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Phonon mode potential and its 
contribution to anharmonism
Paweł T. Jochym1*, Jan Łażewski1 & Wojciech Szuszkiewicz2,3

We present systematic ab-initio study on the phonon mode potential as a source of anharmonicity 
in the crystal. As an example, the transverse optical (TO) mode potential in PbTe has been fitted to 
density-functional-theory calculated energies of phonons excited with different amplitudes of mode 
displacements. The corresponding equation of motion has been analytically and numerically solved in 
1D and 2D space, respectively. The solution is used for constructing the ensemble of 10,000 systems 
with potential and kinetic energies selected according to the thermal equilibrium distributions. The 
velocity auto-correlation function derived from the computed trajectories is then used to calculate the 
profile of the phonon spectrum for the TO an LA modes at three temperatures of 100, 300, and 600 K. 
This technique allows for determination of the contribution of non-quadratic potential of the phonon 
mode to the anharmonicity in the crystal and its effect on the phonon spectrum.

Anharmonicity in crystals is often understood as any deviation from the harmonic behaviour, regardless of 
its origin. The root cause of arising discrepancy can be generally identified with a non-quadratic shape of the 
vibrational mode potential (e.g. due to geometry of the bonding) or with some additional interactions between 
lattice vibration modes and other degrees of freedom in the crystal (e.g. other modes, magnons, electronic 
excitations). The classical harmonic theory1, while very successful, has its limitations. Namely, it is fundamen-
tally unable to properly describe important phenomena rooted in phonon-phonon interactions (e.g. thermal 
equilibrium, thermal expansion or thermal conductivity, phase transitions and many others). In some cases, 
where the anharmonicity can be encapsulated into small corrections to the harmonic model, the description 
can be successfully extended to include some of the mentioned phenomena (e.g. thermal expansion2). Even 
phenomena connected with strong anharmonicity (e.g. phase transition) can be modelled, to some extent, using 
this approach3–5. However, such extended models are usually not general and have limited applicability to cases, 
where the anharmonic behaviour is strongly pronounced. In general, the harmonic model is applicable only when 
normal modes in the crystal are independent or weakly interacting with other degrees of freedom. Whereas in 
cases where normal modes are strongly interacting and/or exhibit significantly non-quadratic potential, the use 
of harmonic approximation, even extended with some corrections, becomes questionable.

These more difficult cases have been the subject of extensive research6–17 which has led to the development of 
a number of methods designed to deal with strong anharmonicity—e.g. with anharmonicity presumably present 
in the transverse optical (TO) mode of vibrations of the PbTe crystal18. These methods range from some form of 
corrections or additions to the harmonic model19–26 to building full anharmonic model for the crystal27–32 using 
either ab-initio (Density Functional Theory—DFT) based molecular dynamics as a source of the data for the 
model31,33,34 or some form of alternative approach7,19,22,24,26. Works mentioned above try to explain anomalous 
features of the PbTe spectrum by various aspects of anharmonicity in the PbTe crystal. However, they do not 
address explicitly the issue of supposed large anharmonicity of the TO mode itself18 and its influence on the whole 
phonon spectrum of the PbTe crystal. Our work aims to fill this gap in understanding of phonon properties of 
this material and possibly elucidate the role of mode potential in anharmonic lattice dynamics of other crystals.

Potential energy of the crystal can be described as a Taylor’s expansion with respect to the atomic displacement 
( u ) around the equilibrium configuration (i.e. uαi = 0 , where i numbers atoms in the lattice and contains together 
indexes inside the primitive unit cell and lattice indexes of the unit cell in the crystal, while Greek letters α,β . . . 
number x, y, z directions). This formula can be expressed as a sum of consecutive orders of approximation35:
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where nth rank tensors � αβγ ...

nijk...  are nth derivatives of potential energy with respect to displacements uαi , u
β
j . . . , 

respectively. In harmonic approximation1, only the quadratic term is taken into account, which is equivalent to 
the small displacements approximation in the classical theory of oscillators. It is clear that limiting the expansion 
to quadratic terms, greatly simplifies the model and reduces number of free parameters. A further consequence 
of this assumption is linear independence of phonon modes, described by polarization vectors which form an 
orthonormal basis set.

