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Host–pathogen interaction is one of the most powerful determinants involved in coevolutionary 
processes covering a broad range of biological phenomena at molecular, cellular, organismal and/
or population level. The present study explored host–pathogen interaction from the perspective 
of human–bacteria protein–protein interaction based on large-scale interspecific and intraspecific 
interactome data for human and three pathogenic bacterial species, Bacillus anthracis, Francisella 
tularensis and Yersinia pestis. The network features revealed a preferential enrichment of intraspecific 
hubs and bottlenecks for both human and bacterial pathogens in the interspecific human–bacteria 
interaction. Analyses unveiled that these bacterial pathogens interact mostly with human party-
hubs that may enable them to affect desired functional modules, leading to pathogenesis. Structural 
features of pathogen-interacting human proteins indicated an abundance of protein domains, 
providing opportunities for interspecific domain-domain interactions. Moreover, these interactions 
do not always occur with high-affinity, as we observed that bacteria-interacting human proteins 
are rich in protein-disorder content, which correlates positively with the number of interacting 
pathogen proteins, facilitating low-affinity interspecific interactions. Furthermore, functional 
analyses of pathogen-interacting human proteins revealed an enrichment in regulation of processes 
like metabolism, immune system, cellular localization and transport apart from divulging functional 
competence to bind enzyme/protein, nucleic acids and cell adhesion molecules, necessary for host-
microbial cross-talk.

Abbreviations
PPI	� Protein–protein interaction
PHPPI	� Pathogen–host protein–protein interaction
GO	� Gene ontology
dN	� Nonsynonymous nucleotide substitutions per nonsynonymous site
dS	� Synonymous nucleotide substitutions per synonymous site

Pathogen–host interaction is the perfect example of evolutionary arms race where sustained coevolution is con-
tinuously shaping the hosts’ and pathogens’ genome and life history characteristics. The success and failure of 
the development of a disease depend on the survival, reproduction, and transmission of a pathogen into a host, 
which is countered by the host-resistance and immune system components.

Pathogen–host interactions are better understood from molecular perspectives, where pathogens hijack and 
manipulate the host’s cellular machinery and immune system components for their growth, thereby establishing 
a pathogen-host protein–protein interaction (PHPPI) network inside a host1. In plants, such interactions are 
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mediated by pathogen effectors, which are pathogen proteins, translocated inside host cells and target particular 
host genes/proteins to interfere with host cellular mechanisms, eventually causing infections2. In human-path-
ogen interaction, proteins from both human and pathogen are involved in the PHPPI network that ultimately 
leads to either disease progression or elimination of pathogen from the human body. The human protein–protein 
interaction represents a scale-free distribution, where the majority of the proteins interact with only a few pro-
teins while there are a few proteins that interact with a large number of proteins. Such a distribution increases the 
robustness of the human PPI network against random pathogen attacks. Therefore, in order to cause pathogenic-
ity, pathogens target particular human proteins (directed attack) for their growth and establishment3. Conversely, 
the strategy of the human cellular system is to resist the pathogen attack by hindering its growth and ultimately 
eliminating it, which is mostly mediated by the human immune system components4,5. Pathogens that evade 
the immune system can be killed by targeted therapeutics like broad-spectrum or specific antibiotics. However, 
with the increasing ability of pathogens to evade both the human immune system and antibiotics6, it has become 
more difficult to counter such infectious agents. The human–pathogen interactome is now considered very 
important for studying pathogenic disease, as it provides crucial information on the virulence factors along with 
their interactions essential for pathogenicity at the system level1,7. The accumulation of PHPPI data in the last 
decade paved the way for system-level analyses with the whole interactome, leading to a better understanding 
of the pathogenicity, disease progression, and human–pathogen coevolution for a better therapeutic approach 
to prevent and cure infections.

