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Entanglement and entropy 
squeezing in the system of two 
qubits interacting with a two‑mode 
field in the context of power low 
potentials
E. M. Khalil1,2, K. Berrada3,4*, S. Abdel‑Khalek1,5, A. Al‑Barakaty6 & J. Peřina7

We study the dynamics of two non-stationary qubits, allowing for dipole-dipole and Ising-like 
interplays between them, coupled to quantized fields in the framework of two-mode pair coherent 
states of power-low potentials. We focus on three particular cases of the coherent states through 
the exponent parameter taken infinite square, triangular and harmonic potential wells. We examine 
the possible effects of such features on the evolution of some quantities of current interest, such as 
population inversion, entanglement among subsystems and squeezing entropy. We show how these 
quantities can be affected by the qubit-qubit interaction and exponent parameter during the time 
evolution for both cases of stationary and non-stationary qubits. The obtained results suggest insights 
about the capability of quantum systems composed of nonstationary qubits to maintain resources in 
comparison with stationary qubits.

Atom–photon interactions offer a practical way to manipulate and generate quantum entanglement, coherence 
and squeezing. The two-level atom inside a cavity field is the simplest case of the atom–photon interaction, 
described by the famous Jaynes–Cummings model (JCM)1. Since its introduction, the model has received great 
attention in the fields of quantum optics and laser physics for both experimental and theoretical studies2–15, 
and this interest is partly due to its apparent simplicity and, most importantly, to its remarkable predictions 
about the dynamical characteristics of subsystems. This model has come to be an inspiration for a wide range 
of generalizations inextricably linked to more general situations with realistic circumstances. Most of them 
concentrated mainly on multiple photon transformations and multiple fields16,17, noninteracting or interacting 
of a set of atoms in the same cavity18,19, described by the famous Tavis–Cummings model (TCM)20. In recent 
years, heightened interest has been paid to decoherence and quantum entanglement properties of light-matter 
interaction models ‘for bipartite and multipartite systems interacted with a cavity field and also with each other 
through dipole-dipole and Ising-like interactions21–23. In this regard, an important application focused on the 
resonant two-qubit JCM has been considered with the aim of excusing quantum protocols for clear Bell state 
differentiation of two qubits24.

One of the principal aspects of quantum physics is the quantum entanglement between two spatially separated 
objects sharing a common non-local wave function. Recently, entanglement, as a physical resource, is used to 
implement various tasks in information processing, communication and quantum computing25–27, including the 
information entropy27,28, the behavior of charge oscillations29, quantum cryptography30, etc. Several efforts have 
been carried out to quantify the entanglement between atoms and fields. Entanglement between photons and 
qubits has so far been exclusively studied at optical frequencies with single atoms31 and electron spins32,33, to inter-
face stationary and flying qubits34, to implement quantum communication35 and to realize nodes for quantum 
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repeaters36 and networks37. Advance rapid in the development of quantum superconducting circuit based on 
measuring quantum correlations between artificial atoms and itinerant photons has been considered38–42.

The concept of squeezed states has been widely examined for various radiation field schemes. Squeezing 
in a quantized electromagnetic field has received considerable attention and provided intriguing works in the 
literature43. This concept has expanded to atomic systems with analogous definitions of radiation fields44–47. The 
atom-photon interaction was used to determine the condition in which the squeezing effect would be present48. 
The aspect of atomic squeezing in a three-level atoms placed in a two-mode cavity is analyzed in the presence the 
dipole-dipole interaction49. The squeezed atomic model was considered on the basis of Raman scattering with 
a strong laser pulse to describe the transfer of the change in correlation between the atom and light50. The effect 
of the squeezing in the cases of nonlinear and optimal spin states was studied51–53. In addition, the experimental 
implementation for a set of V-type atoms was considered54,55. In all these cases, the atomic squeezing has been 
investigated in the context of the Heisenberg uncertainty relation (HUR). However, HUR cannot provide enough 
information on atomic squeezing, especially when the atomic inversion takes zero value56. This difficulty was 
overcome by applying the entropy uncertainty relationship (EUR)57.