It may be considered surprising that using harmonic models with non-interacting degrees of freedom, which 
when excited cannot reach thermal equilibrium, one can obtain quite a good agreement of calculated dynamical 
and thermodynamic properties with experimental data36–38. On the other hand, considering higher order terms 
in Eq. 1 allows for inclusion of multi-phonon interactions20,28,29 and introduces finite lifetime of the atomic vibra-
tions manifesting in the broadening of phonon lines. In several papers published in recent years18,39 it is claimed 
that the strong, even gigantic, anharmonicity of the PbTe TO phonon mode near the zone center18 or strong 
anharmonic components in the inter-atomic potential39 lead to anomalous behavior of the transverse optical 
mode near the Brillouin zone center. Therefore, our main motivation to undertake present study was clarifica-
tion to what extent anharmonism of the system, especially the shape and broadening of the phonon peaks, can 
be associated with characteristic features of the mode potential of this particular vibration. In other words, we 
will try to isolate the part of anharmonism originating from non-quadratic energy profile of the single phonon 
mode. We are building our case on few important assumptions. We need to assume that the anharmonicity in the 
system is small enough for the concept of isolated normal modes to be still valid. Furthermore, the mode poten-
tial should not depend strongly on other modes in the crystal (i.e. the normal modes are mostly independent). 
The last assumption is that the mode potential energy surface derived from DFT captures all essential processes 
determining vibrations of the lattice. It is clear that some effects are beyond this approximation—e.g. dynamical 
processes responsible for van der Waals interactions. However, their impact are usually small enough to justify 
the presented approach and we believe that they are not important in our particular case. As the issue of “strongly 
anharmonic mode” was previously observed and widely discussed on the example of the PbTe TO mode, we fol-
lowed this lead and limited our study to that specific case. For comparison we included also longitudinal acoustic 
(LA) mode, which is far more harmonic (i.e. has potential which is closer to quadratic).

Lead tellurate has exceptional thermoelectric properties (low thermal conductivity) suspected to be tied with 
anharmonic lattice dynamics, mainly with unusual behavior of the TO mode near the Brillouin zone center. The 
atomic displacements associated with that mode are schematically presented in Fig. 1. PbTe has a very simple 
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Figure 1.   PbTe crystallographic (conventional) unit cell with TO mode polarization vector at the Ŵ point 
(Brillouin zone center) visualized using green arrows. The gray and orange spheres depicted Pb and Te atoms, 
respectively.
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rock salt crystal structure with high-symmetry cubic crystallographic unit cell which is easy for calculations. 
Additionally, a wide experimental database on its dynamical and thermodynamical properties, provides data 
for analysis and verification11,13,33,34,40–42.

Our paper is organized as follows: first we explain the calculation methods used in our work, next section 
contains main results with standard harmonic calculation in first subsection and detailed analysis of 1D and 2D 
mode potential in second subsection. We finish with discussion and conclusions in the last section.

Calculation details
The basic property of a harmonic oscillator is the independence of its frequency from the amplitude of oscilla-
tions. Using so called direct method29,43 one can calculate phonon dispersion relations in harmonic approxima-
tion displacing all non-equivalent atoms in the structure in all symmetry independent directions, one at the time. 
Each displacement results in forces on all atoms in the system, which, in total, uniquely define force constants 
describing interaction in the crystal. Fourier transform of force constants defines dynamical matrix, which after 
diagonalization gives harmonic phonon frequencies as eigenvalues and polarization vectors as eigenvectors. If 
some normal mode of the crystal has a potential energy curve which is not strictly quadratic, the non-quadratic 
terms will show up as additional, non-linear terms in restoring forces for the mode and will lead to changes of 
the frequency with the amplitude of vibrations. Since direct method of phonon calculation is based on deriving 
frequencies of the normal modes directly from restoring forces, we can extract this information by calculating 
phonon dispersion relations for different amplitudes of displacement. Any changes in the mode frequency will 
indicate anharmonicity, or non-quadratic shape, of the mode potential.

For the ab initio calculation of the forces and energies we have used Density Functional Theory method as 
implemented in Vienna Ab Initio Simulation Package (VASP)44,45. The crystal structure was represented by a 2 ×
2× 2 supercell (constructed from the cubic crystallographic unit cell, depicted in Fig. 1) containing 64-atoms. 
The optimised lattice parameter, a = 6.557 Å, matches well the experimental value of 6.46 Å. The exchange-
correlation potential used PAW-PBE parametrization and atomic data sets46–49. The plane wave basis was limited 
to 300 eV energy cutoff. The reciprocal space integration was done over 4 ×4× 4 k-point grid generated with Monk-
horst-Pack scheme50. The energy convergence criterion for electronic structure calculation was set at 10−8 eV.

Phonon frequencies versus amplitudes.  We started our study from standard phonon dispersion rela-
tions calculation29,43 based on single atom displacements equal to the self-consistent mean square displacements 
(see Table 1) corresponding to three different temperatures: 0, 300, and 1500 K.

