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Thermal conductivity 
of an ultracold Fermi gas 
in the BCS‑BEC crossover
Hang Zhou & Yongli Ma*

Recent experiments on sound waves in a unitary Fermi gas reveal many transport properties about 
strongly interacting fermions. Sound propagates through the coupling of momentum and heat 
transport, and attenuates strongly with the presence of a phase transition. In this work, focusing 
on the temperature regimes near and below the superfluid critical temperature T

c
 in the BCS-BEC 

crossover, we present a Kubo-based microscopic calculation of thermal conductivity κ , which has 
not attracted much attention compared to the shear viscosity. Our approach primarily addresses 
the contributions of the fermionic quasiparticles to thermal transport and our results return to the 
kinetic descriptions at high temperatures. κ drops upon crossing the pseudogap temperature T∗ , and 
its temperature dependence changes below T

c
 . The drops become more pronounced on the weakly 

coupled BCS side, where the Pauli blocking causes the upturn of κ above T∗ . Our calculations fit well 
with the sound measurement on the damping rate.

Ultracold Fermi gases via Feshbach resonance could undergo a smooth crossover from the Bardeen-Cooper-
Schrieffer (BCS) state of weakly-correlated pairs of fermions to the Bose-Einstein condensation (BEC) of diatomic 
molecules. In the unitary limit, the s-wave scattering length af  diverges. The tunable attractions arouse preformed 
pairs in the normal phase roughly at temperature T∗ , known as the ‘pseudogap state’. The condensation of pairs 
occurs below Tc in the ordered phase. Fermi gas with this highly controllable advantage and clean environment 
provides a model system to study physical properties in condensed matter and nuclear physics1–3.

In the last decade, the viscous transport of unitary Fermi gases has drawn great attention, as it is a nearly 
perfect fluid similar to the quark-gluon plasma4. Measurements and theories have found anomalously small ratios 
of shear viscosity η to entropy density s5–11, which are remarkably close to the conjectured universal lower12 and 
upper bounds13, 1/(4π) � η/s � v2Tτη , with � = kB = 1 throughout the paper, the temperature T, the typical 
velocity scale v and viscous thermalization time τη . These high precision determinations of η could be served as 
key inputs to further transport investigations, such as to deduce the thermal conductivity κ from sound waves14. 
Recent experiments on ultracold Fermi gases have allowed local transport measurements in nearly uniform 
densities15, which enable direct comparison between theory and experiment. Several experiments have explored 
the damping rate of sound waves from the density response function14,16,17, which contains both the contributions 
of momentum and temperature gradients related to the shear and bulk viscosities and thermal conductivity, 
respectively. These experiments show that the unitary Fermi gas shares some universal but not exactly similar 
characteristics with liquid 4He and 3He , by respectively probing the collisonless and hydrodynamic regimes14,16. 
Meanwhile, theoretical works have accessed into the lower temperature regions. The damping rates of the col-
lective excitations near zero temperatures have been studied by considering various damping mechanisms of 
phonons with different curvature of dispersion relation, such as the four-phonons Landau-Khalatnikov process, 
three-phonons Beliaev process and the inelastic process between phonons and fermions18–20. Based on the two-
fluid hydrodynamics, two-sound waves descriptions related to the general transport coefficients have also been 
developed21,22. However, due to the lack of investigations on κ , these predictions in superfluid have to be made 
using the values of κ either from the high-T extrapolation of Boltzmann results22,23 or from the low-T calculations 
by phonons that are also at the kinetic level21,23. A kinetic description of transport coefficients works well with 
long-lived quasiparticle excitations, which in a strongly correlated Fermi gas fails below T∗ with the appearance 
of additional bosonic degrees of freedom that are responsible for the gap structures of excitation spectra2,3. It is 
an urgent task to establish a microscopic calculation of κ in the superfluid and pseudogap states.

Since the condensed pairs do not carry entropy and therefore do not contribute to the thermal transport, κ 
is a well-tailored probe of the low-energy excitation properties in many important superconducting materials. 
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There are various effects in a material that may be sensitive to heat transport, such as the elastic or inelastic 
scatterings among electrons, phonons, impurities or other exotic degrees of freedom. Circumstances are much 
simpler in a clean BCS-BEC crossover scenario, especially in the superfluid phase: the non-condensed Fermi 
pairs together with the unpaired fermions form the thermally excited quasiparticles of the system. Analysis of 
the lifetimes of the two quasiparticles shows that the scattering between fermions is the dominant relaxation 
mechanism of the system11.