A detailed analysis of interspecific pathogen–human protein–protein interaction revealed that pathogen 
proteins mainly interact with proteins having high centrality values in the human PPI network. This includes 
hubs and bottlenecks, proteins having a high degree and betweenness centrality, respectively2,8,9. Although both 
these groups of proteins are functionally important counterparts of the human PPI network, often essential for 
host survival10,11, a phenomenon known as “centrality-lethality rule”12,13, the group that interacts more with 
pathogen proteins are not known. Additionally, these proteins evolve at a slower rate14–17, providing an oppor-
tunity for a sustainable host–pathogen interaction for over a long evolutionary time scale, a beneficial event for 
pathogen species. Moreover, higher connectivity of these pathogen-interacting hub proteins may bring about 
an increased influence of pathogen protein on the components of the human PPI network. The hubs with their 
interacting partners, form functional modules, each assigned to a specific function, where they may either act 
as intramodular or party-hubs (participating in the same functional module with their interacting partners) or 
intermodular or date-hubs (participating in different functional module with different interacting partners). 
However, it will be interesting to know which of these hubs interact more often with pathogen proteins, as it 
can be useful to understand the functional modules that get targeted by the pathogens for their pathogenicity 
and disease progression.

Most of the human–pathogen interactions are focused on viral infections, where viruses hijack the human 
transcriptional machinery to synthesize their proteins. The viral proteins evolve in a very sophisticated manner, 
and their interactions with human proteins often involve short linear motifs (SLiMs) present in the latter18,19. 
However, the interspecific PPI data between human and a majority of bacterial pathogens are not comprehensive. 
Thus, very little is known on human bacteria protein–protein interaction where pathogenic bacteria also interacts 
with human hubs and hijack the immune system components to evade host immune response1. In the present 
study, we explored the attributes of human bacteria protein–protein interaction from three pathogenic bacterial 
species, Bacillus anthracis, Francisella tularensis, and Yersinia pestis for which large-scale interspecific PPI data 
is available. All these pathogenic bacteria are enlisted as ‘Category A bioterrorism agents’. In addition, in silico 
approaches were undertaken to understand various aspects of the human–bacteria protein–protein interaction 
network and its participants, to better understand the mechanism of pathogenicity and disease progression.

Results and discussion
Hubs and Bottlenecks in pathogen‑interacting and non‑interacting human proteins.  The 
human–bacteria protein–protein interaction networks for three bacterial pathogens, namely Bacillus anthracis, 
Francisella tularensis, and Yersinia pestis were analyzed to understand the network features of bacterial protein-
interacting human proteins. In general, the protein–protein interaction (PPI) data contains many false posi-
tives and false negatives. Here, we selected three bacterial species for this study that have the highest number 
of interspecific interactions with human proteins verified by multiple databases. Additionally, the PPI data is 
not yet comprehensive and therefore, all the interpretations are made from the currently available data. It has 
been previously reported that the pathogen proteins mainly interact with the highly connected host proteins 
(host-hubs)1,20. In this study, we classified the human proteins into four groups: (a) not-interacting with any 
bacterial pathogen, (b) interacting with only one pathogen, (c) interacting with only two pathogens and (d) 
interacting with all three pathogens. The human protein–protein interaction network was constructed using 
the PICKLE database, where the PPIs supported by any two of four widely used PPI databases (BIOGRID21, 
MINT22, HPRD23, DIP24 and IntAct25) were considered as true-interaction. The final data contain 11,815 pro-
teins involved in 61,273 high-quality interactions, representing a little less than half of the human proteome. 
Comparing the proportion of hubs, it has been observed that the pathogen-interacting human proteins cor-
respond to a higher proportion of hubs and bottlenecks than that of the non-interacting group (Supplementary 
Table  S3). The pathogen-interacting proteins also have higher mean interacting partners (degree centrality) 
than that of the non-interacting group with respect to both hubs and nonhubs. Additionally, human proteins 
that interact with more bacterial pathogens have a higher proportion of hubs and higher mean interacting part-
ners than those interacting with fewer pathogens (Table 1). This suggests that pathogenic proteins preferentially 
target human hubs and bottlenecks that comprise functionally most important proteins in the human protein 
interaction network, which in turn, may damage the functional implication of the network. The high degree 
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centrality of pathogen-interacting human proteins may also ensure the pathogens’ establishment within the 
human host via its control over a broad range of target human proteins. When human proteins were classified 
into hub-bottlenecks, hub-nonbottleneck, nonhub-bottleneck, and nonhub-nonbottleneck based on these two 
centrality measures, the highest proportion of pathogen-interacting proteins was obtained in the hub-bottleneck 
class. More interestingly, the hub-nonbottleneck and nonhub-bottleneck possess no significant difference, which 
indicates that hubs and bottlenecks are equally targeted by proteins of these pathogens (Fig. 1).

