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Acoustic frequency combs using 
gas bubble cluster oscillations 
in liquids: a proof of concept
Bui Quoc Huy Nguyen1, Ivan S. Maksymov1* & Sergey A. Suslov2

We propose a new approach to the generation of acoustic frequency combs (AFC)—signals with 
spectra containing equidistant coherent peaks. AFCs are essential for a number of sensing and 
measurement applications, where the established technology of optical frequency combs suffers from 
fundamental physical limitations. Our proof-of-principle experiments demonstrate that nonlinear 
oscillations of a gas bubble cluster in water insonated by a low-pressure single-frequency ultrasound 
wave produce signals with spectra consisting of equally spaced peaks originating from the interaction 
of the driving ultrasound wave with the response of the bubble cluster at its natural frequency. The 
so-generated AFC posses essential characteristics of optical frequency combs and thus, similar to their 
optical counterparts, can be used to measure various physical, chemical and biological quantities.

Optical frequency combs—optical spectra composed of equidistant narrow peaks—enable precision measure-
ment in both fundamental and applied contexts1–6. An optical frequency comb acts as a spectrum synthesizer 
that enables the precise transfer of phase and frequency information from a stabilised reference to optical signals. 
The so-generated signals can be used, for example, to obtain the spectral response of a gas or liquid sample due to 
linear or nonlinear absorption of light by the medium7. One can also accurately measure distances by passing an 
optical frequency comb signal through an interferometer and then analysing the resulting interference pattern, 
which is beneficial for the fields of satellite positioning and material science8.

However, using optical frequency combs is not always possible because of a number of fundamental and 
technical limitations. For example, in liquid samples such as biological fluids light can be strongly reflected 
and absorbed by the medium. Photoacoustic frequency comb spectroscopy may help to partially resolve these 
problems9,10, because this technique exploits absorption of light and concomitant generation of acoustic waves 
that carry information about the absorption strength. Yet, more versatile and technologically simple approaches 
are still required.

Similar to optical frequency combs, acoustic (phononic) frequency combs (AFC)—purely acoustic signals 
with spectra containing equidistant coherent peaks—exploit the ability of acoustic waves to provide precision 
information about the medium in which they propagate11–17. In contrast to light, acoustic waves can propagate 
in water and opaque liquids over long distances, which underpins many acoustics-based technologies including 
sonar, underwater communication and sensing15 and marine biology18. Yet, even though AFCs have already been 
used to accurately measure distances between underwater objects15, research on them remains under-established. 
The development of new types of acoustic combs is needed for sensing and imaging systems11,14, in particular, 
biomedical imaging16,19,20.

In this work, we demonstrate the possibility of the AFC generation using a gas bubble cluster nonlinearly 
oscillating in water21, when it is driven by a single-frequency ultrasound wave (Fig. 1a). Unlike in the scenario 
of an optical frequency comb generation using a high-power laser light and exploiting fundamentally weak 
nonlinear-optical effects16, we show that the application of low-pressure harmonic signals can trigger a strong 
nonlinear response of the cluster resulting in the generation of multiple ultraharmonic frequency peaks. The 
interaction with stochastic noise-induced bubble cluster oscillations at its natural frequency, which is typically 
much lower than that of a driving ultrasound, results in the amplitude modulation of the the bubble cluster 
response and the appearance of sidebands around the main peaks. This process is thresholdless and therefore the 
sidebands can always be experimentally observed when their amplitude is higher than the noise floor.

Our current findings contribute to further development of an emergent field of AFC generation11,14–17. 
They also extend our previous observation of frequency combs originating from the onset of Faraday waves in 
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vertically vibrated liquid drops22,23. However, in that system the spacing between the peaks of the comb was only 
20–40 Hz. Whereas frequency combs with a Hz-range spacing can find certain applications17, in the gas bubble 
system investigated in the present work we use the high-kHz range that can potentially be extended to the high-
MHz range24. This opens up opportunities for using acoustic combs instead of optical ones or in addition to them 
in a number of practical situations where operation at higher frequencies may be required16.

Methods
Experiment.  Our experimental setup shown in Fig. 1b consists of a 1.5 L thin-walled stainless steel tank 
filled with distilled degassed water maintained at room temperature. A generic piezoceramic disc transducer 
with the measured resonance frequency of 42.6 ± 0.3 kHz is glued to the bottom wall of the tank from outside. 
The entire apparatus is assembled on a customised vibration damping support. The laboratory room is located 
in a single-level standalone building with an approximately 50 cm thick concrete floor. The building is located 
several kilometres away from railways, highways and building sites, where heavy machinery and equipment 
are used. Together with electric shielding provided by metalled walls, this ensures that external vibrations and 
interference with high-voltage equipment do not affect results of our measurements.