In this paper, mainly focusing on the temperatures near and below Tc , we investigate κ from the Kubo formulas 
on current-current correlation functions. Although various versions of t-matrix theories have been considered 
at the normal states24, it is still difficult to calculate the transport coefficients microscopically in the superfluid 
phase. We are based on the microscopic pseudogap theory3, which involves some simplifications by decompos-
ing the self energy into the pseudogap contribution associated with small-momentum pairs and superfluid 
contribution with condensed pairs. This theory has the same asymmetric form of t-matrix approach as the 
mean-field theory, that ensures the agreement of our calculations of κ with the results by Kadanoff and Martin25 
at BCS limit. Meanwhile, the kinetic results26 can be directly derived from our Kubo-based calculations at high 
temperatures. We show drops of κ upon crossing below T∗ , where preformed pairs bring the loss of thermal 
carriers. The fluctuations of these pairs lead to different temperature dependencies around Tc , which become 
non-monotonic near the unitary limit. Below Tc , the estimate of the thermal relaxation rate τ−1 is smaller than 
the characteristic energy scales of the system, which implies that the system is in a weak dissipation region. So 
we combine our results of κ with our previous work on η to obtain the damping rate Ŵ of sound, and the results 
fit well with experiments in collisionless regime.

Results
Kubo formula for the thermal conductivity.  In the BCS-BEC crossover scenario, the two-component 
Fermi gas is described by the Hamiltonian with zero-range interactions

Here ξk = k2/2m− µ is the dispersion measured from the chemical potential µ , m is the atomic mass and 
ĉ†kσ (ĉkσ ) is the fermion creation(annihilation) operator with the pseudospin σ =↑,↓ . g is the bare s-wave interac-
tion strength associated with the tunable scattering length af  , given by 1g = m

4πaf
−

∑

k
m
k2

.
A neutral Fermi atomic system contains particle ( J1 ) and heat ( J2 ) currents, their operators can be expressed 

in terms of the above Hamiltonian as27,28

Under linear response assumption, the currents flow directly proportional to the external forces Xj : 
Ji =

∑2
j=1 LijXj . We take a specific form of concentration gradient X1 = −∇(

µ
T ) and temperature gradient 

X2 = ∇( 1T ) , so that the Onsager relation holds as L12 = L21 . The four coefficients Lij ( i, j = 1, 2 ) are related to 
the general transport coefficients, such as the particle conductivity σN = L11/T  and thermopower 
ς = L12/(TL11) . Thermal conductivity κ is usually defined as J2 = −κ∇T and measured under the condition 
J1 = 0 , which immediately leads to κ = 1

T2

(

L22 −
L12L21
L11

)

29. In the Supplementary Information (SI), we give a 
generalized derivation of the four static coefficients Lij from the corresponding correlation functions within the 
linear response theory,

Here the current-current correlation functions ←→L ij(q,�) can be obtained by the Fourier transform of the 
retarded correlation functions ←→L ij(q, t) = i�(t)�[ji(q, t), jj(−q, 0)]� , where the step function �(t) enforces the 
causality and �· · · � denotes the thermodynamic average. The current operators as well as the correlation functions 
can be associated with the single-particle Green’s function G(k, t) = −i�(t)�[ĉkσ (t), ĉ

†
kσ (0)]� (More details can 

be seen in the Supplementary Information).
In the BCS-BEC crossover, the most commonly used microscopic approaches to get the Green’s functions 

which incorporate pairing fluctuations are the many-body t-matrix theories1. There are at least five kinds of 
alternative t-matrix approaches that can be numerically adopted above Tc

24. However, in the superfluid phase, 
numerical calculations remain a challenge even for equilibrium thermodynamics, and additional approxima-
tions are inevitable when non-equilibrium transport processes are involved. Here, we use a somewhat simplified 
t-matrix theory at low temperatures, which reports the second order superfluid phase transition and is consistent 
with the BCS-Leggett ground state, sometimes known as the ‘pseudogap model’3. We summarize the details in the 
Supplementary Information, and it is worth pointing out here that it captures the essential distinction between 
the excitation gap � and the superconducting order parameter �sc , with �2 = �2

sc +�2
pg . In other words, the 

contributions of the non-condensed pairs are integrated in �pg . Using the same spirit of the approximations in 

(1)Ĥ =
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the correlation functions, and according to25, the effect of the interaction term in the heat current is relatively 
small at low temperatures, the final expressions of the four static coefficients are

with the Fermi distribution f 0(ǫ) = (eǫ/T + 1)−1 and the spectral functions A(k, ǫ)=−2ImG(k, ǫ) and 
Bsc(pg)(k, ǫ)=−2ImFsc(pg)(k, ǫ) . The detailed derivation of the above expressions and the explicit forms of the 
generalized normal and anomalous Green’s functions G(k,ω) and Fsc(pg)(k,ω) can all be seen in the Supplemen-
tary Information. We also evaluate a temperature and interaction dependent damping term associated with the 
finite-lifetime effects of thermally excited carriers (relaxation time τ ) in the SI.