Moreover, the whole protein interaction network can be subdivided into many functional modules, with 
each distinct module representing a specific function. Based on modularity, the hubs which belong to the same 
functional module as their interacting partners are known as intramodular hubs or party hubs, and those having 
interacting partners that belong to different functional modules are known as intermodular hubs or date hubs. 
To evaluate the preferential interaction of pathogen proteins with any one class of these hubs, the human party- 
and date hubs were identified using co-expression values of human proteins and their interacting partners and 
their interacting interface (see “Materials and methods”). Based on the above, the proportion of party hubs was 
found to be significantly higher in pathogen-interacting proteins, signifying pathogen proteins target some of 
the functional modules for their benefit (Table 2).

Hubs and Bottlenecks in human‑interacting and non‑interacting bacterial proteins.  The scale-
free network topology follows power-law node degree distribution, comprising a few nodes with a higher degree 
centrality than many other nodes. Such a network is resilient against random-attacks, which applies to human as 
well as pathogenic bacteria alike (Supplementary Fig. 1). In order to disrupt the human PPI network, the patho-
gen proteins need to act against particular human proteins via non-random directed interactions. The patho-

Table 1.   Proportion of hubs and bottlenecks in human proteins based on their interactions with bacterial 
pathogens.

Pathogen interaction status Total proteins Hubs % Hubs Mean interacting partners Significance

Proportion of Hubs in pathogen-interacting and non-interacting human proteins

Non-interacting 9137 1498 16.39 8.95

P%Hubs = 6.12 × 10─65, Fisher’s exact test; 
PMean_Interaction_Partner = 5.09 × 10─92, Kruskal–Wallis test

Interacting with one 1802 468 25.97 12.82

Interacting with two 635 250 39.37 18.07

Interacting with three 241 101 41.91 23.84

Pathogen interaction status Total proteins Bottlenecks %Bottlenecks Significance

Proportion of Bottlenecks in pathogen-interacting and non-interacting human proteins

Non-interacting 9137 1540 16.85

P%Bottleneck = 1.96 × 10─58, Fisher’s exact test
Interacting with one 1802 477 26.47

Interacting with two 635 235 37.01

Interacting with three 241 105 43.57

Figure 1.   Proportion of pathogen interacting proteins in human hub-bottleneck, hub-nonbottleneck, nonhub-
bottleneck and nonhub-nonbottleneck proteins.
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genic proteins with high degree centrality may be potential candidates involved in such disruption, due to their 
inherent property of high interaction ability. To explore this further, we subdivided the pathogen proteins into 
hubs or nonhubs based on their degree centrality and bottlenecks or nonbottlenecks, based on betweenness cen-
trality (see “Materials and methods”). Following this classification, the network properties of human-interacting 
and non-interacting pathogen proteins were explored and it was observed that the bacterial proteins which 
interact with human proteins are significantly enriched in bacterial hubs and bottlenecks in the bacterial PPI 
network. These hub proteins also have higher mean interacting partners (Table 3), indicating that the human-
interacting pathogen proteins have the potential to interact with multiple type of proteins in the intraspecific PPI 
network, which may facilitate in interspecific host–pathogen interactions.

