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Genome wide association study 
and genomic prediction for stover 
quality traits in tropical maize (Zea 
mays L.)
M. T. Vinayan1*, K. Seetharam1, Raman Babu1,3, P. H. Zaidi1, M. Blummel2 & Sudha K. Nair1

Maize is rapidly replacing traditionally cultivated dual purpose crops of South Asia, primarily due 
to the better economic remuneration. This has created an impetus for improving maize for both 
grain productivity and stover traits. Molecular techniques can largely assist breeders in determining 
approaches for effectively integrating stover trait improvement in their existing breeding pipeline. In 
the current study we identified a suite of potential genomic regions associated to the two major stover 
quality traits—in-vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) through 
genome wide association study. However, considering the fact that the loci identified for these 
complex traits all had smaller effects and accounted only a small portion of phenotypic variation, the 
effectiveness of following a genomic selection approach for these traits was evaluated. The testing 
set consists of breeding lines recently developed within the program and the training set consists of 
a panel of lines from the working germplasm comprising the founder lines of the newly developed 
breeding lines and also an unrelated diversity set. The prediction accuracy as determined by the 
Pearson’s correlation coefficient between observed and predicted values of these breeding lines were 
high even at lower marker density (200 random SNPs), when the training and testing set were related. 
However, the accuracies were dismal, when there was no relationship between the training and the 
testing set.

Recent studies have highlighted the potential of maize stover as an important source of fodder in livestock farm-
ing systems globally1–4. Crop residues provide major feed resources for livestock in low and middle income coun-
tries (LMCs). In India, maize is now the third most important crop after rice and wheat, and it is cultivated on 
over 8.7 million ha with 24.0 million ton of grain produced at an average yield of 2.6 tha−15. Most of the increase 
has been recorded in non-traditional maize growing areas where it is grown as an irrigated crop for commercial 
purpose during the dry season. In these areas, maize is largely replacing sorghum, an important dual-purpose 
crop. The stover of sorghum is highly valued by livestock keepers and fodder traders6,7. Given the prevalent fod-
der shortage in India, maize stover would need to substitute for the loss in sorghum stover8. Increases in maize 
area have also been reported in East Africa, where there is a similar need to look into the fodder value of maize 
stover2,9,10. However, breeding programs focused on maize improvement primarily in regions of South Asia are 
directed largely towards grain improvement with diminutive focus on stover traits.

Improving the quality of maize stover has been addressed through conventional breeding strategies8,11. How-
ever, simultaneous improvement of stover and grain in maize would require repeat phenotyping for both grain 
yield and stover quality traits substantially increasing the conventional breeding costs and time per cycle. With 
the advent of molecular markers, maize breeding programs across several regions had made a paradigm shift and 
incorporated marker based technologies for various trait improvements in the breeding pipeline particularly due 
to its advantages with high throughput efficient selections and cost reduction of the breeding processes. With the 
advancements in molecular marker systems, the identification of candidate genomic regions that have significant 
effects on fodder quality, and deployment of these regions through breeding has become more feasible. Earliest 
reports for Quantitative trait loci (QTL) mapping for stover quality traits dates to 199712,13. Several studies have 
since identified various QTLs for different silage traits in maize14–23. In an attempt to resynthesize the information 
on stover quality Truntzler et al.23 conducted a meta analysis on the combined results of 14 such studies in maize, 
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and identified regions (QTLs) with significant importance and smaller confidence interval on chromosomes 1, 
2, 3, 4, 5 and 9 for digestibility traits and cell wall component traits. In addition, studies with candidate genes 
had also identified specific regions associated with digestibility and/or cell wall synthesis on chromosomes 9, 
4, 3 and 1 using a limited set of maize24 lines. However, QTL mapping approaches are often restricted by the 
limited recombination in the mapping population, that are widely different from the once observed in natural 
population25 and hence often have narrow applicability. Genome-wide association study (GWAS) is another 
powerful molecular tool for crop improvement, which has been successful in identifying genomic regions for 
plant height, root traits, flowering time and a range of disease resistance traits26–28. GWAS studies on stalk 
strength and stalk components have also been reported in maize29–31. GWAS on maize stover digestibility traits 
(IVOMD, NDF and ADF) have also been studied previously32 on a panel of 296 maize test crosses, that had 
revealed several significant genomic regions particularly on chromosome 3 (bin 3.05) and chromosome 9 (bin 
9.08). However, validation of these genomic regions in an independent population or panel, and also with in 
the working germplasm of the breeding program is an important pre-requisite for their integration in marker 
assisted breeding. In addition, the loci identified for these complex traits often explained only a small portion of 
the observed phenotypic variation, which often restricts their applicability in breeding program33.