This work is in keeping with the aforementioned spirit of putting forward another extension of the TCM, that 
is, an interactive version of it for the description of two identical nonstationary qubits. The qubits interact with 
each other via dipole-dipole and Ising-like interaction and with two-mode quantized field in the framework of 
pair coherent states of power-low potentials (PCSPLPs). The interaction characteristics of the proposed model is 
that the interaction between the qubit system and the field is considered to be a time-dependent function and the 
said field is associated with PLPs that provide energy differences. It is worth commenting that the set of results 
reported here, regarding the aforesaid nonlinear coupling scheme, may also be of some relevance in the light of 
novel experimental and theoretical research on optical simulation of the Tavis Cummings and Rabi models in 
current designs of architectures intended for quantum computation and communication. Motivated by these 
considerations, we strive to comprehend how the time-dependent coupling and exponent parameter influence 
the dynamics of qubits-fields entanglement, qubit-qubit entanglement and qubit squeezing in the presence of 
the dipole-dipole and Ising-like interaction.

The content of the manuscript is the following. In “Physical model”, the Hamiltonian system and general 
solution for a two-qubit system coupled to PCSPLPs with dipole-dipole and Ising interactions are introduced. 
“Measures and numerical results”, we present the numerical results of the possible effects of such features on the 
evolution of some quantities of current interest, such as population inversion, entanglement among subsystems 
and squeezing entropy. In “Conclusion”, some conclusions are given.

Physical model
Let the Hamiltonian model of the system under study be described as follows:

where the constituent Hamiltonians are explicitly given by

here, HF and HA describe the energy operators of the two-mode field and qubits, respectively, the interplay 
between the qubit system and the quantized field is prescribed by HAF , and HAI is the qubit-qubit interaction. 
The single field mode frequency is ωL , �L is the qubit transition frequency, �(t) is the time-dependent coupling 
term, which is considered to be the same for both qubits, and �D and �S are the dipole-dipole and Ising param-
eters, respectively. The photon number operators n̂A = â†â and n̂B = b̂†b̂ where â† ( ̂b† ) and â ( ̂b ) are, respectively, 
the photon creation and annihilation operators for the field mode A (B) such that [X̂, X̂†] = Î ( X = a, b ), and, 
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Large varieties of quantum systems can be described by PLPs58–62 through a convenient choice of the expo-
nent parameter denoted by ℓ . This parameter dictates and characterizes the level energy differences. For ℓ > 2 , 
the level energy differences �En decrease with energy level n, but inversely so for ℓ < 2 . For ℓ = 2 , all �En are 
independent of n, the energy levels being equally spaced. Here, we introduce quantized fields for which the 
potentials and their corresponding energies are given by63
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where U0(a) defines the dimension of energy (length).
Let the initial state is in a way such that the qubits are both in their corresponding excited state, | + +� , and 

the radiation field in two-mode PCSPLPs, |z, ℓ, q�,

with the following correspondence63,64

where

For the initial considerations, we work out that the wave function |ψ(t)� takes the form
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, υ(0, ℓ) = 1.
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Figure 1.   Dynamics of the population inversion as a function of time ǫt with z = 8 and q = 4 for the case of 
�D = �S = 0 . (a,c,e)  correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to nonstationary qubits 
�(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, (c,d) correspond to 
triangular potential, and (e,f) for infinite well potential.
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So, it follows straightforwardly from the Schrödinger equation that the time-dependent coefficients can be deter-
mined and tackled this problem entails by numerical solution of the system of differential equations

where

with

The density matrix of the two-qubit system can be obtained by taking the trace over the radiation field

and for a single qubit system
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Figure 2.   Dynamics of the population inversion as a function of time ǫt with z = 8 and q = 4 for the case 
of �S − �D = 2.5− 0.5 = 2 . (a,c,e) correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to 
nonstationary qubits �(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, 
(c,d) correspond to triangular potential, and (e,f) for infinite well potential.
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Based on the set of results, we are able to examine the influence of the PCSPLP, considering the case of an infi-
nite square-well ( ℓ → ∞ , ϕ = 4 ) potential, triangular well ( ℓ = 1 , ϕ = 3 ), harmonic oscillator ( ℓ = 2 , ϕ = 2 ), 
and time-dependent coupling on some properties of physical interest relating to the time evolution of qubit 
systems in the presence dipole–dipole and Ising-like interaction, such as the population inversion, qubits-field 
entanglement, qubit–qubit entanglement dynamics based on the negativity features and qubit squeezing with 
the help of the HUR.