Gene essentiality of pathogen‑interacting human proteins.  Genes indispensable to the survival 
and reproduction of an organism are considered as essential genes26,27. Proteins encoded by such genes are 
associated with vital molecular functions and are under strong purifying selection. It had been observed that the 
pathogen-interacting proteins comprise a higher proportion of essential proteins, which however, maybe due 
to their enrichment among hubs10,28. Moreover, when we considered hub and nonhub proteins separately, the 
pathogen-interacting proteins were found to be enriched in essential proteins for both groups, suggesting that 
these deadly pathogens may disrupt vital functions of the host, thereby facilitating pathogenicity and disease 
progression (Fig. 2).

Evolutionary rates of pathogen‑interacting and noninteracting human proteins.  The evolu-
tionary rate of proteins depicts the change in its amino acid sequence over time. As hubs are evolutionarily more 
conserved than nonhubs and also enriched with pathogen-interacting proteins, they are supposed to reveal a 
slower evolutionary rate. However, very little is known regarding the differences in evolutionary rate between 
pathogen-interacting and noninteracting hubs. Considering pathogen-interacting/-noninteracting hubs/non-
hubs, a comparison of the evolutionary rate as dN/dS ratio using 1:1 Mouse and Chimpanzee orthologs29 revealed 
a slower evolutionary rate in hub proteins. Nevertheless, among the pathogen-interacting and noninteracting 
hubs, the former shows a slower evolutionary rate (Fig. 3), suggesting that the evolutionarily more conserved 
hubs are more likely to be targeted by pathogens. It is, however, beneficial from the pathogens’ perspective, as 
it may allow an efficient pathogen–host protein–protein interaction throughout large evolutionary time-scale.

Intrinsic disorder of pathogen‑interacting and noninteracting human proteins.  Functional 
implication of protein is always mediated by its proper three-dimensional configuration. However, there are 
certain amino acid residues or stretches in proteins’ sequence, which do not let a protein fold into a definite con-
formation, and under such a situation, its associated flexibilities often facilitate in imparting productive protein–
protein interactions. Such residues/regions on a protein are known as intrinsically disordered residues/regions. 
Intrinsically disordered proteins, naturally, lack distinct three-dimensional structure but can adopt definite con-
formation upon their interaction with other proteins, facilitating low-affinity interactions with high-specificity30. 

Table 2.   Proportion of party-hubs and date-hubs in pathogenic bacteria-interacting and non-interacting 
human proteins.

Pathogen-interaction status Total hubs Party hubs %Party hubs Date hubs %Date hubs Statistical significance

Using PCC > 0.5 to determine party hubs

Interacting 802 123 15.34 679 84.66 Z = 3.965
P = 7.30 × 10─5Noninteracting 1441 140 9.72 1301 90.28

Using PCC > PCCmean to determine party hubs

Interacting 802 503 62.72 299 37.28 Z = 5.035
P < 1.00 × 10─5Noninteracting 1441 745 51.70 696 48.30

Table 3.   Proportion of hubs and bottlenecks in bacterial pathogens’ PPI network in human-interacting and 
non-interacting proteins.

Species
Protein class/human-
interacting? Total proteins Hubs %Hubs Bottlenecks %BNs

Significance (%hubs, 
%BNs)

Bacillus anthracis 
(N = 5089)

Interacting 316 90 28.48 97 30.70 Z%hub = 3.922, 
Z%BNs = 4.990
P < 0.001Noninteracting 2966 569 19.18 560 18.88

Francisella tularensis 
(N = 1485)

Interacting 296 73 24.66 79 26.69 Z%hub = 2.192, 
Z%BNs = 3.292
P < 0.05Noninteracting 870 163 18.74 155 17.82