Reduction in the cost of genotyping and use of high-throughput genotyping facilities, has paved the way for 
deploying genomic selection strategies in routine breeding programs. Genomic selection has been widely prac-
ticed in animal breeding34 and is being utilized successfully in plant breeding as well35–37. However, successful 
integration of genomic selection with the breeding pipeline circumventing the need for conventional selection is 
determined largely based on the cost and time involved in phenotyping the trait as well as the genotypic predic-
tion accuracy between the testing set and training set38. Prediction accuracy as determined by the correlation 
between the breeding value and the genomic estimated values of individuals, varies with different parameters39. 
Trait complexity and the degree of similarity between the training and testing sets are two such factors that 
determine the accuracy of prediction. Zhang et al.40 reported moderate to high accuracies when training and test 
populations were related. Morgante et al.33 further suggested that the accuracies can often go low in cases where 
the actual loci affecting the traits are far fewer than the molecular markers used and if large epistatic interactions 
are involved in a trait. Prediction accuracies are affected by the genetic architecture of the trait, marker densi-
ties, minor allelic frequencies and population relationships41. In this context the current study focused on (i) 
identifying genomic regions for two major stover quality traits through GWAS in an independent association 
panel and (ii) determining if a genomic prediction approach could be followed to identify non-phenotyped lines 
with good stover quality traits.

Results
Variability for stover quality traits in association mapping panel.  Phenotypic distribution for the 
two traits (IVOMD and ME) in the panel was close to normal (Fig. 1a,b). Mean and ranges observed for the two 
stover quality traits is presented in Table 1. Significant variations were recorded among lines for both the traits 
across the panel (P = 0.006 for IVOMD and 0.007 for ME). IVOMD ranged from 46.50 to 59.30% with a mean 
of 52.32% and ME ranged from 6.65 to 8.75 Mj kg−1 with a mean of 7.60 Mj kg−1. Broad sense heritability for the 
entries ranged between 0.22 and 0.23 for the two traits.

Genome‑wide association mapping.  The population showed a high LD decay of 4.0  Kb at r2 of 0.2 
and 11.6 Kb at r2 of 0.1 (Fig. 2). Identification of significant SNPs for IVOMD and ME was based on the Mixed 
linear model (MLM) fitted using population structure(Q) and relative kinship (K) as it had the best fit Q–Q plot 
(Fig. 3a,b). SNP associations identified were corrected for structure using ten principal components cumula-
tively accounting for close to 80% of the variation (Supplementary Fig. 1). For the study we used a threshold of 
P < 1 × 10−4, as a multiple testing correction like Bonferroni correction was too stringent for identifying any SNP 
association in this study. A large number of SNP associations at P value < 0.001 were observed for both the traits, 
however, the most significant associations (P value < 1 × 10−4) were detected amongst 9 SNPs for IVOMD and 
ME across the genome. Phenotypic variance explained by these individual SNPs identified for IVOMD ranged 
between 3.2 and 4.0% and the allelic effects ranged from -0.45 to 0.55. The phenotypic variance explained by 
these highly significant SNPs associated with ME ranged between 3.2 and 4.9% and the effects ranged from − 0.08 
to 0.09 (Table 2). In addition, a lower threshold (P value < 1 × 10−3) was used for comparison of the SNPs from 
this study with the results with several previous studies on digestibility traits in maize (Supplementary Table 1a 
and b). A large proportion of significant SNP associations identified for ME in the current study were common 
or congruent (within 1 Mbp) to the associations identified for IVOMD. Among the identified SNPs with P value 
less than 1 × 10−3 (163 SNPs for IVOMD and 63 SNPs for ME), a large number of SNPs were found on chromo-
some 2, 3 and 6 for IVOMD and on chromosome 2 and 6 for ME (Supplementary Table 1a and b). These SNPs 
were clustered within one or two bins in each chromosome. The highest number of SNPs for IVOMD and ME 
were found on bins 2.04–2.05 and 6.01 (Fig. 4). SNPs with the lowest P value < 10−5 were found on chromosome 
2 (bins 2.05 and 2.09), 5 (bin 5.06), 6 (bin 6.01) and 7 (bin 7.02–7.04) for IVOMD with P value < 9.3 × 10−5 and 
on chromosome 1 (bin1.01), 2 (bins 2.05 and 2.09), 3 (bin 3.09), 5 (bins 5.00 and 5.06) and 7 (bins 7.03 and 7.04) 
for ME with P value < 9.5 × 10−5. While significant SNPs were identified for IVOMD across the chromosomes 
(1–10), the study could not detect any significant SNPs for ME on chromosome 10 (Fig. 5a,b). These significant 
SNP associations and their allelic effects along with their physical position are detailed in Table 2.    

Genomic prediction for stover quality traits.  The primary training set for the genomic prediction 
estimation, involved the phenotypes from a set of 276 elite breeding lines from the working germplasm of the 
program, and the test set comprised of DH lines derived from the elite breeding crosses of the program. After 
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excluding the SNPs based on the filtering criteria across the genotypic datasets of training and test set, a total of 
156,884 SNPs were used to estimate the genomic breeding values. In addition, the SNP dataset was further sub-
divided into a varied number of marker densities (500, 1000, 3000, 50,000, 10,000, 50,000, 100,000) to determine 
the prediction accuracies at different marker densities. The sub-sets of the genotype for the different marker 
densities were made at least twenty times and the prediction accuracies averaged over these iterations. For com-
parison, genomic predictions were also estimated for the selected DH lines by using the association mapping 
panel set as a training set.