Measures and numerical results
Population inversion.  Now we are ready to consider the population inversion and discuss the behavior of 
the phenomena of collapses and revivals of the system Hamiltonian (1). It is known that the mathematical for-
mula of population is the difference between the probability of finding the particle in excited and ground states. 
The population inversion W(t) of the qubits is given by

In Fig. 1 the behavior of the function W(t) is drawn with fixed parameters z = 8 and q = 4. For harmonic oscilla-
tor ( ℓ = 2 ), neglecting the motion, we find that the function W(t) ranges between −1 and 1 around the horizontal 
axis. The collapse periods at nπ2  while the revivals at nπ . We also note that there are oscillations having a small 
amplitude between periods of collapse, as observed by the Fig. 1a. After taking time dependence into account, 
we notice that the periods of collapse extend to double, whereas we find that the periods of revival decrease to 
twice as seen in Fig. 1b. For triangular well ( ℓ = 1 , ϕ = 3 ), we exclude time dependence. We find that the revival 
periods are decreased and the fluctuation between the collapse periods in the previous case faded after taking 
into account triangular well. We also note that the amplitude of the oscillations expanded and became more 
regular compared to the previous case, see Fig. 1c. After adding dependence on time, we find once again that the 
periods of collapse increase while the periods of revival decrease and this result is consistent with the previous 

(15)ρ̂A(B)(t) = TrB(A)ρ̂AB(t).

(16)W(t) = ρAB
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Figure 3.   Dynamics of the von Neumann entropy as a function of time ǫt with z = 8 and q = 4 for the case of 
�D = �S = 0 . (a,c,e) correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to nonstationary qubits 
�(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, (c,d) correspond to 
triangular potential, and (e,f) for infinite well potential.
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case, see Fig. 1d. For infinite square-well ( ℓ → ∞ , ϕ = 4 ), we note that regular oscillations become chaotic 
and the amplitude of oscillations reduced after considering the case of infinite square-well. The phenomena 
of collapse and revival achieved in the previous case vanish in the case of infinite square-well, as shown in the 
Fig. 1e,f. In Fig. 2 we show the time evolution of the population inversion in the presence of the dipole-dipole 
and Ising interaction. From the figure, it is clear that the dynamical behavior of W is affected by the parameters 
�D and �S with respect to the physical parameters of the model. We observe that the qubit–qubit interactions 
lead to damage the periodicity of W accompanied with enhancement in the oscillations and a change in its time 
interval for which the revival and collapse phenomena occurring. Moreover, the presence of these interactions 
decreases the effect of the qubit–field coupling parameter �.

Qubits–field entanglement.  To quantify the degree of the entanglement of the qubits–field state, we use 
the von Neumann entropy defined by

In Fig. 3 the behavior of the von Neumann entropy is drawn with the same parameters as above. For harmonic 
oscillator ( ℓ = 2 ), after excluding time dependence, we see the entanglement fluctuating from weak to strong 
regularly, and the function SAB(t) reaches the smallest values when the extreme points of the population inver-
sion. While the function SAB(t) reaches the maximum values from the center of the collapse areas as seen in the 
Fig. 3a. Fluctuations decrease and the function SAB(t) will reach the pure states ( SAB(t) = 0 ) regularly after tak-
ing time dependence into account as observed in Fig. 3b. For triangular well ( ℓ = 1 , ϕ = 3 ) and in the absence 
of dependence on time, the speed of fluctuations decreased which means that entanglement becomes weak. It 
is pointed that function SAB(t) reaches the maximum and minimum values regularly compared to the previous 
case, see Fig. 3c. In general, the entanglement between parts of the system increases and the small values of the 
function ( SAB(t) = 0 ) are reduced after taking time dependence into account as seen in Fig. 3d. For infinite 
square-well ( ℓ → ∞ , ϕ = 4 ), the minimum values are raised up and then the function SAB(t) does not reach the 
pure state. We note that the fluctuations of the function SAB(t) increased in the case of infinite square-well and the 
entanglement became strong compared to the previous two cases, see Fig. 3e. We note that the oscillations of the 
function SAB(t) become regular and reach the pure state periodically after adding the dependence on time in the 