The results are presented in Fig. 2. The smallest displacement has been selected to be as close as possible to the 
small-vibrations regime, while keeping the force calculations accurate enough for mode frequency derivation. 
The other displacements are chosen to be rather large to enhance and clearly indicate any anharmonicity in the 
system. The dispersion curves in Fig. 2 show that any substantial anharmonicity connected with the shape of 
the potential energy surface seems to be mostly confined to the optical modes, particularly transverse optical 
(TO) mode. The acoustic modes stay almost constant over the whole range of amplitudes despite the fact that 
displacements corresponding to T = 1500 K (c.f. Table 1) substantially deform the crystal. The above result is only 
a qualitative one—we cannot learn much about the shape of the potential and the scale of anharmonicity, we can 
just detect which branches move with changing displacement amplitude and so break harmonic approximation 
role. To learn more we need to investigate the energy surface of the mode in more detail. From this point on we 
will concentrate on the TO mode at the Brillouin zone center—as the apparent anharmonicity of this vibration 
is the largest (see Fig. 2) and where the claimed gigantic anharmonic effect18 is linked with this mode.
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Figure 2.   Phonon dispersion relations along Ŵ –X direction calculated with density functional theory and direct 
method29,43 using single-atom displacements equal to mean square displacements at 0, 300, and 1500 K (see 
Table 1). The points correspond to neutron measurements at 296 K40.
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TO mode potential.  To reconstruct the shape of mode potential for the TO mode at the Ŵ point we have 
performed a series of DFT calculations for structures modulated by the TO mode and plotted the resulting ener-
gies, relative to the energy of the equilibrium configuration, as a function of mode amplitude (Fig. 3, top panel).

The residuals of the quadratic ( 2nd order) and quartic ( 4th order) polynomial fits to the DFT data (Fig. 3, 
top panel) clearly indicate that the simple quadratic (harmonic) function is not sufficient to properly reproduce 
the shape of the mode potential, while the fourth order polynomial provides a much better model of the DFT 
data points. The corresponding RMS errors of both fits are 726 μeV/primitive unit cell (p.u.c.) and 10 μeV/p.u.c., 
respectively.

In crystals the anharmonic component may take various forms. In many materials (e.g. ScF2 , TiO2
51,52) one 

or more of vibration modes is characterized by a strongly anharmonic potential of the general form of quartic 
oscillator potential for the normal mode coordinate q:

Our preliminary conclusion, based on the results of the phonon mode potential calculation above (Fig. 3), is 
that the one dimensional potential of the TO mode in PbTe resembles a fourth order polynomial of the quartic 
potential (Eq. 2) with sufficient accuracy. The results in Fig. 3 show substantial divergence of the energy sur-
face from quadratic behaviour and good quality of quartic fit to the DFT data. The equation of motion for this 
potential can be solved analytically and the result can be further analyzed to obtain experimentally verifiable 
properties: mode frequency as a function of temperature, thermal displacements, line profile etc. The deriva-
tion of the analytic solution is provided in the auxiliary materials to this work. Unfortunately, the TO mode in 
PbTe at the zone center and along Ŵ –X direction is a doubly degenerate mode. Thus, the full mode potential is 
a function of two normal coordinates V(q1, q2) and, in general case, cannot be separated into product or sum 
of two one-dimensional functions. The analytic solution may still be used for preliminary studies limited to 
one dimensional cuts of the energy surface (e.g. along the q1 or q1 + q2 axis), but in cases, where the potential 
does not allow for its use, the procedure can still be carried out, however with higher computational cost, using 
numerical integration of the equation of motion.

The numerical derivation of the solution requires careful definition of all the dimensional parameters in the 
formulas to provide physically meaningful results. Particularly, the normal coordinates ( q1, q2 ) and potential 
parameters ( ω, � ). In harmonic approximation the units of normal coordinates are less important in practice, 
since the vibration frequency does not depend on the amplitude of oscillations. In the anharmonic case the 
amplitude cannot be eliminated from the solution.

The coordinates qn of the normal mode n of harmonic crystal are related to the reduced Cartesian displace-
ments √mi ui(t = 0) of the ith atom in the primitive unit cell by the formula1:

(2)V(q) =
ω2

2
q2 +

�

4
q4.