The piezo transducer is driven by a digital tone generator (Rigol DG-1022Z, China) connected to a broad-
band power amplifier (Bosch Plena LBB1906/10, Germany). The signal is fed to the piezo-disc via an electrical 
impedance-matching circuit featuring a customised adjustable mH-range inductor coil (Scientific, Australia) 
connected in series with the piezo-ceramic transducer. Effectively, the piezo-ceramic disc behaves as a capacitor 
that draws little current from the amplifier but requires high voltage that in our case is produced by resonance 
tuning of the LC circuit on the frequency of interest. Hence, in our measurements we fix the frequency of the driv-
ing ultrasound wave and change its pressure amplitude because this does not require re-tuning the inductor coil.

The hydrophone is based on a small piezoceramic disc (type PIC155, PICeramic, Germany). Electric signals 
produced by the piezo disc are first amplified using a broadband voltage amplifier (BWD 603B, Australia) with 
the frequency response from 0 to 100 kHz. Then the signal is sent to a digital oscilloscope (Rigol, DS-1202ZE, 
China) controlled via a laptop computer.

We use a customised bubble generator consisting of an air pump connected to a silicone tubing terminating 
in a diffuser made of a piece of porous material. The generator produces several single bubbles per second with 
the radius of 1.0 ± 0.5 mm. The size of the bubbles was estimated using high-speed digital video camera records 
(see Fig. 1c).

Figure 1.   (a) Schematic diagram of the suggested AFC generation. The oscillations of the bubble cluster are 
driven by a single-frequency ultrasound pressure wave. Acoustic waves scattered by the bubble cluster are 
recorded and post-processed to obtain a spectrum consisting of the equidistant peaks. (b) Schematic of the 
experimental setup. Bubbles are created in a stainless steel tank using a bubble generator. The driving pressure 
wave is emitted by an ultrasonic transducer. Waves scattered by the bubble are detected by a hydrophone. bf 
(c) Photograph of typical gas bubbles emitted by the bubble generator in a water tank with transparent walls 
at otherwise identical experimental conditions to those in the stainless steel tank. The diffuser of the bubble 
generator and other elements of the setup can be seen.
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The large bubbles rise under the effect of buoyancy. Some of them become trapped in the middle of the water 
layer due to the primary Bjerknes force of the ultrasound pressure wave21. As a result, a cluster of bubbles is 
formed. We record scattered pressure signals produced by the bubble clusters using the hydrophone and then 
process the measured time-domain signals in the Octave software to obtain spectral information.

By using high-speed imaging we estimate that on average the radius of a bubble cluster is Rc = 20± 5 mm 
and the air fraction (the ratio of the total volume of bubbles in a cluster to the volume of a region occupied by 
the bubble cluster) inside it25–27 is χ ≈ 0.015 . This implies that in our case the product √χRc is larger than the 
radius of the largest bubble in the cluster. According to Eq. (5), this means that the detected frequency fc should 
be smaller than the natural frequency of individual bubbles, which is indeed confirmed by our experimental 
observations.

Model.  Modelling bubble clusters is a challenging task given that their geometry varies from experiment 
to experiment and with time. Therefore, models considering a cluster as a single equivalent bubble of the size 
larger than that of constituent bubbles are frequently used25,26,28, especially when of interest is the natural oscil-
lation frequency of the cluster as a whole, which is the case in the current work. However, when doing so, one 
needs to keep in mind that the ultrasound energy absorption and scattering characteristics of a cluster may 
differ from those of an equivalent single bubble25,29. The scattering ( σscat ) and absorption ( σabs ) cross-sections 
of a single bubble placed in the field of an incident plane ultrasound wave are defined as the ratios of the scat-
tered and absorbed powers, respectively, to the power of the incident wave30,31. The extinction cross-section 
σext = σscat + σabs characterises the incident wave energy loss due to its absorption and scattering by the bubble. 
Generally speaking, a large gas bubble behaves as a strong acoustic scatterer with σscat proportional to the square 
of the bubble radius29. Because σabs also scales with the square of the radius30,31, larger bubbles have larger σext . 
However, the scattering cross-section of a bubble cluster is also proportional to the air fraction inside the cluster: 
σscat c = χR2

c . Because in our case χ ≈ 0.015 , the absorption and scattering by the bubble cluster detected in 
experiments are smaller than those by a single equivalent bubble.