(17)SAB(t) = −Tr(ρAB ln ρAB).
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Figure 4.   Dynamics of the von Neumann entropy as a function of time ǫt with z = 8 and q = 4 for the case 
of �S − �D = 2.5− 0.5 = 2 . (a,c,e) correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to 
nonstationary qubits �(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, 
(c,d) correspond to triangular potential, and (e,f) for infinite well potential.
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interaction cavity as observed in Fig. 3f. In order to observe how the dipole-dipole and Ising interactions affect 
on the time variation of the qubits-field entanglement, clearly, in Fig. 4, we show the time evolution of function 
SAB(t) with respect to different values of the model parameters. We observe that the amount of the entanglement 
is strongly affected by the qubit–qubit interaction during the time evolution. The presence of the parameters �D 
and �S lead to enhance the oscillations of the function SAB and increase its value during the evolution. On the 
other hand, the existence of these parameters reduces the effect of the qubit-field coupling parameter � on the 
behavior of the entanglement.

Qubit–qubit entanglement.  In order to quantify the qubit-qubit entanglement, we use the negativity 
measure introduced as65,66:

where ρTq is the partial transpose of ̺ qf  for the qubit subsystem q, defined by

The negativity has a zero value for an entangled state and one value for maximally entangled states or EPR states.
In Fig. 5, the negativity is potted to illustrate the time variation of the entanglement between the field and the 

two atoms by the above conditions. For harmonic oscillator ( ℓ = 2 ), in general, the NAB(t) function fluctuates 
between the minimum (0) and the maximum (0.4), there is a partial entanglement between the field and the 
two atoms. We note that the function NAB(t) reaches the maximum values periodically at nπ while the function 
NAB(t) reaches the separation state at some points as shown in the Fig. 5a. After adding dependence on time, 
the previous chaotic oscillations become more uniform and the maximum values of NAB(t) decrease. This indi-
cates that both the amount of entanglement and the points of separation state were reduced after taking time 
dependence into account as seen in Fig. 5b. For triangular well ( ℓ = 1 , ϕ = 3 ) and in the absence of depend-
ence on time, the function NAB(t) becomes more chaotic, the maximum values decrease and the entanglement 
becomes weak, as is evident from the Fig. 5c. The negativity decreases a lot after taking dependence on time and 
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Figure 5.   Dynamics of the negativity as a function of time ǫt with z = 8 and q = 4 for the case of 
�D = �S = 0 . (a,c,e) correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to nonstationary qubits 
�(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, (c,d) correspond to 
triangular potential, and (e,f) for infinite well potential.
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entanglement becomes weaker than the previous case, see Fig. 5d. For triangular well ( ℓ = 1 , ϕ = 3 ) and in the 
absence of dependence on time, we note in this case the negativity is due to the differences between 0 and 0.4 
and more regular than the previous cases. Minimum values are achieved for many periods, but the fluctuations 
have decreased compared to previous cases, see Fig. 5e. The fluctuations in negativity decrease and the periods 
of disentanglement between parts of the system increase after taking time dependence into account as observed 
in Fig. 5f. In order to observe how the dipole-dipole and Ising interaction affects the time variation of the qubit-
qubit entanglement, clearly, the numerical results for the negativity in this case are displayed in Fig. 6. We show 
the negativity in terms of of ǫt with respect to different values of the physical model. We observe that as we turn 
on the dipole-dipole and Ising interaction, the negativity is substantially increased at some specific times with 
an enhancement of the oscillations. This can be expected from the system’ Hamiltonian, whose interaction part 
involving the qubit operators naturally turns a separable state of the type | + +� into an entangled state.

Single qubit squeezing phenomena.  The principle of uncertainty is one of the most fundamental 
assumptions in quantum theory, was first introduced by Heisenberg, which shows the limits of error in the com-
mon measurements of non-commutating operators in measuring quantum states67–69. In general the uncertainty 
principle for any two hermitian operators Â and B̂ obeys the relation [Â, B̂] = iĈ, therefore the Heisenberg 
uncertainty inequality is given by,

where �(�Â)2� = (�Â2� − �Â�2). As one of important application is a Pauli operators σ̂X , σ̂Y and σ̂Z which are 
describes the interaction between a two-level atom and the electromagnetic field, such that [σ̂X , σ̂Y ] = iσ̂Z , 
therefore uncertainty can written as �σ̂X�σ̂Y ≥ 1