Yersinia pestis (N = 3893)
Interacting 340 89 26.18 96 28.24 Z%hub = 3.009, 

Z%BNs = 4.000
P < 0.01Noninteracting 2529 486 19.22 480 18.98
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Proteins that are highly connected in a network of proteins are usually rich in these regions31, which may play 
an important role in the interactions between host and pathogen proteins. Although bacterial proteins are less 
disordered than the human proteins32,33, the disordered regions in human proteins are supposed to be utilized by 
the bacterial pathogens as potential regions for interaction. To address the same, IUPred algorithm was used to 
identify the disordered residues in pathogen-interacting and non-interacting proteins34. The proportion of dis-
ordered proteins (Pdisordered) in the pathogen-interacting proteins is significantly higher than the non-interacting 
proteins (Pdisordered_interacting = 59.73, Ninteracting = 2677, Pdisordered_noninteracting = 49.07, Nnoninteracting = 9136, Z = 9.706, 
P < 1.00 × 10−4), suggesting that they may play an important role in pathogen–host interactions. Additionally, 
when the total number and percentage of disordered regions and residues of individual proteins were consid-
ered, we found that pathogen interacting proteins have a higher number and mean percentage of long disordered 
regions and disordered residues (Supplementary Table S4), indicating human proteins with intrinsically disor-
dered regions and residues are more prone to pathogen-attack. However, as smaller disordered segments can 
also be important for interaction, therefore we also considered the proteins having ≥ 15 residue long disordered 
stretches, which gives a consistent result (Supplementary Table S4).

Figure 2.   Proportion of essential proteins in pathogen-interacting and noninteracting hubs and nonhubs.

Figure 3.   Evolutionary rate (dN/dS ratio) of pathogen-interacting and noninteracting human proteins within 
hubs and nonhubs using 1:1 chimpanzee and mouse orthologs.
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To further strengthen the claim as stated above, the number of interacting pathogen proteins for each of 
the three bacteria were calculated for each human protein and it appears to hold a significant positive correla-
tion with the amount of disorder content present in the human protein (Supplementary Table S5). When the 
human proteins were binned based on their disorder content into five bins (see “Materials and methods”), it 
was observed that the proportion of pathogen-interacting genes increases gradually with increasing disorder 
content up to 80% (Fig. 4). Together, these results suggest that the protein intrinsic disorder plays a major role 
in the host–pathogen interactions.

Molecular recognition features (MoRFs) in pathogen‑interacting and noninteracting human 
disordered proteins.  We also considered the Molecular Recognition Features or MoRFs, which are 5–25 
residues long specialized elements located within the disordered regions of proteins that undergo disorder to 
order transition upon binding with their respective interacting partners. Here, to understand whether the disor-
dered regions in pathogen interacting human proteins can serve as the disordered protein binding sites for path-
ogen proteins, we explored the MoRFs within the human disordered proteins, using the fMoRFpred35 webserver. 
The pathogen interacting human proteins were found to be rich in molecular recognition features (MoRFs) than 
the noninteracting counterpart (MoRF_regionsinteracting = 1.017, MoRF_regionsnoninteracting = 0.931, P = 3.949 × 10−2 
; MoRF_residuesinteracting = 15.035, MoRF_residuesnoninteracting = 12.765, P = 3.718 × 10−9, Mann–Whitney U test, 
Ninteracting = 1599, Nnoninteracting = 4472), suggesting that pathogen-interacting human proteins are more enriched 
in these regions, which may favour the interspecific protein–protein interaction.

Protein domains in pathogen‑interacting and non‑interacting human proteins.  Although, pro-
tein intrinsic disorder facilitates protein–protein interaction by providing flexibility to the proteins’ structure36, 
protein domains, the most conserved and functionally essential part of a protein serve a distinct role in such 
interaction37. More specifically, the protein–protein interaction can be viewed as interaction between domains of 
different proteins. Therefore, proteins with a greater number of domains may have a higher probability of inter-
action with other proteins. To study the influence of protein domains on human-bacteria interaction, the mean 
number of domains of pathogenic bacteria interacting- and noninteracting-human proteins were calculated 
using Interpro repository38. It was observed that the pathogen-interacting proteins contain a higher number of 
domains than that of the noninteracting ones (P = 6.73 × 10−16, Mann–Whitney U test). Moreover, the higher 
number of domains in pathogen-interacting human proteins may be attributable to the abundance of hubs 
within them. Thus, we divided the data into hubs and nonhubs. Interestingly, within both hubs and nonhubs, the 
pathogen-interacting proteome has a higher number of domains (Phub = 8.60 × 10−5, Pnonhub = 6.58 × 10−7). Addi-
tionally, the proteins interacting with more pathogens hold a higher number of protein domains (P = 2.41 × 10−15, 
Kruskal–Wallis test) (Fig. 5). This suggests that proteins with a higher domain number have a higher probability 
of interaction with pathogen proteins, facilitated via interspecific domain–domain interaction.