Genomic prediction of test set and estimation of prediction accuracy.  Test crosses of the 276 
breeding lines used as the primary training set were phenotyped for both stover quality traits and exhibited 
substantial variation—IVOMD (47.60 to 53.91%) and ME (6.25 to 8.04 Mj kg−1) Table 1. The training set was 
genotyped at high density with the GBS platform. The resulting maker density, after following the filtering cri-
terion across the dataset, was one SNP per 13.11 kb. IVOMD and ME of test population comprising of the DH 
lines were predicted based on the GBLUP prediction model developed on the training set. Predicted phenotype 

Figure 1.   Frequency distribution for the two stover quality traits in association mapping panel and the training 
set.

Table 1.   Descriptive statistics for stover quality traits (IVOMD and ME) across association mapping panel and 
testing set.

Parameters

Association mapping panel Training set Testing set (DH lines)

IVOMD (%) ME(MJ/Kg) IVOMD (%) ME(MJ/Kg) IVOMD (%) ME(MJ/Kg)

Heritability 0.23 0.22 0.61 0.60 0.54 0.54

Genotype Variance 0.74 0.02 1.88 0.05 1.60 0.52

Grand mean 52.32 7.66 48.39 7.14 52.26 7.54

No of individuals 424 424 276 276 100 100

Range 46.50–59.30 6.65–8.75 42.50–53.91 6.25–8.04 50.02–54.88 7.19–7.91

Genotypic Significance (P value) 0.006 0.007 2.25E−06 3.56E−06 0.01 0.01
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for IVOMD ranged from 47.22 to 49.27% with an average of 48.43% and for ME it ranged between 6.96 and 7.27 
Mj kg−1 with a mean of 7.15 Mj kg−1 (Supplementary Table 2).

To validate the prediction accuracy of the genomic selection, 100 DH lines were sampled from the test popu-
lation based on the two extremes of the predicted values (top 5% and bottom 5%) for the stover traits, IVOMD 
and ME. The entries selected with in the top 5% matched across both the traits evaluated with an exception of 
only 4 entries with 2 entries each that had high IVOMD predictions but moderate ME predictions and vice versa. 
However, for all further estimations, these four entries were considered within the high phenotype groups for 
both IVOMD and ME. Based on these predictions, the set of 100 lines selected were test crossed and phenotyped 
for the two stover quality traits. The observed phenotypic value of IVOMD and ME ranged from 50.02 to 54.88% 
and 7.19 to 7.91 Mj kg−1, respectively with a broad-sense heritability of 0.54. Descriptive statistics of testing set is 
presented in Table 1. Prediction accuracy was estimated based on the Pearson’s correlation coefficient between 
predicted/estimated and observed phenotype across both high and low groups and also across the group for 
both the traits. Correlation coefficient between predicted and observed values for both the traits were high and 
significant across the group (r = 0.46 for IVOMD and ME) (Table 3). The prediction accuracies with in the high 
group of both the traits was substantially higher (r ~ 0.50), however this relationship was dismal within the low 
group of entries (Supplementary Table 3 and Fig. 6a,b), In addition, prediction accuracies at different marker 

Figure 2.   LD decay for the association mapping panel at r2 = 0.1 and 0.2.

Figure 3.   Quantile–quantile plots representing the SNP associations through MLM for the two stover quality 
traits (a) IVOMD and (b) ME.
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densities selected at random, starting with low followed by higher densities were also estimated for both the 
traits across the groups, i.e. from a low marker density of 200 SNPs to a high marker density of > 100,000 SNPs. 
These results indicated that while prediction accuracies improved from low marker density to high density (0.42 
to 0.46), they did not vary substantially at different densities and were largely similar (Table 3). In addition, the 
prediction was also done at different marker densities for the select 100 DH entries using the association mapping 
panel as a training set and also by combining the association panel and the primary training population (breeding 
lines) dataset. Based on the commonality with the testing set and filtering criterion a set of 127,623 SNPs were 
filtered out for the predictions. These marker datasets were further subdivided to varied marker density (200 to 
127,623 SNPs) dataset for prediction. The prediction accuracy was high (r = 0.32 to 0.43) and comparable at dif-
ferent marker densities with training set comprising of both the breeding lines and entries from the association 
mapping panel (Table 3). These accuracies obtained were also comparable to that obtained when the training set 
comprised solely of the breeding panel. However, these accuracies were very low (r = 0.11 to 0.02) at all marker 
densities when the training set comprised of only entries in the association panel (Table 3). 

Table 2.   Top SNPs associated with in vitro organic matter digestibility (IVOMD) and metabolizable energy 
(ME).