2 |�σ̂Z�|.
The single qubit entropy squeezing for the component σ̂α70

(20)�(�Â)2��(�B̂)2� ≥
1

4
|�Ĉ�|2,

(21)Eα(t) = δH(σ̂α)−
2

√

δH(σ̂z)
< 0.
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Figure 6.   Dynamics of the negativity as a function of time ǫt with z = 8 and q = 4 for the case of 
�S − �D = 2.5− 0.5 = 2 . (a,c,e) correspond to stationary qubits �(t) = ε , while (b,d,f) correspond to 
nonstationary qubits �(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to harmonic potential, 
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9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19600  | https://doi.org/10.1038/s41598-020-76059-5

www.nature.com/scientificreports/

where δH(σ̂α) = exp{H(σ̂α)} , and H(σ̂α) is the Shannon information entropies of the atomic operators σ̂x , σ̂y 
and σ̂z.

In Fig. 7, we display the entropy squeezing as a function of time considering the conditions as in the previous 
sections. Generally the squeezing is achieved with respect to EX(t) and never with respect to EY (t) , in the first 
case we note that squeezing is achieved regularly and periodically before and after the center of the collapses 
regions as shown in the Fig. 7a. Squeezing areas decrease after adding time dependence to the interaction cav-
ity. The squeezing occurs at the beginning and the end of the collapses periods and disappears in the middle 
of these periods with a comparison between Fig. 1b and 7b. In the second case, the squeezing periods increase 
and the maximum values increase to reach −0.4 periodically at nπ4  as seen in Fig. 7c. Once again, the squeezing 
decreases after adding dependence on time. The squeezing occurs at the beginning and the end of the collapse 
periods and disappears in the middle of these periods, see Fig. 7d. In the last case, the squeezing disappears, 
with and without depending on time, as seen in the Fig. 7e,f. In order to examine the dynamical behavior of the 
entropy squeezing of the qubit system in the presence of the qubit–qubit interaction, the time evolution of the 
entropies EX and EY versus the dimensionless quantity ǫt is displayed in Fig. 8 with respect to different values 
of the physical parameters of the model. The presence of the dipole–dipole and Ising interaction leads to reduce 
the squeezing effect and enhance the oscillations of the functions EX and EY during the time evolution. On the 
other hand, the existence of these parameters decrease the effect of the qubit–field coupling parameter � on the 
behavior of the entropies.

Conclusion
In summary, we have introduced a useful model describing the dynamics of two nonstationary qubits, allowing 
for dipole–dipole and Ising-like interplays between them, coupled to quantized fields in the framework of two-
mode pair coherent states of power-low potentials. We have considered three particular cases of the coherent 
states through the exponent parameter taken infinite square, triangular and harmonic potential wells. We have 
examined the possible effects of such features on the evolution of some quantities of current interest, such as 
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population inversion, entanglement among subsystems and squeezing entropy. We have shown how these quanti-
ties can be affected by the qubit–qubit interaction and exponent parameter during the time evolution for both 
cases of stationary and nonstationary qubits. Moreover, we have explored the dependence among the quanti-
ties on the main parameters of the physical model. The obtained results suggest insights about the capability of 
quantum systems composed of nonstationary qubits to maintain resources in comparison with stationary qubits.

Received: 15 June 2020; Accepted: 24 September 2020

References
	 1.	 Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. 

Proc. IEEE 51, 89–109 (1963).
	 2.	 Wang, Y. et al. Enhancing atom-field interaction in the reduced multiphoton Tavis-Cummings model. Phys. Rev. A 101, 053826 

(2020).
	 3.	 Fiscelli, G., Rizzuto, L. & Passante, R. Dispersion interaction between two hydrogen atoms in a static electric field. Phys. Rev. Lett. 

124, 013604 (2020).
	 4.	 Hood, J. D. et al. Multichannel interactions of two atoms in an optical tweezer. Phys. Rev. Res. 2, 023108 (2020).
	 5.	 Cortiñas, R. G. et al. Laser trapping of circular Rydberg atoms. Phys. Rev. Lett. 124, 123201 (2020).
	 6.	 Chávez-Carlos, J., López-del-Carpio, B., Bastarrachea-Magnani, M. A. & Stránský, P. Quantum and classical Lyapunov exponents 

in atom-field interaction systems. Phys. Rev. Lett. 122, 024101 (2019).
	 7.	 Scully, Marlan O. & Suhail, Zubairy M. Quantum Optics (Cambridge University Press, Cambridge, 1997).
	 8.	 Eberly, J. H., Narozhny, N. B. & Sanchez-Mondragon, J. Periodic spontaneous collapse and revival in a simple quantum model. J. 