Functional enrichment analysis of pathogen‑interacting proteins.  The association of party hubs 
with pathogen proteins indicates that these bacterial pathogens mostly target particular functional modules of 
human proteome for the establishment of pathogenicity and progression of the disease. For a detailed insight, 
the functional enrichment of the pathogen-interacting human proteins was studied using the Humanmine39 
and Gorilla40 webservers. The top 10 enriched Gene Ontology (GO) terms matched in both the datasets were 
observed for both the GO domains, ‘Biological Process’ and ‘Molecular Function’ (Supplementary Table S6). 
The pathogen-interacting proteins were revealed to be enriched in processes like regulation of biological/cel-
lular processes, cellular localization, immune system, interspecies interaction between organisms, regulation 

Figure 4.   Proportion of pathogen-interacting human proteins belonging to different disorder bins.
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of cellular (metabolic) processes, regulation of nitrogen compound metabolic processes, regulation of primary 
metabolic processes, and vesicle-mediated transport processes. These proteins were also shown to be enriched 
in functions like RNA binding, enzyme/protein binding, nucleic acid binding, protein-containing complex bio-
molecule binding, cadherin binding, cell adhesion molecule binding, transcription factor binding, chromatin 
binding, and kinase binding. The above functional enrichment clearly suggest that during pathogenesis, these 
pathogens primarily regulate the processes related to immune system, cellular localization and transport, apart 
from influencing the binding of host macromolecules and cell-adhesion molecules, necessary for host-microbial 
cross-talks.

Materials and methods
Protein–protein interaction datasets.  The human–bacteria protein-interaction data for the three bac-
terial species namely Bacillus anthracis, Francisella tularensis, and Yersinia pestis were obtained from four well 
established host–pathogen interactome databases: APID (Agile Protein Interactome Dataserver,  http://cicbl​ade.
dep.usal.es:8080/APID/init.actio​n#tabr1​41; MENTHA,  https​://menth​a.uniro​ma2.it/42, HPI-DB (Host Pathogen 
Interaction Database),  http://hpidb​.igbb.mssta​te.edu/index​.html43 and PHISTO (Pathogen Host Interaction 
Search Tool),  http://www.phist​o.org/brows​e.xhtml​44. The binary interactions reported in no less than three of 
the four databases were used in this study as the pathogen-interacting human proteins. The human proteins and 
their sequences were obtained from Uniprot (https​://www.unipr​ot.org/)45. The human proteins with no reported 
interaction with none of the pathogen protein in either of the databases were considered as pathogen-non-
interacting proteins (Supplementary Table S1).

The human PPI data was obtained from PICKLE (Protein InteraCtion KnowLedgebasE) (www.pickl​e.gr)45, 
which combines all the globally used protein–protein interaction database like BIOGRID21, MINT22, HPRD23, 
DIP24 and IntAct25. We removed all the self-interactions and considered interactions supported by at least two 
of these databases for our study45.