Numerical results and comparison with experiment.  Figure 1 shows the temperature dependence 
of calculated thermal conductivity κ in the BCS-BEC crossover for different ν = (kFaf )

−1 , the dimensionless 
interaction strengths with Fermi momentum kF . The values of Tc and T∗ are different for each ν and they both 
decrease exponentially approaching the BCS limit. In the pseudogap model, Tc is obtained with the condition 
�sc = 0 while T∗ from the condition � = 0 . One should note that this microscopic theory yields different Tc to 
experiments in the crossover regions. For example, at unitary limit it gives Tc ≃ 0.26TF

3 that is larger than the 
experimental value Tc ≃ 0.167TF

30; thus a direct quantitative comparison with experiments should be made 
with caution. Nonetheless, the qualitative trend here is quite intuitive. For each curve, we explicitly mark κ(T∗) 
and κ(Tc) with an asterisk and a triangle, which lie roughly at a drop point and an inflection point, respectively. 
These two points on each curve distinguish three distinct temperature dependencies, which characterize differ-
ent regions of normal, pseudogap and superfluid states.

In the weak coupling BCS regions and above T∗ , our Kubo calculations reduce to the kinetic theory and show 
great consistency with the previous knowledge via the virial expansion that κ grows as ∼ T1/223. For ν � −0.9 , 
there is a local minimum at around (0.2− 0.3)TF due to the Pauli blocking. Below T∗ , κ drops and exhibits 
unexpected maximums right at T∗ , which arise from our approaches for the pseudogap with a nonzero �pg and 
suggest that the formation of pairs reduces the Pauli blocking. As ν approaches the unitary limit, these maximums 
disappear with the increase of T∗ . Similar drops have been reported on shear viscosity both experimentally and 
theoretically8,11,31, and can be understood as the dramatic decrease of effective many-body carrier density7,11,32.

It is worth commenting that the fundamental nature of pseudogap has long been a subject of controversy and 
remains unclear at this time. In condensed matter physics, various kinks have been observed at T∗ for several 
transport coefficients, like the electrical and Hall resistivity, where the pseudogap may be associated with broken 
symmetries. However, in the s-wave system of interest, the preformed pairs gradually appear with decreasing 
temperatures in the normal phase. The questions are yet to be confirmed whether they occur simultaneously with 
the dip structure in the single-particle spectral weight and whether there is a precise definition of T∗ . Therefore, 
if the predicted maximums of κ at the BCS regions are absent in future’s observations, but instead look like the 
monotonous dashed line in Fig. 1, then there may not be a definite onset T∗ at which the pseudogap effects 
occur indeed.

At near zero temperatures, κ decrease to zero for all ν due to the exponential increase in condensed pairs 
that do not transfer heat. Compared to the kinetic results that based on the thermal transport of superfluid 
phonons21,23, our results are considerably higher. In the vicinity of Tc , the curves we compute exhibit inflection 
points, which are due to the greatest contributions of pair fluctuations around the phase transition points, and 

(4)Lij =
−T

3π2m2

∫ ∞

0
dkk4ξ

i+j−2
k

∫ ∞

−∞

dǫ

4π

∂f 0(ǫ)

∂ǫ
[A2(k, ǫ)+ B2sc(k, ǫ)− B2pg (k, ǫ)],

Figure 1.   Thermal conductivity κ of an ultracold Fermi gas, normalized by n and in units of 1/m, as a function 
of T/TF for different ν = (kFaf )

−1 . The asterisks and triangles mark the specific thermal conductivities at T∗ 
and Tc , respectively. The dashed line is a possible estimate when T∗ is not clearly defined (see text).
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also reflect different microscopic properties of the superfluid and pseudogap states. The pair fluctuations are 
significant near the unitary limit ν ≃ 0 , where the curves become non-monotonic.

We present our estimated thermal relaxation rate τ−1 (see the Supplementary Information) in units of the 
Fermi energy EF at the unitary limit in the inset of Fig. 2. τ−1 is usually considered as an energy boundary to 
estimate the collisionless and hydrodynamic domains of excitation modes. Here, we find that it is smaller than 
the characteristic energy scales like µ ∼ 0.4EF and � ∼ 0.6EF

30, especially at low temperatures below Tc . There-
fore, the system is in a weak dissipation region in the superfluid phase, which is also consistent with the studies 
on shear viscosity11,21,22. A very recent experiment on sound waves studies a similar circumstance16. It observes 
excitation modes at frequency ω0 ∼ (0.35− 0.5)EF , which lie in the collisionless regime in superfluid phase and 
the crossover between the hydrodynamic and collisionless regime above Tc . For these excitation modes with 
frequencies slightly deviating from the low-frequency limit, we consider that the hydrodynamic expressions are 
still approximately true. We can thus compare the damping rate Ŵ with experimental data, which can be directly 
measured by density response and includes the contributions of shear viscosity η and thermal conductivity κ at 
unitary, as33