Phys. Rev. Lett. 44, 1323 (1980).
	 9.	 Cummings, F. W. Stimulated emission of radiation in a single mode. Phys. Rev. A 140, 1051 (1965).
	10.	 Han, Y. et al. Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system. Phys. Rev. A 77, 023824 

(2008).

0 10 20 30
−1

−0.5

0

0.5

0 10 20 30
−1

−0.5

0

0.5

0 10 20 30
−1

−0.5

0

0.5

0 10 20 30
−1

−0.5

0

0.5

0 10 20 30
−0.2

0

0.2

0.4

0.6

0 10 20 30
−0.5

0

0.5

1

(a) (b)

(c) (d)

(e) (f)

ε t 

ε t 

ε t ε t 

ε t 

ε t 

E
Y

E
X

E
Y

E
Y

E
Y

E
Y

E
Y

E
X

E
X

E
X

E
X

E
X

Figure 8.   Dynamics of the entropy squeezing components, EX and EY , as a function of time ǫt with z = 8 
and q = 4 for the case of �S − �D = 2.5− 0.5 = 2 . (a,c,e) correspond to stationary qubits �(t) = ε , while 
(d,f) correspond to nonstationary qubits �(t) = ε sin(t) . Three PCSPLPs are considered: (a,b) correspond to 
harmonic potential, (c,d) correspond to triangular potential, and (e,f) for infinite well potential.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19600  | https://doi.org/10.1038/s41598-020-76059-5

www.nature.com/scientificreports/

	11.	 Baghshahi, H. R. & Tavassoly, M. K. Entanglement, quantum statistics and squeezing of two �-type three-level atoms interacting 
nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014).

	12.	 Cordero, S. & Recamier, J. Selective transition and complete revivals of a single two-level atom in the Jaynes-Cummings Hamil-
tonian with an additional Kerr medium. J. Phys. B 44, 135502 (2011).

	13.	 Cordero, S. & Recamier, J. Algebraic treatment of the time-dependent Jaynes-Cummings Hamiltonian including nonlinear terms. 
J. Phys. A 45, 385303 (2012).

	14.	 Chaichian, M., Ellinas, D. & Kulish, P. Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model. 
Phys. Rev. Lett. 65, 980 (1990).

	15.	 Santos-Sanchez, D. L. & Recamier, O. The f-deformed Jaynes-Cummings model and its nonlinear coherent states. J. Phys. B 45, 
015502 (2012).

	16.	 Parkins, A. S. Resonance fluorescence of a two-level atom in a two-mode squeezed vacuum. Phys. Rev. A 42, 6873 (1990).
	17.	 Joshi, A. & Puri, R. R. Characteristics of Rabi oscillations in the two-mode squeezed state of the field. Phys. Rev. A 42, 4346 (1990).
	18.	 Joshi, A., Puri, R. R. & Lawande, S. V. Effect of dipole interaction and phase-interrupting collisions on the collapse-and-revival 

phenomenon in the Jaynes-Cummings model. Phys. Rev. A 44, 2135 (1991).
	19.	 Chilingaryan, S. A. & Rodrguez-Lara, B. M. Searching for structure beyond parity in the two-qubit Dicke model. J. Phys. A 46, 

335301 (2013).
	20.	 Tavis, M. & Cummings, F. W. Approximate solutions for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 188, 692 (1969).
	21.	 Hartmann, M. J., Brand, G. S. L. & Plenio, M. B. Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007).
	22.	 Torres, J. M., Sadurni, E. & Seligman, T. H. Two interacting atoms in a cavity: Exact solutions, entanglement and decoherence. J. 