The within-species PPI data of all three bacterial pathogens were obtained from the STRING database (https​
://strin​g-db.org/)46, considering the experimentally validated interactions only. The STRING IDs were anno-
tated to Uniprot IDs using the annotation file present in the STRING database. Reciprocal BLAST with 100% 
sequence identity and e-values < e−10 BLAST parameters was used to determine the orthologous proteins of two 
different pathogen strains belonging to the same species as available in pathogen–PPI and pathogen–human 
PPI databases. The final dataset consists of 122,546 Homo sapiens binary interactions involving 11,833 proteins, 

Figure 5.   Mean Interpro protein domains: (A) pathogen noninteracting and interacting human proteins 
subdivided n number of interacting pathogens for a particular human protein; (B) pathogen interacting and 
noninteracting human proteins subdivided in hub and nonhub classes.

http://cicblade.dep.usal.es:8080/APID/init.action#tabr1
http://cicblade.dep.usal.es:8080/APID/init.action#tabr1
https://mentha.uniroma2.it/
http://hpidb.igbb.msstate.edu/index.html
http://www.phisto.org/browse.xhtml
https://www.uniprot.org/
http://www.pickle.gr
https://string-db.org/
https://string-db.org/
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277,210 B. anthracis binary interactions involving 3285 proteins, 53,614 F. tularensis interactions involving 1167 
proteins and 135,090 Y. pestis binary interactions involving 2872 proteins. We analyzed each network using the 
Network Analyzer plugin of Cytoscape (version 3.7.1) to get the degree and betweenness centrality. The node 
degree of all the species shows power-law distributions (Supplementary Fig. S1). We subdivided the proteins of 
each species into hubs and nonhubs depending on their degree centrality. The top ~ 20% proteins of the node 
degree distribution having the highest number of interacting partners were considered as hubs, while the rest 
as nonhubs, according to the 20–80 rule of power-law distributions (Pareto principle)47. Similarly, we classi-
fied the proteins into bottlenecks (proteins that are central to many paths in the network) and non-bottlenecks 
considering the proteins representing the top ~ 20% of betweenness centrality as bottlenecks and the rest as 
non-bottlenecks (Supplementary Table S2).

Party‑hubs and date‑hubs.  For the determination of human party- and date-hubs, human gene expres-
sion data were obtained from the Human Protein Atlas48, which contains tissue-wise RNA levels (TPM) for 37 
tissues, namely the adipose tissue, adrenal gland, appendix, bone marrow, breast, cerebral cortex, cervix/uterine, 
colon, duodenum, endometrium, epididymis, esophagus, fallopian tube, gallbladder, heart muscle, kidney, liver, 
lung, lymph node, ovary, pancreas, parathyroid gland, placenta, prostate, rectum, salivary gland, seminal vesicle, 
skeletal muscle, skin, small intestine, smooth muscle, spleen, stomach, testis, thyroid gland, tonsil, and urinary 
bladder. For each interacting protein pair, the RNA levels of both the partners were correlated using the Pearson 
correlation coefficient (PCC). The mean PCC values for all the partners of the hub proteins were used to classify 
the hub further into party-hubs and date-hubs49. We have used PRISM50 webserver to confirm that no two inter-
acting partners of a party hub share the same interacting surface with the latter. The hubs having a mean PCC 
value ≥ 0.5 were considered as party hubs and those having a PCC value < 0.5 were considered as date hubs51. 
We have also used mean PCC value of all proteins as the cutoff to select party-hubs (above mean) and date-hubs 
(below mean)14.

Human essential genes.  Genes essential for human survival and reproduction, collectively known as 
essential human genes, were obtained from three recent experiments based on gene trap mutagenesis52 and 
high-resolution CRISPR-screening53,54. Human genes (and their encoded proteins) considered as essential or 
nonessential in all the three screenings were considered as essential and nonessential, respectively. The final data 
consists of 768 essential and 8080 nonessential human proteins.

Evolutionary rate.  For the calculation of evolutionary rate of human proteins, the nonsynonymous nucleo-
tide substitutions per nonsynonymous site (dN) and synonymous nucleotide substitutions per synonymous site 
(dS), were obtained from the Ensembl biomart55, using 1:1 mouse and chimpanzee orthologs for each human 
protein. The mutation saturation was controlled by discarding dS values greater than 3 and the dN/dS ratio was 
used as evolutionary rate29.