Trait Bin position Marker Chromosome
Physical position 
(Kbp) P value R2 (%) Favorable Allele Allele effect

IVOMD
2.05 S2_131425963 2 131,425,963

1.34E−05 4.0 C − 0.327

ME 8.70E−06 4.2 C − 0.054

IVOMD
2.05 S2_131425968 2 131,425,968

6.92E−05 3.3 G − 0.294

ME 4.60E−05 3.5 G − 0.049

IVOMD
2.09 S2_235226296 2 235,226,296

3.64E−05 3.6 C − 0.446

ME 9.58E−05 3.2 C − 0.070

IVOMD
5.06 S5_200435108 5 200,435,108

6.47E−05 3.4 A − 0.297

ME 2.14E−05 3.8 A − 0.053

IVOMD
7.03 S7_131438148 7 131,438,148

3.07E−05 3.7 A 0.554

ME 2.95E−05 3.7 A 0.090

IVOMD
7.04 S7_165798736 7 165,798,736

2.63E−05 3.7 T − 0.372

ME 9.39E−05 3.2 T − 0.061

IVOMD
6.01 S6_69394399 6 69,394,399 6.65E−05 3.4 A 0.376

7.02 S7_69997119 7 69,997,119 7.25E−05 3.3 T − 0.397

ME

1.01 S1_4724733 1 4,724,733 8.46E−05 3.3 G 0.050

3.09 S3_227586235 3 227,586,235 9.13E−05 3.2 G − 0.084

5.00 S5_2400437 5 2,400,437 6.31E−05 3.4 A − 0.054

Figure 4.   BIN positions for the identified significant SNPs for IVOMD (%) and ME (MJ/Kg).
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Discussion
Sustainability for marginal and poor livestock holders can be achieved by ensuring the availability of feed 
throughout the year4. Crop residues of cereals—the by-products after harvest of the primary product (grains), 
are emerging as the major alternative to feed resources in developing countries where feed demand is steadily 
increasing while the availability of natural resources, particularly arable land and water, is declining42. Crop 
residues do not cost additional input such as water, land, etc., as crops are invariably grown for the harvest of 
grain4. Among the cereal crops, maize, which is grown throughout the year in tropical climate, has a very high 
demand and potential to be a successful dual-purpose crop. Most of the maize breeding programs of south Asia 
largely focus on improving grain yield—under optimal conditions with reduced losses under various biotic and 
abiotic stress conditions. However, global increase in demand for fodder has created an impetus for breeders to 
concentrate on ways of whole plant multiple trait improvement, concomitantly targeting food, feed and fodder 
improvement.

Considerable progress has been made in detecting and exploiting genetic variations in stover fodder quality 
in maize. Screening of many of the released and pipeline hybrids of maize for stover quality has resulted in the 
identification and preferential promotion of dual-purpose hybrids across the globe, including USA43, Mexico44, 

Figure 5.   Manhattan plot depicting the association of SNPs for the two stover quality traits (a) IVOMD and (b) 
ME.
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Ethiopia and Tanzania9, South Africa45 and South Asia8,32,46 However, targeted breeding for these dual purpose 
(grain and stover) maize would entail additional phenotyping and increase in cost of the breeding pipeline, a 
major bottleneck for whole plant improvement for multiple traits. Use of molecular markers circumventing the 
need for additional phenotyping could support breeders in early selections of genotypes with superior yields and 
stover quality. Genomic prediction/selection approach could also help breeders design population improvement 
schemes for simultaneous improvement of multiple traits and complete multiple selection cycles within the time 
period conventionally used for improving a single trait47–49. However, applicability of GS model for trait of inter-
est and/or reliability of the results of an association mapping for integration in breeding pipeline needs a deeper 
assessment. Two stover quality traits IVOMD and ME were selected for this study, as they are considered two 
of the most desired traits of stover quality and a small improvement in these traits can positively impact animal 
productivity50. We reviewed the previous association mapping studies and identified a suite of associations that 
co-localize for both the traits and address their wider applicability and integration into the maize breeding 
pipeline. In addition, we attempted to assess the applicability of the genomic prediction model for these traits 
in the current breeding pipeline.

Table 3.   Prediction accuracy as determined by Pearson’s coefficient between predicted value estimated at 
different marker density (sampled 20 times) and the observed phenotype using the training set of advanced 
related breeding lines and the association mapping panel. a Sampled only one time with the total SNP markers 
(156,884 SNPs for testing set and 127,623 SNPs for Association mapping panel + Training set).

Marker density (SNPs)

Training set
Association mapping 
panel + training set Association mapping panel

IVOMD (%) ME (MJ/Kg) IVOMD (%) ME (MJ/Kg) IVOMD (%) ME (MJ/Kg)

200 0.36 0.42 0.33 0.32 − 0.11 − 0.10

500 0.42 0.43 0.36 0.39 − 0.12 − 0.14

1000 0.43 0.45 0.42 0.45 0.10 0.06

3000 0.44 0.46 0.40 0.40 − 0.09 − 0.13

5000 0.45 0.45 0.43 0.45 − 0.04 − 0.10

10,000 0.45 0.45 0.43 0.45 0.11 0.04

50,000 0.45 0.46 0.41 0.42 − 0.01 − 0.07

100,000 0.45 0.46 0.41 0.42 − 0.02 − 0.09

> 100,000a 0.45 0.46 0.41 0.43 − 0.02 − 0.09

y = 0.6358x + 3.0152
R² = 0.2096
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Figure 6.   Graph representing predicted vs observed values among DH lines for the two stover quality traits (a) 
IVOMD and (b) ME.