Table 1.   Self-consistently calculated mean square displacements for Pb and Te atoms in 0 K, 300 K, and 
1500 K.
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0 0.043 0.043

300 0.149 0.126

1500 0.276 0.246
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Figure 3.   Potential of the TO mode at the Ŵ point. The lines represent quadratic and quartic (fourth order) 
polynomial fits to the DFT data points. The residuals of the fits (bottom panel) indicate that the quartic fit is 
preferable.
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where eαni is an ith component of the nth normal mode polarization vector in direction α = x, y, z ; and mi is the 
mass of the ith atom. Note that in normal coordinates qn the mass of the oscillator is absorbed into the coordinates 
and thus final energy formula for quartic oscillator (Eq. 2) lacks the mass coefficient in the quadratic term. Note 
also that the unit of normal coordinate is [length ·

√
mass] (e.g. Å 

√
amu in our case).

The potential energy of the TO mode in the Fm3̄m crystal like PbTe could be expressed in terms of normal 
coordinates q1 , q2 . Furthermore, the symmetry constrains and Landau’s theory of phase transitions impose that 
the mode potential must be expressed in terms of two symmetry invariants:

Thus, general expansion of the potential to the Nth order in i3, i6 reads:

We will limit the expansion to the sixth order:

since the higher order terms did not provide any improvements in modeling of the calculated energy surface 
above numerical accuracy of the data points. Further analysis requires calculation of the energy surface of the 
TO mode at various amplitudes (i.e. values of the qi coordinates) and fitting of the al,n coefficients of the model 
potential.

The calculation of the mode energy surface follows the same basic phonon scheme used above for the one 
dimensional case and involved calculation of the polarization vector for the mode and imposing the correspond-
ing displacements of various amplitude onto the structure. The energy difference induced by the modulation 
of the structure has been calculated for a set of normal coordinates ( q1, q2 ) on the regular 31× 31 grid for mode 
coordinates |qi| ≤ 11.3Å

√
amu (approx. 3σ of the position distribution variance at T = 700 K). The model poten-

tial (Eq. 4) was fitted to the data points using standard Levenberg-Marquardt curve-fitting implemented in SciPy 
library53,54. The RMS error of the fit was 3.02 μeV/p.u.c.—which we consider to be a very good representation of 
the calculated data points (see Fig. 4).

The representation of the mode potential obtained in this way has been used to construct the equation of 
motion of the mode. This equation was integrated for given initial conditions using standard lsoda55 algorithm 
from the odepack56 library. The sample trajectories obtained with this procedure are presented in Fig. 5.

The trajectory of the system for one set of initial conditions is not enough to obtain such properties as spectral 
line shape of the mode for the system at given temperature. The real system contains many oscillators following 
different trajectories and interacting with each other. Our model does not include direct interactions of oscilla-
tors, as we have assumed that the interactions are small enough to justify the separate normal-modes approxima-
tion. The direct consequence of such assumption is that we obtain intrinsic mode parameters (e.g. line shape) 
stemming from the shape of the mode potential energy surface and energy distribution in the system. Thus, we 
model the crystal by the ensemble of oscillators with the kinetic energy following the Boltzmann distribution for 
given temperature. The simulation procedure involved generating the initial state ( q1, q2, q̇1, q̇2 ) with positions 
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(Å

√
am

u)

−15

−10

−5

0

5

10

15

F
it
er
ro
r
(µ
eV

/p
.u
.c
.)
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and velocities distributed according to the normal distribution with variance adjusted to the value giving mean 
potential and kinetic energy equal to kBT/2 per degree of freedom. The procedure was designed in this way to 
generate a set of configurations sampling thermal equilibrium state.

Results and discussion
We have used an ensemble of 104 oscillators, each followed along 30 ps long trajectory (with time step dt = 3
fs). The final distribution of kinetic energy was measured to correspond to target temperatures of T = 100, 300, 
and 600 K with the accuracy of ±15 K. The final probability density of position (Fig. 6) and velocity (Fig. 7) in 
the whole ensemble turned out to be adequately close to the target shapes—i.e. Gaussian distribution around 
equilibrium for position and Rayleigh (i.e. 2D Maxwell–Boltzmann) distribution for velocity—indicating that 
we have a good approximation of ensemble in thermodynamic equilibrium. For each trajectory the spectrum 
of velocity auto-correlation function has been calculated and averaged over the whole ensemble. The resulting 
spectral lines are presented in Fig. 8 together with fitted asymmetric line profiles57. The experimentally observed 
frequency of the TO mode is 0.93 THz40, which corresponds well with calculated energies in Fig. 8. Calculated 
profiles correctly mimic expected characteristic changes with temperature. The frequency of the mode and its 
FWHM significantly increases, while relative intensity decreases to conserve the area under profile. The rise of 
TO mode frequency corresponds well to predictions obtained from harmonic calculations presented in Fig. 2. 
Nevertheless, the calculated intrinsic line width of the TO mode, which stems from the variability of the mode 
frequency with oscillation amplitude, noticeably underestimates the experimental findings and can be compared 
with typical experimental resolution reported in literature. This result can be easily understood since presented 
profiles do not include any contribution originating from phonon-phonon interactions and represent exclusively 