The excitation of a bubble cluster with a single-frequency signal is also known to result in a stronger nonlinear 
generation of ultraharmonics31,32 compared with the case of a single bubble. This is also observed in our experi-
ments. However, these features are inconsequential in the context of AFC generation, which is the main focus of 
the current work. Therefore, we rely on the results obtained using an equivalent single bubble model discussed 
below to explain the experimentally detected acoustic response spectra.

The accepted model of nonlinear oscillations of a single spherical bubble in water is given by the Keller–Miksis 
(KM) equation33. It takes into account the decay of bubble oscillations due to viscous dissipation and fluid com-
pressibility. However, in this work we investigate millimetre-sized gas bubbles in water oscillating at 20–100 kHz 
frequencies and driven by low pressure waves with amplitude of up to 25 kPa. We established that in this regime 
the terms of the KM equation accounting for acoustic losses are negligible. Thus, in the following we omit these 
terms thereby effectively reducing the KM model to the classical Rayleigh-Plesset (RP) equation34,35:

where R̃ is the initial deviation of the bubble radius from the equilibrium value R0 , V is the initial speed of the 
bubble wall,

and the expression P∞(t) = P0 − Pv + α sin(ω∗t) with ω∗ = 2π f0 represents the periodically varied pressure in 
the liquid far from the bubble. The parameters R(t), µ , ρ , κ , σ , α , and f0 denote, respectively, the instantaneous 
bubble radius, the dynamic viscosity and the density of the liquid, the polytropic exponent of a gas entrapped 
in the bubble, the surface tension of a gas-liquid interface and the amplitude and the frequency of a driving 
ultrasound wave. The diffusion of the gas through the bubble surface is neglected.

In our model oscillations of the bubble are not affected by fluid compressibility, and we can express the 
acoustic power scattered by the bubble into the far-field zone as21

where h ≫ R0 is the distance from the centre of the bubble. The natural frequency of the bubble is21

where fM is the well-known Minnaert frequency36. We use the following fluid parameters corresponding to water 
at 20◦ C: µ = 10−3 kg m/s, σ = 7.25× 10−2 N/m, ρ = 103 kg/m3 and Pv = 2330 Pa. In our computations we 
take the air pressure in a stationary bubble to be P0 = 105 Pa and the polytropic exponent of air to be κ = 4/3
37,38. For mm-sized air bubbles in water the surface tension and viscous terms in parenthesis in Eq. (4) are of 
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the order of 10−4 and 10−9 , respectively. Therefore, both the increase of the bubble natural frequency due to the 
influence of the surface tension and its decrease due to viscous effects can be neglected. The natural frequency 
of a bubble cluster is given by

where Rc is the radius of the bubble cluster and χ is the air fraction in the liquid28. In our experiments, we estab-
lished that √χRc > R0.

Equation (1) was solved numerically using an explicit Runge-Kutta method39 implemented in a standard 
subroutine ode45 in the Octave software. The numerical solution was used to obtain the acoustic scattering 
spectra calculated using Eq. (3). In the solver configurations, the numerical values of the absolute and relative 
error tolerances were set to machine accuracy. However, to identify the main characteristics of nonlinear bubble 
oscillations relevant to the AFC generation, we present an asymptotic analysis of Eq. (1) next.

Firstly, Eq. (1) is re-written in the non-dimensional form, where we use the equilibrium radius R0 and 
t0 = 1/ω∗ as the length and time scales, respectively, to introduce non-dimensional quantities r = R(t)/R0 and 
τ ∗ = ω∗t . Substituting these into Eq. (1), we obtain

where prime denotes differentiation with respect to τ ∗ , M =
P0 − Pv

ρω∗2R2
0

 , W =
2σ

ρω∗2R3
0

 , R =
4µ

ρω∗R2
0

 , 

Me =
α

ρω∗2R2
0

 and K = 3κ . As discussed in Ref.40, parameter M represents elastic properties of the gas and its 

compressibility, W and R can be treated as inverse Weber and Reynolds numbers, characterising the surface 
tension and viscous dissipation effects, respectively, and Me is the measure of the ultrasound forcing. For the 
conditions of our experiment K = 4 and the maximum values of other parameters do not exceed 
M = 1.8× 10−3 , W = 1.8× 10−6 , R = 1.2× 10−5 and Me = 2.1× 10−4 . As shown in Ref.40, the attenuation 
of bubble oscillations due to viscous dissipation is proportional to exp(−Rτ ′/2) and thus is negligible (conse-
quently, we set R = 0 in what follows). This suggests that, in the context of the current study, forced bubble 
oscillations can be assumed perfectly periodic provided that the driving ultrasound frequency is much higher 
than any of the bubble resonance frequencies (see below). This enables us to make an analytic progress by employ-
ing Poincaré–Lindstedt method, which is algebraically simpler than Bogolyubov–Krylov41 or multiple scales42,43 
methods traditionally used to account for various transient processes in bubble dynamics.