8

Vol:.(1234567890)

Scientific Reports |          (2021) 11:686  | https://doi.org/10.1038/s41598-020-80118-2

www.nature.com/scientificreports/

The set of entries used as the association mapping panel consisted largely of tropical germplasm from across 
South Asia. Linkage disequilibrium (LD) decay of this set was high (4.0 Kb at r2 of 0.2 and 11.6 Kb at r2 of 0.1) 
and was similar to that observed in previous studies on tropical germplasm27,32,51. The low LD decay as seen in 
the current study further suggests that the panel is diverse, and hence the use of higher number of SNPs should 
provide a good resolution. The current association study used 181,768 SNPs for the association mapping. The 
association tests in our study were corrected for both structure and kinship. First 10 principal components used 
to correct for structure in the current analysis explained close to 81% of the variation. Considering the bonferroni 
corrected P value was too stringent to identify significant SNPs, a lower threshold of P value < 1 × 10−4 was used 
as a cut off for identifying potential SNPs. A set of 64 SNPs for ME and 163SNPs for IVOMD were identified for 
both the traits (P value < 1 × 10−3) through single locus MLM approach.

The two stover quality traits are reported to be highly correlated8,32,52 and as expected most the identified 
putative SNPs in the current study for the two traits co-localized suggesting a common genetic control. Identify-
ing genomic regions contributing to the traits could greatly increase their applicability and ease of integration in 
mainstream breeding. A large number of significant SNPs identified clustered on chromosome 2 (11 SNPs at bin 
2.04) and chromosome 6 (11 SNPs at bin 6.01). The bin 2.04 has been identified previously to contain QTLs for 
several fodder quality traits in maize (IVOMD, NDF, ADF, ADL)21–23,53–56, while Meta QTLs and cell wall digest-
ibility traits have also been reported on bin 6.0123. These regions have also been found to be associated with gene 
models contributing to proteins involved in various cell wall components. The gene model GRMZM2G479018 
(bin 2.04) associated with a SNP (S2_39751613) was found to encode for ABC like transporters. These proteins 
are associated with transport of lignin precursors from cytoplasm through plasmalemma and sequestration in 
vacuoles in Arabidopsis57. Lignin an important component of plant stem cell wall reduces the enzymatic degra-
dability of biomass and cell wall polysaccharides in the rumen58,59. The study also identified SNPs (S6_2043652 
and S6_35895666) on bin 6.01 associated with gene model (GRMZM2G035741) encoding G protein beta subunit, 
WD 40 repeat and BRI1-KD interacting protein 130 (GRMZM2G035741) that phosphorylates G protein for 
sugar signaling. Role of G protein and WD 40 repeats in cell wall biogenesis has been reported in earlier studies 
in Arabidopsis60,61.

Another hot spot with clusters of SNP for IVOMD and ME was observed on chromosomes 3 (bin 3.09) and 4 
(bin 4.1). QTL for cell wall composition and neutral sugar component of cell wall, glucose and ferrulic acid have 
been identified previously on bin 3.0962. A meta QTL for cell wall digestibility traits has also been reported23 on 
bin 4.1. This region was also identified to harbor QTLS for ADF and NDF53.The highest variation among the 
putative SNPs along with the lowest P value was accounted by SNPs on chromosome 2 (bin 2.05 and 2.09), chro-
mosome 5 (bin 5.06) and chromosome 7 (bin 7.03 and 7.04) across both the traits IVOMD and ME. QTLs have 
been found for various cell wall component digestibility traits such as ADF, NDF and IVDMD on bin 2.0556 and 
meta QTL for cell wall traits was reported in this region23. QTLs for p-coumaric esters (PCA) involved in lignin 
biosynthesis have also been reported in this region. Meta QTL for cell wall component and digestibility traits 
have also been reported23 on bin 2.08–2.09, bin 5.06, bin 7.03 and 7.04. Bin 7.04 has also been found to harbor 
QTLs for cell wall digestibility traits ADF and NDF53. QTLs for cell wall component arabinose (7.03) and Klason 
lignin (bin 7.04) has also been reported previously62 on chromosome 7. Arabinoxylon is responsible for cross 
linking of lignin with ferulate bridges and is known to contribute to the reduced rumen degradability of maize cell 
walls63,64. In addition to these, three of the identified putative SNPs on chromosome 9 (bin 9.07) (S9_151819648, 
S9_151654313, S9_152760384) and one on chromosome 3 (bin 3.05) (S3_149247409) co-localized (within 1 Mb) 
to the identified SNP for IVOMD from the previous study32. These SNPs are co-localized to the regions coding 
for the enzymes protein phosphatase and urate hydroxylase, involved in signal transduction. This region on 
chromosome 9 (bin 9.07) has also been previously identified as a major hotspot region for cell wall components 
and digestibility in a meta-analysis study23. While several significant associations were detected in the current 
study, most of these associations for the traits observed had minor effects and were associated with low pheno-
typic variance. Previous studies have also identified a large number of minor effect QTLs for forage quality23 in 
maize restricting the use of SNPs in breeding programs. Further, the need of repeat phenotyping of such traits 
with low heritability can often unsettle the breeding pipeline and substantially increase the cost of the breeding 
program. Hence, genomic selection strategy might be the best possible approach for their rapid improvement.