Note that within the pseudogap theory, the dispersion for Goldstone bosons is quadratic in superfluid phase. 
Here we use the same wave vector q = 0.5kF as the measurement. For η , we use our previous calculations which 
fit well with experiments and other theories11, and for the pressure P we use the MIT experimental data30. In 
Fig. 2, our results of Ŵ as a function of T/Tc are in good agreement with the experimental data near and below 
Tc . A quasiparticle random phase approximation (QRPA) calculation based on the collisions between fermions 
is also consistent with our results below Tc , which confirms that the fermionic quasiparticles are the dominant 
thermal excitations below Tc , which could also be mapped to similar cases of weak dissipation. Meanwhile, 
since the pseudogap theory holds that bosonic degrees of freedom contribute approximately in the near-zero 
range of momentum and energy3, the interactions between pairs can be ignored in the collisionless regime with 
a wave vector at q ∼ 0.5kF . Thus our treatment of ignoring the interaction term in the heat current operator is 
reasonable in this case. We can conclude that in the weak dissipation and collisionless regimes, the fermionic 
quasiparticles dominate in the thermal transport.

Our calculations deviate somewhat from the experimental data at higher temperatures above Tc , where the 
system can no longer be described as collisionless and has relatively strong dissipation. At this point, the large-
momentum bosonic excitations play an increasingly important role, making the pseudogap theory less reliable. 
The scattering channel via fermionic and bosonic quasiparticles becomes more and more important11, which 
needs to be taken into account in evaluating the thermal relaxation time τ . It will reduce τ and the damping rate Ŵ.

On the BEC side, our calculations give relatively small values of κ , the details are shown in Fig. 3. We find that 
the curves intersect with different interaction strength at T � 0.3TF ( Tc ≃ 0.25TF , see the black triangles). This 
means that as a function of ν , κ exhibits a minimum at ν ≃ 0.3 above the superfluid phase, as shown in the inset 
of Fig. 3. An anomalous minimum was found in the measurement of η above Tc at ν ≃ 0.2534, which should have 
occurred at the unitary limit12. This minimum shift in η can be understood by higher-order modifications in the 
kinetic theory35. Since the damping rate Ŵ includes both contributions of η and κ , we can predict that there may 
be a minimum on the damping rate Ŵ at the wave vector q ∼ 0.5kF , at the interaction strength ν ∼ (0.2− 0.3) 
on the BEC side.

(5)Ŵ =

(

4η

3mn
+

4κT

15P

)

q2.

Figure 2.   The damping rate Ŵ versus T/Tc at unitary limit. Black solid line is our calculations. Blue circles and 
the cyan dashed line are experimental data and quasiparticle random phase approximation (QRPA) theory, 
respectively, from16. Inset: the thermal relaxation rate τ−1 versus T/Tc.
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Since our calculations are constructed on the essential many-body fermionic natures, it is better not to span 
the boundary ν ≈ 0.5 where the zero-temperature chemical potential µ changes sign that signals the disappearing 
of the underlying Fermi surface and the Fermi statistics. Afterwards the system enters the two-body molecular 
regime where the dominant damping mechanism becomes the bosonic excitations and the thermal conductivi-
ties are expected as the almost Bose results26,36.

Discussion
In summary, we have given a Kubo-based calculation for the thermal conductivity of an ultracold Fermi gas 
across the BCS-BEC crossover. Based on the pseudogap theory, our calculation addresses into the superfluid 
phase, which gives higher results of κ than the kinetic calculations based on phonons. At high temperatures our 
expression of κ reduces automatically to the Boltzmann results. We consider primarily the fermionic contribu-
tions to the thermal transport, which may be the dominant thermal carriers in the weak dissipation regions 
where the relaxation rate of the system is relatively smaller than the characteristic energy scales. The intrinsic 
physical mechanism is similar to the sound modes in the collisionless dynamic regime, and our results fit well 
with a recent measurement on the damping rate that contains the thermal and viscous contributions.

Our Kubo approach interpolates smoothly from the weakly dissipated low and high temperatures into the 
strongly dissipated pseudogap states where the relaxation rate is comparable to the characteristic energy scales 
of the system. The strong pairing fluctuations reduce the thermal fermionic quasiparticles and cause the thermal 
conductivity curve to have different temperature dependencies in different microscopic states. In these strongly 
dissipated regions, since the scattering between fermions is no longer the only major relaxation mechanism, more 
efforts can be done to incorporate other scattering channels in the future. Moreover, the interactions between 
pairs may need to be taken into account to obtain a complete description of thermal transport, which means 
to introduce an extra vertex correction term in the correlation functions37. A nearly simultaneous study using 
the Luttinger-Ward approach investigates κ in the normal phase, which finds that the bosonic correlations are 
important near unitary limit above Tc

28.
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