We introduce a stretched time variable τ = ωτ ∗ = ωω∗t , where ω is the non-dimensional frequency of non-
linear bubble oscillations that depends on their amplitude. The estimation of physical parameters given above 
suggests that ultrasound forcing applied to a bubble is relatively weak and, subsequently, it is not expected to 
cause large amplitude oscillations of a bubble. Therefore, we look for an asymptotic solution of Eq. (6) in the form

where ǫ is a formal parameter introduced to distinguish between various terms in the asymptotic series (it is to 
be set to unity once the series is developed). We also set W = 0 given that, as estimated above, the influence of 
surface tension in our experimental setup is so weak that it cannot be detected within the measurement accuracy. 
Introducing such a simplification in the mathematical model does not have any effect on the functional form 
of solutions either but makes the expressions for various solution coefficients much shorter and easier to inter-
pret. Choosing ω2

0 = K(M+W)−W = KM , which corresponds to Minnaert frequency given by Eq. (4), 
substituting Eqs. (7) and  (8) into Eq. (6) and collecting terms at various orders of ǫ , we obtain the following 
equations (up to O(ǫ3))

 where dot denotes differentiation with respect to τ and we set (Me/ω
2
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ǫb = (V�)/(ω∗R0) . Then

The solution r1(τ ) is

(5)fc ≈
fM√
χ

R0

Rc
,

(6)rr′′ +
3

2
(r′)2 =

M+W

rK
−M−

W

r
−R

r′

r
+Me sin τ

∗ , r(0) = 1+
R̃0

R0
, r′(0) =

V

ω∗R0
,

(7)r =1+ ǫr1(τ )+ ǫ2r2(τ )+ ǫ3r3(τ )+ . . . ,

(8)ω =ω0 + ǫω1 + ǫ2ω2 + . . . ,

(9)r̈1 + r1 =p sin(�τ),

(10)r̈2 + r2 =
1

2
(1+K)r21 −

3

2
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where D =
p

�2 − 1
 , R1 =

√

a2 + (b+ D�)2 and φ1 = tan−1 a

b+ D�
 . This solution is valid away from the main 

resonance, that is for �  = 1 , which is the case in the considered application since the bubble natural frequency 
is much smaller than that of a driving ultrasound wave and thus � ≫ 1 . In particular, in our experiments 
� ≈ 1/ω0 ≈ 11.6 . The relevant physical conclusion that follows from Eq. (13) is that unless the initial conditions 
are chosen in a very specific way ( a = 0 and b = −Dω ), the leading order bubble response will always contain 
two frequencies: the bubble’s natural frequency and the driving ultrasound frequency. It is conceivable that in 
very careful experiments with a single bubble the excitation of its oscillations at the natural frequency would not 
occur, or they could decay due to dissipation if the observation time is sufficiently long. Then the generation of 
the bubble-based AFC would fail. However, this scenario is improbable when a bubble cluster is used, where 
neighbouring bubbles acoustically interact with each other so that initial conditions a and b for each individual 
bubble remain essentially arbitrary. (Indeed, in our earlier experiments with a single large bubble the number 
of cases, where the oscillations at the natural frequency were not observed, was statistically insignificant and 
AFCs have been always observed in our experiments with bubble clusters.)

The second relevant conclusion that solution Eq. (13) offers is that in the non-resonant conditions, which 
are of interest here, the amplitude of both forced and natural bubble oscillation is proportional to that of the 
driving field. At the same time, the amplitude of forced oscillations is inversely proportional to the square of the 
driving frequency, while that of the natural oscillations to its first power. This offers a practical opportunity of 
controlling the power spectrum of the so-generated AFC by optimising the choice of the (α,ω′) characteristics 
of insonification.