Trait heritability, relationship between the training and testing set, variability for the trait of interest in the 
training population are few of the major factors determining success of genomic selection41. In the current 
study, the training set exhibited substantial variation (P < 0.0001) and good repeatability (h2 > 0.50) for the two 
traits, IVOMD and ME. In addition, as GWAS did not identify any major regions for deployment, the use of 
genomic prediction strategy for these traits might be an effective way of improving the trait. To understand the 
applicability of whole genome predictions for these traits, a set of 1026 DH lines derived from 10 bi-parental 
breeding crosses from the program were used as the prediction set. The genomic selection model was trained 
based on two different training sets (i) The first training set consisted of 276 test crosses of active breeding lines 
from the Asia program, that included the founders of the DH lines and (ii) the second training set consists of 
the association mapping panel used in the study comprising diverse inbred lines.

Based on the predicted trait values using the first training set consisting of the test crosses of the active breed-
ing lines, a set of 100 inbred lines were selected (top and bottom ranking) and evaluated for the traits IVOMD 
and ME. The correlation between the observed phenotype of the selected lines of the testing population and 
the corresponding predicted high phenotype of those lines was significantly positive. The level of prediction 
accuracy in the present study was similar to or higher than the level for several agronomic and disease traits in 
other studies reported earlier65–69. Moreover, the success of prediction of traits through genome-wide genotyping 
depends on various features like marker density relative to the population’s effective size, persistence of LD in the 
breeding material, etc.70–72 and similarity of the training and test set. In the current study, the parental lines of 
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the crosses used for developing the DH populations were also part of the breeding lines involved in the training 
set indicative of the close similarity of the training and test sets.

To determine if similar prediction accuracy could be achieved when the training set was unrelated to the test 
set, the association mapping panel, which is more like a diversity panel, was used as a training set to predict the 
performance of the selected DH lines. The results clearly showed poor prediction accuracies in this scenario, 
when there was no relation between the training and test set. However, the prediction accuracies improved when 
the training set constituted a combination of both the breeding lines and association panel. Further, the predic-
tion accuracies were comparable to the results obtained when the training set comprised solely of the breeding 
lines. Relationship between test set and training set in a genomic prediction model affects genomic selection73. 
The highest prediction accuracies were found when training data represented the whole population and had a 
strong relationship to the test data74, while low prediction accuracies for genomic selection have been reported 
with less related individuals in the training and test population75,76. Besides relationship between training and 
test set, marker densities also affect in the prediction accuracies39. Considering these the prediction accuracies 
were also repeated with a suite of marker densities (200 to 100,000 SNPs) chosen at random from the total high 
density SNP markers. The average prediction accuracies as determined by Pearsons correlation coefficient across 
the different marker densities were comparable indicating that markers at lower densities could predict for these 
traits in a test set with accuracies similar to those obtained from higher densities across the three training sets. 
Zhang et al.41 found for less complex traits the increase in marker density could reduce the prediction accuracy, 
while for complex traits increased marker densities increased the prediction accuracy which stabilized after 
certain marker densities. However, in our study we did not find any significant differences in prediction accura-
cies at marker densities.

These preliminary leads in predicting fodder quality phenotype in bi-parental populations from prediction 
equations trained on an independent panel suggest that (i) the genomic selection approach could be effectively 
used to improve the two major stover quality traits in maize breeding populations; and (ii) that the approach 
could also be used as an effective tool of selecting parents for breeding starts for fodder quality trait improve-
ment from the existing maize repositories without the need for extensive phenotyping. Further, good prediction 
accuracies for these traits even at low marker densities suggests that tailoring the current breeding program to 
integrate stover quality as a trait of interest might not be difficult.

Conclusion
The study presented several significant SNPs for in vitro organic matter digestibility and metabolizable energy. 
The suite of SNPs identified co-localized to several QTLs previously reported, indicating their suitability for use 
in breeding programs. Hot spots with cluster of SNPs had been identified on chromosome 2 and 6 for both the 
traits, that would be interesting to further investigate. However, considering the traits are associated with several 
minor effect QTLs each accounting for low phenotypic variance, incorporating genomic selection in breeding 
programs in Asia to improve this trait seems to be the most optimum strategy. Good prediction accuracies 
between the training and testing sets for the two traits of interest even at a low density of markers as detailed in 
the study, further supports its use for improving stover quality.

Materials and methods
Germplasm.  Three different sets of germplasm were used in generating experimental datasets in the current 
study, including an association mapping panel comprising 424 maize lines, a training set for genomic predic-
tion that was constituted using a set of 276 Asia-adapted breeding lines from the working germplasm of the 
CIMMYT (International Maize and Wheat improvement Centre)—Asia breeding program, and a testing set 
for genomic prediction that comprised a set of untested 1026 double haploid (DH) lines derived from ten bi-
parental breeding crosses that were genotyped and their breeding values estimated. A brief description of three 
set of germplasm is presented below.

