
county is associated with a 1-μg/m3 increase in the county’s annually average PM2.5 concentration.

The contribution of on-road transportation to air pollution based on the GTWR model is estimated as follows:

where Conit denotes the contribution (as a percentage) of on-road transportation to air pollution in county i 
during year t  , βit is the estimated coefficient of the impact of on-road CO2 emissions per km2 on air pollution in 
county i during year t  with the GTWR model, CO2it denotes the average on-road CO2 emissions per km2 during 
the 14-year study period in county i during year t  , and Concentrationit is the average concentration of air pol-
lutant concentration in county i during year t  . The average contribution of on-road transportation to annually 
county-level PM2.5 concentration is 1.09% (range from 0% to 60.68%, 95% CI: 1.06–1.11%).

Impacts of PM2.5 from on‑road transportation on premature mortality.  The results obtained from 
the GTWR model are applied to estimate the effects of air pollution on PM2.5-related mortality. Different from 
the coefficients estimated by the global models, the GTWR model indicates that the relationship between on-
road transportation and PM2.5 concentration is temporally and spatially non-stationary. According to the calcu-
lations with Eq. (9), the contribution of on-road transportation to air pollution might either exceed 100% or be 
lower than 0%. Due to the effects of the other control variables and regression residuals, the contributions might 
exceed 100%. Additionally, a contribution lower than 0% suggests that on-road transportation emissions are a 

(7)W itk =

{

exp
(

−
d
2
it

b2it

)

, if element(it) ∈ subsample k

0, if element(it) /∈ subsample k

(8)d
2
it = ϕSdS

2
it + ϕTdT

2
it

(9)Conit =
βit × CO2it

Concentrationit
× 100%
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method to reduce air pollution, which is impossible and irrational. To estimate the mortality in the CONUS, we 
normalise the contribution of on-road transportation from 0 to 100%, as follows:

where Ci denotes the contribution of on-road transportation to air pollution ranging from 0 to 100% in county i 
and Conit denotes the contribution (as a percentage) of on-road transportation to air pollution in county i dur-
ing year t  calculated with Eq. (9). It must be noted that all the Conit based on the results of the GTWR are larger 
than 0 and smaller than 100%. The mortalities caused by air pollution originating from on-road transportation 
are also estimated as follows:

where  MAPORit is the number of mortalities caused by air pollution originating from on-road transportation 
in county i during year t  , and MAPit is the number of mortalities caused by PM2.5 in county i during year t  . 
MAPi2010 data are extracted from the previous study2. The premature deaths MAPit in the CONUS are estimated 
as follows:

where MAPit−1 is the number of mortalities caused by PM2.5 in county i during year t − 1 , CPD is the coefficient 
between the increase of premature deaths and the increase of PM2.5 concentration, APit denotes the mean PM2.5 
concentration (μg/m3) in county during year, and denotes the average PM2.5 concentration in county during 
year. The basic data for this process are 2010 data extracted from the previous research, which are approximately 
54,730 in the CONUS in 2010, 54,905 in the whole U.S.2. The previous EPA report indicates a 1 μg/m3 decrease 
in annual average PM2.5 concentration is associated with a from 0.7% to 1.6% decrease in annual all-cause 
mortality45. Another study claims that a 10-μg/m3 decrease in PM2.5 is related to a 6%—7% decrease in mortal-
ity among elderly individual each per year46. Since the basic data in 2010 is about premature deaths, we assume 
that the coefficient of the relationship between premature deaths and annual PM2.5 concentration, in Eq. (12), 
is 1.2%/(μg/m3), the roughly average value of 0.7%/(μg/m3) and 1.6%/(μg/m3). The percentage of the premature 
deaths due to PM2.5 from on-road transportation is estimated as follows:

where is the percentage of premature deaths due to PM2.5 from on-road transportation, is the total number of 
premature deaths due to PM2.5 from on-road transportation in the CONUS during year, and is the total number 
of premature deaths in the CONUS during year.

Data availability
All data sources used in the analyses, along with fully reproducible code, are publicly available at https://​github.​
com/​Micha​elCha​oLi-​cpu/​On-​road_​Trans​porta​tion_​PM2.5.​git.
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