To avoid an aperiodic secular term proportional to τ in the solution of the second-order equation we must 
eliminate the last term in the right-hand side of Eq. (10) by setting ω1 = 0 . Then solving Eq. (10) with r1(τ ) 
given by Eq. (13) we obtain

where

A number of relevant conclusions can be made from the expression for r2 . Firstly, due to the nonlinearity the sec-
ond harmonics of both natural (2) and forcing ( 2� ) frequencies appear in addition to the fundamental harmonics 
(with non-dimensional frequencies 1 and � ) and their amplitudes (coefficients A, B and E) are proportional to 
the squares of the initial conditions and the forcing amplitude. This means that if the forcing and random noise 
in the system are small, the magnitudes of the spectral lines at such double frequencies are smaller than those of 
base frequencies. Secondly, the amplitudes A and B of double natural frequency components decay as �−2 with 
the forcing frequency while the 2� ultraharmonic decays as �−4 , see coefficient E. Therefore, at high-frequency 
forcing the ultraharmonics of forcing decay faster than those of natural frequency and this fact can be used to 
balance the AFC peaks centred at n� , n = 2, 3, . . . . Thirdly, the time average of the bubble radius deviates from 
r = 1 : since K > 1 coefficient C is positively defined reflecting the known fact that a nonlinearly oscillating bubble 
stays in an inflated state for the most of the oscillation period with short-lasting rapid contraction/restoration 
stages. Fourthly, the solution coefficients become singular at forcing frequencies � = 1/2 and 2, which indicates 
the possibility of ultra- and subharmonic resonances when the current solution would break down. This is not 
of a concern in the AFC context though because here � ≫ 1 by design.

The asymptotic expansion procedure can be routinely continued to higher orders revealing the possibility 
of further ultra- and subharmonic resonances at � = n and � = 1/n and amplitude modulations with �± n , 
n = 1, 2, 3, . . . . However, here we do not pursue this any further and only note that the elimination of secular 
terms at order ǫ3 requires that
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This expression demonstrates that in the noisy conditions (when a and/or b are non-zero) the frequency of 
nonlinear bubble oscillations decreases with the square of the initial conditions (the second term in the brackets 
of Eq. (16) is negative), which is a well established fact41–43. However, the application of high-frequency forcing, 
when � ≈ �0 = 1/ω0 and D�2 ≈ p ∼ Me/ω

2
0 , tends to partially compensate for such a noise-induced fre-

quency reduction (the first term in Eq. (16) is positive for large � ). In terms of physical parameters the relative 
variation of the bubble natural oscillation frequency in an ultrasound field in this limit is

 The downshift of natural frequency of the bubble oscillation occurs when the noise level exceeds 
(a, b) � (Me/ω0) , which is ∼ 10−3 in our experiments (i.e. when the deviation of the bubble radius from the 
equilibrium value caused by a random noise exceeds 0.1%). In this case, the frequency upshift due to ultrasound 
forcing is negligible and by measuring the downshift of the bubble’s natural frequency one can use Eq. (17) to 
estimate the average intensity a2 + b2 of natural bubble oscillations.

Finally, we set ε = 1 and write the leading terms in the non-dimensional expression pscat = (Pscath)/(αR0) 
for the acoustic power scattered by a bubble (see Eq. (3)) as

 To interpret the structure of acoustic bubble response more clearly avoiding excessive algebraic detail we consider 
a particular case when noise leads to small expansion of a stationary bubble: 0 < a ≪ 1 , b = 0 . In the limit of 
high-frequency excitation � ≫ 1 , −F ≈ (D/�) ≪ D , G ≈ D and Eq. (18) becomes

For a � 0.1 the values of pscat obtained using Eq. (19) coincide with those computed using a numerical solution 
of the full Eq. (6) within a few per cent. The term involving driving signal sin(�τ) in Eq. (19) represents an 
acoustic bubble response after it is processed using a combination of low- and high-pass filters as is done in our 
experiments. It defines a classical beating pattern that arises on the background of sinusoidal oscillations. (Note 
that in the absence of random noise ( a = b = 0 ) the relative depth of the resulting beating modulation given 
by Me/ω0 is small. However, the condition a = b = 0 cannot be fulfilled in the case of a bubble cluster, which 
means that the beating pattern observed in experiments involving a bubble cluster can be much stronger than 
in the case of a single gas bubble.)

We also note that Eq. (19) is a truncated version of the full expression for the acoustic signal scattered by the 
bubble that only includes terms up to the second harmonics (2τ) and (2�τ) . Yet it captures all main features of 
the acoustic signal structure and shows how AFC is generated around the driving ultrasound frequency � . The 
mechanism of generating AFC around higher harmonics n� , n > 1 is similar and does not need to be discussed 
separately. We only note that it follows from Eq. (19) that the intensity of spectral peaks of the acoustic response 
detected at frequencies n� decreases compared to that at � as Mn−1

e  and the intensity of the nth sideband peak 
is proportional to (an, bn) . In practical terms this means that the overall AFC width determined by the highest 
detectable ultraharmonic frequency n� can be expanded by increasing the amplitude of driving ultrasound waves.