Association mapping panel.  An association mapping panel was constituted that comprised of 424 diverse maize 
inbred lines sourced from CIMMYT maize program (371 sub-tropical/tropical lines), Purdue University, USA 
(15 temperate lines) and the Maize and Millets Research Institute (MMRI), Pakistan (38 sub-tropical lines). The 
panel was test-crossed with a CIMMYT tester line with high general combining ability (CML451) and pheno-
typed for two key stover quality traits—in vitro organic matter digestibility (IVOMD) and metabolizable energy 
(ME) during post rainy season of 2013. This panel was also used as a secondary training set for predicting the 
performance of 100 DH lines selected for the two stover traits (IVOMD and ME).

Primary training set for genomic prediction.  Phenotypic and genotypic datasets from 276 advanced stage maize 
inbred lines from the working germplasm of CIMMYT Asia maize breeding program were used as a primary 
training set in the genomic selection model for the two stover quality traits (IVOMD and ME). Lines involved 
in the study were Asia-adapted advanced elite breeding lines that originated from the sub-tropical and tropical 
maize breeding program of CIMMYT and being currently actively used as parental lines of several breeding 
crosses.

Testing set for genomic prediction.  A set of 1026 double haploid (DH) lines derived from ten elite × elite bi-
parental crosses were used as the testing set. The founder lines of these 10 DH populations were part of the pri-
mary training set used for prediction. These untested DH lines were genotyped using genotype-by-sequencing 
(GBS) platform and the breeding values for the two major stover quality traits were estimated using the model 
trained on the training set with > 150,000 random SNPs across the genome. Based on the genomic estimated 
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breeding values (GEBVs), a sub-set of 100 DH lines was selected (50 high ranking and 50 low ranking) from the 
1026 DH lines. Considering the two traits were highly correlated, there was little discrepancy in the selection, 
with only 4 entries not consistently falling under high IVOMD and high ME criterion. Two of these entries each 
had high IVOMD value but moderate ME values and vice versa. However, for the all estimation purposes these 
entries were considered in high groups. The selected 100 DH lines were planted as replicated trials and pheno-
typed for the two stover quality traits at Hyderabad during 2014 post Rainy season. Prediction accuracies were 
estimated at different marker densities based on the correlation coefficient between the predicted values and the 
observed phenotypic values on those 100 DH lines for the two stover quality traits.

Experimental design.  Test-cross progenies of association mapping panel and the primary training set 
were planted using alpha-lattice design with two replications during the spring seasons of 2013 respectively 
at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) campus, Hyderabad, India. 
Each entry was planted in a 4-m long plot with a plant-to-plant spacing of 20 cm and a row-to-row spacing of 
70 cm. Prior to planting, 60 kg nitrogen (N) ha−1 in the form of urea, 60 kg phosphorus ha−1 as single super 
phosphate, 40 kg potassium ha−1 as muriate of potash and 10 kg zinc as zinc sulfate were applied as a basal dose. 
The second and third doses of N (each 30 kg ha−1) were side-dressed when plants were at knee-high and at tas-
seling stage, respectively. Pre-emergence application of pendimethalin and atrazine [both at 0.75 kg ha−1 active 
ingredient (a.i.), tank mixed] were used to keep the crop weed-free at early growth stages. Standard agronomic 
and plant protection measures were followed throughout the cropping period to prevent from biotic or abiotic 
stress affecting the stover quality. At the maturity stage after harvesting of the cobs, five representative plants 
were selected from each plot for stover quality analysis.

Based on the predicted values (GEBVs) for the two stover quality traits, a subset of 100 DH lines was selected 
out of 1026 DH lines. Test-crosses of these 100 DH lines were then planted in two replications at ICRISAT 
campus, Hyderabad, India following a similar design as detailed earlier during post Rainy season of 2014. The 
recommended agronomic practices were followed for a good crop stand. At maturity stage, five representative 
plants per plot were harvested for stover quality analysis.

Phenotyping for stover fodder quality traits.  Five whole plants were sampled from each of the plot in 
the experimental trials and processed for the various stover quality traits. The analysis for IVOMD and ME was 
done at the Livestock Nutritional Laboratory, International Livestock Research Institute (ILRI) at ICRISAT cam-
pus using Near Infrared Spectroscopy (NIRS), calibrated against conventional laboratory analyses. The NIRS 
instruments used were FOSS Forage Analyzer 5000, 6500 and XDS with the software package WinISI II. The 
procedure for analysis of maize stover samples for these quality traits using NIRS has been described in detail 
in Vinayan et al.32.

Genotyping.  All the three set of germplasm (AM panel for GWAS, training set of 276 elite lines and 1026 
DH lines from biparental crosses as prediction set) used in the current study were genotyped using the GBS 
platform77 at the Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. A total of 955,690 SNPs 
were generated through GBS v2.7 and the SNPs were filtered for the analysis, based on the method described by 
Suwarno et al.78 with slight modifications. A call rate of > 0.85 and minor allelic frequency (MAF) > 0.05 criteria 
resulted in a set of 181,768 SNPs for association mapping analysis. Marker density for association mapping panel 
was one SNP per 11.604 kb. Structure of the association panel was determined using principal components, 
wherein the SNPs were further filtered based on a call rate of 0.9 and MAF < 0.1. In addition, Linkage Disequi-
librium (LD) pruning based on adjacent markers was also carried out. This criterion resulted in a set of 55,807 
SNP markers for principal component analysis.