Figure 5.   Sample of trajectories of the TO mode at the Ŵ point, vibrating in the fitted V6 potential (Eq. 4) at 
temperature T = 600 K.
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√
amu)

−10

−5

0

5

10

q 2
(Å
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pure effect of higher than quadratic terms in mode potential. It is worth noting that separation of such contribu-
tions is unavailable with any experimental technique and can be examined only with theoretical study.

On the other hand, one should keep in mind, that presented description of anharmonism is specific to the 
investigated system and neglects phonon-phonon interactions by design. The apparent inability to reconstruct 
so called “waterfall” effect in this approach indicates that these neglected interactions play significant role in 
creating this phenomenon and that it should not be ascribed to the anharmonicity of the TO mode itself.

The remaining possible sources of the broad and anomalous line shape of the TO mode (not covered in 
the DFT calculations presented above) include mainly changes in the local potential due to the normal mode 
interactions7,22, possible ferroelectric effects like micro-domains breaking local symmetry of the crystal and 
coupling to the TO mode8,16,31,34,41, multi-phonon interactions21,32, electron-phonon interactions17 or even pho-
non-strain coupling15. Finally we cannot also exclude possible dynamical effects not reproduced by the static 
(by definition) DFT calculation.

LA mode profile.  To validate our procedure in different case we have repeated above calculations for much 
more harmonic longitudinal-acoustic (LA) mode at two different points of the Brillouin zone. It is clearly vis-
ible from Fig. 2 that frequency changes generated by increasing atom displacement are one order of magnitude 
lower for LA than for TO mode. Also, fitting similar to that presented in Fig. 3 for TO mode leads to the small 
RMS error of the quadratic order (0.9 μeV/p.u.c.), while RMS error for quartic order potential is 0.01 μeV/p.u.c. 
which is close to the limit of the DFT energy convergence. The full spectral line calculations, presented in Fig. 9, 
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further confirm expected high level of harmonicity of this mode, since the calculated intrinsic line widths are 
below 10 GHz.

The stark difference between profiles obtained for the TO (Fig. 8) and LA (Fig. 9) modes demonstrate the 
ability of the presented approach to extract the contribution from the mode anharmonicity to the shape of the 
phonon spectrum.

Conclusions
The first-principle calculations presented above have demonstrated substantial dependence of TO phonon fre-
quency on mode amplitude which is the marker of anharmonicity of the system. The shape of the mode potential 
at the center of the Brillouin zone has been mapped using single-point total energy calculations and fitted with 
sixth order polynomial function. Significant non-quadratic component of the obtained fit has confirmed anhar-
monic character of the phonon TO mode. In the next step an effective method to solve both 1D as well as 2D 
equation of motion and to derive phonon profile for the non-quadratic mode potential have been introduced. 
Obtained broadening of the TO phonon mode resulting from the change of the mode frequency with energy 
represents significant fraction of the experimental value, but does not reproduce observed TO line profile. This 
result does not support hypothesis that the anomalous line shape at the vicinity of the Brillouin zone center is 
caused by the anharmonicity of the singular mode potential18. On the other hand, the mode frequencies calcu-
lated, using the same DFT procedure, in the presence of all other modes show strong variations with the ampli-
tude of the atomic displacement. This result points to the conclusion that in this case the basic assumption of the 
harmonic approximation—the independence of normal modes—breaks down. Furthermore, this phenomenon 
may manifest itself in dramatic and somewhat unexpected way, and is probably not limited to the case of PbTe 
crystal (e.g. PbSe31) or even to the family of similar compounds. This observation may be also used as additional 
validation of some form of ensemble sampling27,31 as a method of investigation of anharmonic effects using 
lattice dynamics. On the flip side, we see this result as an indicator that the methods based on single-atom or 
other non-physical displacements may be unable to capture essential parts of the lattice dynamics in such cases.

Presented arguments prompt us to the additional conclusion that, especially in the PbTe case, anharmonism 
of the system as a global feature should be rather associated with phonon-phonon interactions than with the 
particular mode and the shape of its potential.
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