Results
We demonstrate experimentally fundamental physics behind the principle of the AFC generation, which we sug-
gest, by studying a cluster of bubbles created using a bubble generator. The natural frequency of such a cluster is 
smaller than that of constituent bubbles because the cluster effectively behaves as a single bubble of radius Rc > R0 
(see Eq. 5). This physical similarity also enables us to explain experimental findings by conducting numerical 
modelling of nonlinear oscillations of a single equivalent spherical bubble in water, see Methods.
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Figure 2a shows the measured dependence of the scattering spectrum on the increasing amplitude of the 
driving pressure α at the driving frequency f0 = 24.6 kHz. We observe the main features of a frequency comb—
a number of equidistant sideband peaks around the fundamental harmonic frequency f /f0 = 1 marked by the 
dashed lines. The distance between all sideband peaks is 1.67 kHz, which according to Eq. (5) corresponds to 
the natural frequency of a bubble cluster with √χRc = 1.95 mm. The peaks at this natural frequency and its 
higher-order ultraharmonics are also distinguishable and they are marked by the leftmost dashed line in Fig. 2a.

We also observe that the nonlinearly induced higher-order ultraharmonics of the natural response of the 
bubble cluster result in the secondary sideband peaks around f /f0 = 1 . In fact, the sideband peaks adjacent 
to the central peak originate from the natural frequency of the bubble cluster, but the other two are due to the 
interference with the first ultraharmonic of the cluster response at the twice the natural frequency. A qualitatively 
similar sideband peak structure can be seen around f /f0 = 2.

Figure 2b shows the calculated spectra obtained for the experimental values of the frequency and amplitude. 
Consistently with the size of the bubble cluster inferred from the experiment, in the calculation we assume that 
the radius of the single equivalent gas bubble is 1.95 mm (significantly, the calculated spectra are qualitatively 
similar for the bubble radii in the 1–2 mm range). We note an overall good qualitative agreement between the 
experimental and calculated spectra. In experiments, we can clearly see the primary and secondary sidebands 
around f /f0 = 1 . The calculation also predicts the existence of the tertiary sidebands at high values of α . However, 
these are undetectable in our measurements due to their low relative magnitude.

The spectra of the experimental response contain components that are not found in calculations even after 
we remove the random noise floor from raw measured traces. As discussed in section “Methods” we exclude the 
possibility of a significant external noise due to vibrations and interference with high-voltage equipment. Thus 
we relate a slight irregularity of the comb lines to the Doppler effect associated with a translational motion of 
oscillating bubbles in the incident ultrasound field44,45. The size variation of the generated bubbles could also 
contribute to the comb line imperfection. However, we do not consider these deficiencies of initial proof-of-
concept experiments as prohibitive for the following reasons. The position of a single oscillating bubble can be 
stabilised by trapping it in the antinode of an acoustic standing wave field in a resonator46–48. Similar techniques 
can be used to stabilise a cluster of bubbles49, which would significantly reduce the random Doppler distortion of 
acoustic comb spectra. The technical problem with a bubble size variations can also be resolved by using existing 
higher precision mono-disperse bubble generators (albeit more expensive than that currently available to us)50,51.

Interestingly, the tertiary sideband peaks can be seen around f /f0 = 1 at α = 4.3 kPa. More broadly, we note 
a larger magnitude of all experimental peaks at f /f0 = 2 compared to the calculated values. This observation is 
consistent with the fact that a response of a bubble cluster rather than of a single bubble is measured: clusters 
exhibit stronger acoustic nonlinearities31,32 that give rise to more energetic signals at the second harmonic fre-
quency f /f0 = 2.

Figure 2.   (a) Experimental spectra of a cluster of gas bubbles in water insonated with the 24.6 kHz 
sinusoidal signal of increasing pressure amplitude α = 1.15 , 3.75, 4, 4.2, 4.3, 7.5 and 11.5 kPa. The frequency 
axis is normalised with frequency f0 of the driving field. The detectable response frequency resolution is 
�f /f0 = 1.34× 10

−4 . The scattered pressure values (in dB) are shown along the vertical axis with the vertical 
offset of 30 dB between spectra. (b) Calculated spectra of a single gas bubble with 1.95 mm radius at the same 
driving pressure frequency and amplitudes as in the experiment. The vertical offset between individual spectra is 
100 dB. In both panels, the vertical dashed lines mark the peaks at the natural frequency and its ultraharmonics 
(the left parts of the spectra) as well as the frequencies of the sideband peaks around the fundamental and 
second harmonic frequency of the driving signal.
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Figure 3a shows the temporal far-field pressure profile corresponding to f0 = 24.6 kHz (i.e.  f /f0 = 1 ) at 
α = 11.5 kPa, (the top spectrum in Fig. 2a). These profiles were obtained by digitally filtering the measured signal 
using a narrow bandpass filter that was designed so that the central frequency would correspond to 24.6 kHz 
but the filter bandwidth would be wide enough not to cut the sidebands. We observe an amplitude-modulated 
signal with the modulation period close to that of the natural bubble cluster oscillations.