To train the genomic model for the two traits, the genotypic dataset from both training set (276 breeding 
lines) and a prediction set (1026 DH lines) were combined and later filtered using a call rate of 0.9 and MAF 
of 0.1. This filtering criterion resulted in a set of 156,884 SNPs, which were then used to predict phenotypes 
of 1026 DH lines derived from 10 bi-parental breeding crosses, based on the marker effects obtained from the 
training sets. The study also used the association mapping panel as a secondary training set and the testing set 
comprised of 100 DH lines for estimating the prediction accuracies. For this purpose, the filtered genotyping 
dataset estimated from the primary training set, association mapping panel and DH lines were merged. Based on 
the commonality a final set of 127,623 markers were then used for the prediction. In addition, to the whole set 
of random markers (156,884) used for prediction, SNP marker densities of 200, 500, 1000, 3000, 5000, 10,000, 
50,000 and 100,000 SNPs were also used to estimate the breeding value of the 100 DH lines.

Statistical analysis of phenotypic data.  A linear mixed model was used for the analysis of the stover 
quality traits using the web handle META-R developed by CIMMYT79,

where Yijk is the trait of interest, µ is the mean effect, Ri is the effect of the ith replicate, Bj(Ri
) is the effect of the 

jth incomplete block within the ith replicate, Gk is the effect of the kth genotype and εijk is the error associated 
with the ith replication, jth incomplete block and the kth genotype. The effects of block, replicate and genotype 
were considered random to estimate the best linear unbiased predictors (BLUPs) which were used for the analysis. 
Single location heritability of the trials was computed using the genotypic variance estimates ( σ 2g) and single 
location residual ( σ 2ε) as

Yijk = µ+ Ri + Bj(Ri)+ Gk + εijk
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Statistical analysis of genomic prediction and association analysis.  Association tests in between 
markers and association mapping panel phenotypes were corrected for population structure and kinship fol-
lowing a single locus mixed linear model (MLM) (G + Q + K) following the efficient mixed-model association 
expedited (EMMAX) variance component approach80. The additive model was used for the analysis and the 
missing genotype values were set to 0. The kinship matrix used as covariates were treated as random effects. 
Manhattan plots were plotted using the − log 10 P values of all SNPs in the model and Quantile–quantile plots 
were plotted using the observed − log 10 P values and the expected − log 10 P values. A suite of significant SNP 
associations was observed from the analysis. These significant associations were then used to look for congru-
ence with results from previous studies. The associated SNPs were considered co-localized if found to be in close 
proximity (within 1 Mbp) to the previously reported SNP for the trait81. The analysis were carried out using SNP 
and Variation Suites v8.6.082. In addition, the gene models with the putative SNP associations were identified 
from maize GDB genome browser at http://www.maize​gdb.org (B73 RefGen_V2) and their respective protein 
were obtained from Uniprot genome browser at http://unipr​ot.org.

Genomic predictions were done following genomic best linear unbiased prediction (G-BLUP) method83. The 
primary training set comprised of phenotypic and genotypic datasets of 276 CIMMYT Asia-based breeding lines, 
and the prediction set comprised of 1026 DH lines derived from 10 bi-parental crosses involving Asia-adapted 
elite breeding lines. The GBLUP model used here was

where Y represents the trait IVOMD and ME, µ is the model intercept, g represents the vector of the genotypic 
values for the genotype and e is the residual. The GBLUP method computes a genomic relationship matrix and 
from that computes the “Genomic Best Linear Unbiased Predictor” (GBLUP) of additive genetic merits by sam-
ple. The genomic relationship matrix G is estimated as

where W represents the centered genotype matrix and pi represents the allele frequencies. The genotypic rela-
tionship matrix was estimated for each marker density and missing genotype data was recorded as 0 (the major 
homozygous allele). The Expectation–Maximization (EM) and Efficient Mixed Model Association (EMMA) 
algorithm was used for predicting the performance of the unpredicted lines. All the predictions were done on SNP 
and Variation Suites v8.6.082. Based on the GEBVs of the DH lines estimated using the full set of 156,884 SNPs, 
a sub-set of 100 DH lines were subsampled. The test crosses form these lines were evaluated for the two traits to 
obtain the observed phenotypic value. The prediction accuracies were estimated as simple Pearson’s correlation 
coefficient between estimated breeding values and observed breeding values. Further, the prediction accuracies 
were re-estimated for these selected 100 DH lines at different marker densities. In addition, for comparison of 
prediction accuracies when a diversity panel is used in the breeding scheme, predicted values for these 100 DH 
lines were also estimated using the association mapping panel as the training set. The predicted values for DH 
lines were estimated by sampling genotype dataset at designated marker density 20 times. The correlation coef-
ficients across these 20 samples for each marker density were then averaged following Fisher Z transformation 
as described by Alexander et al.84.
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