Intrinsically disordered proteins.  We used IUPred algorithm to predict the intrinsically disordered 
regions in the protein sequence. In IUPred, each amino acid residue is given a probability score based on its 
pairwise energy profile with respect to its interaction with other residues along the protein sequence. Resi-
dues with scores ≥ 0.50 are considered as disordered and < 0.50 as ordered34. We have downloaded the ‘reviewed’ 
human protein sequence from Uniprot (Accession UP000005640). We discarded all proteins with < 30 amino 
acid residues. Proteins with a continuous stretch of ≥ 30 disordered residues were considered as proteins with 
long intrinsically disordered regions. We have calculated the number of these disordered stretches, the propor-
tion of residues in the long-disordered stretches, the total number of disordered amino acid residues and the 
proportion of disordered amino acid residues for each human protein. Following Panda et al. 201756, human 
proteins were classified into five groups based on their disorder content: A, Ordered (having 0–20% disordered 
amino acid residues); B, Moderately disordered (having 20–40% disordered amino acid residues); C, Disordered 
(having 40–60% disordered amino acid residues); D, Highly disordered (having 60–80% disordered amino acid 
residues) and E, Extremely disordered (having 80–100% disordered amino acid residues).

Molecular recognition features.  The Molecular recognition features (MoRFs) were obtained from 
fMoRFpred35 webserver. We have selected MoRF regions of ≥ 5 residues and calculated the number of such 
MoRF regions and total MoRF residues for our study.

Protein domains.  The Ensembl biomart55 was used to obtain the interpro38 domains of human proteins.

Functional enrichment analysis.  The functional enrichment analysis was carried out using the Gene 
Ontology57 based on Humanmine39 and Gorilla40 web-servers. The gene ontology terms under different Gene 
Ontology domains like GO biological process and GO molecular function were used to determine the over-
represented biological processes and molecular functions of pathogen-interacting human proteins. The P-values 
determining the overrepresented GO terms were corrected using Benjmini-Hochberg correction. The top ten 
GO biological process and GO molecular function terms represented in both datasets were used as overrepre-
sented GO terms.
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Statistical analyses.  All the statistical analyses in this study have been done using in-house PERL script 
(for Z-test to compare percentages in different samples) and IBM SPSS 22 statistical package (for all other sta-
tistical tests)58.

Conclusions
Recent developments of high-throughput interspecific protein–protein interaction data paved the way for 
host–pathogen interaction studies to understand detailed aspects of pathogenicity, leading to the development 
of platforms for host-directed therapeutic research. In this study, we explored the attributes of the human–bac-
teria protein–protein interaction (PPI) network from the available large-scale interspecific interactome data of 
three bacterial species, Bacillus anthracis, Francisella tularensis and Yersinia pestis, for which large-scale high-
throughput intraspecific and interspecific PPI data are available. It was observed that the central proteins within 
intraspecific human and bacterial interactome preferentially participate in human-bacteria interaction. This 
includes hubs and bottlenecks of both human and bacterial PPI networks. Additionally, within human hubs, 
party-hubs participate in the interspecific PPI network more often than that of date hubs. It was also revealed 
that these pathogens preferentially interact with human essential proteins, both within hubs and nonhubs, 
thereby assisting in disease progression. From evolutionary perspective, these bacterial pathogens interact with 
evolutionarily more conserved human proteins, leading to a sustainable interaction, helpful for pathogen species. 
A detailed analysis of host proteins’ structural features revealed that the pathogen-interacting human proteins 
contain a higher number of protein domains and an abundance of intrinsically disordered residues and regions, 
which are likely to assist human-bacteria interaction by promoting high-affinity and low-affinity protein–pro-
tein interactions, respectively. Furthermore, the functional enrichment in pathogen-interacting human proteins 
revealed an enrichment of proteins involved in various biological processes, including catalytic functions related 
to the binding of several biomolecules. These enriched proteins are supposed to regulate essential metabolic and 
immune system processes, cellular localization, and transport and also influence the binding of host macromol-
ecules and cell-adhesion molecules that are necessary for host-microbial cross-talks.

Data availability
All the data are available upon request.
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