In the temporal profile in Fig. 3a, the amplitude modulation depth (the ratio of the modulation excursions 
to the amplitude of the unmodulated carrier wave) is smaller than 1. In some optical comb technologies, where 
direct photodetection of the optical pulses is used to produce an electronic signal that follows the amplitude 
modulation of the pulse train, low modulation depth could pose challenges for practical realisation1. However, 
this does not present a problem in our case because the frequencies of the electronic signal of AFC coincide with 
the frequencies of the driving pressure wave, which dramatically simplifies the characterisation of the comb.

The experimental time series is in good qualitative agreement with the calculated one shown in Fig. 3b. 
According to the discussion in Methods, the ultrasound energy absorption and scattering by the equivalent bub-
ble are stronger than those by the bubble cluster. Because in the calculation the power of the driving ultrasound 
wave is the same as in the experiment, the oscillations of the equivalent bubble at its natural frequency are less 
energetic. Therefore, their interaction with the driving ultrasound waves should result in a weaker amplitude 
modulation. On the other hand, our asymptotic analysis of Eq. (1) demonstrates that in our model of the equiva-
lent bubble the amplitude modulation also depends on the chosen initial conditions. Indeed, by varying in the 
calculation the initial radius of the bubble within ±5% we could achieve a nearly the same amplitude modulation 
as in the experiment. However, because of a complex interaction between the bubbles within the cluster27,52,53 
and therefore essentially random initial conditions, it is challenging to establish the actual physical mechanism 
responsible for the discrepancy in the amplitude modulation in Fig. 3a,b.

Next we focus on the experimental sideband peak structures at f0 = 49.2 kHz (i.e.  f /f0 = 2 ) at α = 4.3 kPa 
because it has three sidebands on each side. As shown in Fig. 4, the amplitude modulation gives rise to a train of 
pulses with the modulation period close to that of the natural bubble cluster oscillations.

We also note a stronger irregularity of the envelope shape in Fig. 4 compared with the profile in Fig. 3a, where 
a slight irregularity can only be seen in the close-up (inset in Fig. 3a). As discussed above, we attribute this dif-
ference to a translational motion of bubbles in the cluster27,52,53. The analysis of such a translation motion poses 
significant computational and experimental challenges27. However, a theoretical insight can be gained from the 
analysis of a system consisting of just two moving gas bubbles52, where it has been shown that stronger ultrasound 
forcing prevents bubble collision and coalescence thereby increasing the stability of their oscillations. On the 
other hand, similar to a single oscillating bubble54–58, the translational motion in bubble clusters should depend 

Figure 3.   (a) Measured acoustic response of the gas bubble cluster and (b) calculated acoustic response of a 
single equivalent bubble corresponding to a sinusoidal pressure wave with the frequency f0 = 24.6 kHz and 
amplitude α = 11.5 kPa. In the calculation, the initial conditions were set to be R(0) = R0 and ddt R(0) = 0 , see 
Eq. (1). The time between the vertical dashed lines is �T = 1/fnat ≈ 0.6 ms. The insets show the closeup of the 
waveforms and demonstrate the amplitude modulation (see the main text for more details.) Arbitrary pressure 
units are used in both panels to enable the comparison of the experimental and calculated data.
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on the frequency and pressure of the driving wave. Thus, it is plausible to assume that driving the bubble cluster 
at a higher frequency but lower pressure, which is the case in Fig. 4, could compromise the stability of the clus-
ter, which indeed has been predicted in Ref.53. Clearly, any deterioration of the cluster stability would adversely 
affect the coherence of its oscillations, which we believe is the reason for an imperfection of the envelope shape 
in Fig. 4. Admittedly, this effect is unfavourable for the generation of a frequency comb, and its further studies 
would be important from both the fundamental and practical points of view.

Finally, we note that the spectral peak structure of the AFCs demonstrated in this work should be stable with 
respect to the changes in the viscosity, density and surface tension of water due to the variations in the tempera-
ture and other environmental factors such as the salinity of water. Indeed, whereas the material parameters of 
water depend on ambient conditions and affect the natural bubble frequency in principle (see Eq. 4), such an 
influence on mm-size bubbles is negligible as discussed in the Model section.

Discussion
AFC technique is an emerging metrological approach that benefits from technological maturity of optical fre-
quency combs. It opens up opportunities for accurate measurements in various physical, chemical and biological 
systems in situations, where using light poses technical and fundamental limitations, for example, when precise 
underwater distance measurement is required15.

Whereas AFCs are expected to operate similarly to optical combs, there are a number of differences between 
these two techniques associated with the disparate frequencies of acoustic waves and light and mechanisms of 
the interaction of these waves with the medium16. This aspect presents numerous technological challenges that 
shape research efforts in the field1,2. We also note that frequency combs with a flat spectral intensity distribution 
are preferred in a number of applications1,2. In AFCs this has yet to be achieved. Moreover, as shown in refs.14,16, 
AFCs have the smaller number of spectral lines compared with optical combs. This feature has been identified 
as being important for a number of practical applications including phonon lasers59,60 and computing61.

In view of the above, AFCs should be compared with either Brillouin62,63 or opto-electronic combs64 that are 
known to also have a small number of lines and require special techniques for broadening their spectral ranges65. 
The same applies, although to a lesser degree, to Kerr optical combs that are generated using a cascade of optical 
four-wave mixing processes in a photonic microresonator66. Kerr combs may have just ten or so lines due to 
intrinsically low strength of nonlinear-optical effects16,67, which is in stark contrast to conventional optical combs 
based on mode-locked lasers and consisting of hundreds of lines68.

In good agreement with our numerical predictions, our experimental results demonstrate that a signal pro-
duced by gas bubbles oscillating in water has a frequency spectrum composed of equidistant peaks and is 
characterised by amplitude modulation at the bubble cluster natural frequency. These features are similar to 
those of typical optical frequency combs and thus they demonstrate the feasibility of the AFC generation by 
using gas bubble oscillations in a liquid. Although we were able to generate just a few comb lines, we found that 
their structure was similar to that produced in earlier works14. It should suffice for such practical applications as 
phonon lasers59,60 for the realisation of which an acoustic resonator filled with a liquid containing gas bubbles 
acting as the active medium was suggested69. In such a scheme, bubble oscillations have to be self-synchronised 
to resonate at a certain frequency, which can be achieved by appropriately tuning the AFC lines. Moreover, 
some techniques for spectral broadening of optical combs based on nonlinear-optical effects64 can be applied to 
increase the number of lines in a comb based on gas bubble oscillations because of the analogy between nonlinear 
optical and acoustical processes16. For example, as follows from our asymptotic analysis of Eq. (1), the number of 
lines in our AFC and their relative magnitude can be increased by simultaneously decreasing the frequency and 
increasing the pressure of the forcing ultrasound wave. As a result, one can obtain a spectrum where the sideband 
peaks around the fundamental and second harmonic frequency of the driving signal form a continuous comb 

Figure 4.   (a) Measured acoustic bubble cluster response corresponding to a sinusoidal driving pressure wave 
with the frequency f0 = 49.2 kHz (twice the frequency in Fig. 3) and amplitude α = 4.3 kPa. The time between 
the vertical dashed lines is �T = 1/fnat ≈ 0.6 ms.
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structure. However, one should bear in mind that the frequency of the forcing has always to be higher than the 
natural oscillation frequency of the bubble cluster.

The so-generated AFCs should also find an application niche in the fields of underwater distance measure-
ments and communication. However, their wider use is expected to be in the areas of biology and medicine, 
where there is a need for novel types of biomedical sensors. For example, the AFCs suggested here can be used 
to measure elastic properties of some biological tissues and living cells and sensing biochemical processes inside 
them via inducing elastic deformation in the proximity of an oscillating bubble70,71. Such a local mechanical defor-
mation would affect the oscillation dynamics of the bubble72 and lead to detectable modifications of the sideband 
spectral structure of the comb. Thus, it should be possible to use bubbles oscillating in water contaminated with 
pathogens (e.g. bacteria) to obtain information about their presence and concentration that are required for 
choosing an adequate strategy for their removal73 or disinfection74,75.

Our AFCs can also be used to measure the resonance frequency of a bubble of unknown size76,77. Thus far, a 
number of bubble sizing techniques using two-frequency excitation have been employed76,77. There, two beams—
a pump beam of variable frequency and an imaging beam of fixed frequency—are simultaneously used to scan 
across the expected resonance frequency of the bubble and to achieve the coupling between the two signal, when 
the bubble undergoes nonlinear oscillations at resonance. Using a frequency comb generated with just one driving 
wave will extend the capability of this technique because, from the technical point of view, only one ultrasound 
transducer needs to be employed.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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