Phys. A 43, 192002 (2010).
	23.	 Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).
	24.	 Torres, J. M., Bernad, J. Z. & Alber, G. Unambiguous atomic Bell measurement assisted by multiphoton states. Appl. Phys. B 122, 

1 (2016).
	25.	 Wang, X. & Wilde, M. M. Cost of quantum entanglement simplified. Phys. Rev. Lett. 125, 040502 (2020).
	26.	 Klco, N. & Savage, M. J. Minimally entangled state preparation of localized wave functions on quantum computers. Phys. Rev. A 

102, 012612 (2020).
	27.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural 

Sciences (Cambridge University Press, Cambridge, 2000).
	28.	 Alber, G. et al. Quantum Information (Springer, Berlin, 2001) (Chap. 5).
	29.	 Benatti, F., Floreanini, R. & Realpe-Gomez, J. Entropy behaviour under completely positive maps. J. Phys. A 41, 235304 (2008).
	30.	 Horodecki, R., Kilin, S. Y. & Kowalik, J. Quantum Cryptography and Computing: Theory and Implementation (Nato Science for 

Peace and Sec, 2010).
	31.	 Blinov, B. B., Moehring, D. L. L., Duan, M. & Monroe, C. Observation of entanglement between a single trapped atom and a single 

photon. Nature 428, 153–157 (2004).
	32.	 Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010).
	33.	 Castelano, L. K., Fanchini, F. F. & Berrada, K. Open quantum system description of singlet-triplet qubits in quantum dots. Phys. 

Rev. B 94, 235433 (2016).
	34.	 Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488 (2007).
	35.	 Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).
	36.	 Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).
	37.	 Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).
	38.	 Houck, A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007).
	39.	 Mooney, G. J., Hill, C. D. & Hollenberg, L. C. L. Entanglement in a 20-qubit superconducting quantum computer. Sci. Rep. 9, 13465 

(2019).
	40.	 Tsujimoto, M. et al. Mutually synchronized macroscopic Josephson oscillations demonstrated by polarization analysis of super-

conducting terahertz emitters. Phys. Rev. Appl. 13, 051001 (2020).
	41.	 Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).
	42.	 Eichler, C. et al. Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 

109, 240501 (2012).
	43.	 Drummond, P. D. & Ficek, Z. Quantum Squeezing (Springer, Berlin, 2004).
	44.	 Wodkiewicz, K. Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 32, 4750–4752 (1981).
	45.	 Agarwal, G. S. & Puri, R. R. Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 41, 3782–3791 

(1990).
	46.	 Ashraf, M. M. & Razmi, M. S. K. Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes-Cum-

mings model. Phys. Rev. A 45, 8121–8128 (1992).
	47.	 Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
	48.	 Civitarese, O. & Reboiro, M. Atomic squeezing in three level atoms. Phys. Lett. A 357, 224–228 (2006).
	49.	 Civitarese, O., Reboiro, M., Rebón, L. & Tielas, D. Atomic squeezing in three-level atoms with effective dipole-dipole atomic 

interaction. Phys. Lett. A 374, 2117–2121 (2010).
	50.	 Poulsen, U. V. & Mølmer, K. Squeezed light from spin-squeezed atoms. Phys. Rev. Lett. 87, 123601 (2001).
	51.	 Wang, X. Spin squeezing in nonlinear spin-coherent states. J. Opt. B: Quantum Semiclass. Opt. 3, 93–96 (2001).
	52.	 Rojo, A. G. Optimally squeezed spin states. Phys. Rev. A 68, 013807 (2003).
	53.	 Wang, X. & Sanders, B. C. Relations between bosonic quadrature squeezing and atomic spin squeezing. Phys. Rev. A 68, 033821 

(2003).
	54.	 Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
	55.	 El-Oranya, F. A. A., Wahiddinb, M. R. B. & Obadad, A.-S.F. Single-atom entropy squeezing for two two-level atoms interacting 

with a single-mode radiation field. Opt. Commun. 281, 2854–2863 (2008).
	56.	 Kuzmich, A., Molmer, K. & Polzik, E. S. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 

79, 4782–4785 (1997).
	57.	 Sanchez-Ruiz, J. Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. 

A 201, 125–131 (1995).
	58.	 Iqbal, S., Rivière, P. & Saif, F. Space-time dynamics of Gazeau-Klauder coherent states in power-law potentials. Int. J. Theor. Phys. 

49, 2540–2557 (2010).
	59.	 Hall, R. L. Spectral geometry of power-law potentials in quantum mechanics. Phys. Rev. A 39, 5500 (1989).
	60.	 Berrada, K. Improving quantum phase estimation via power-law potential systems. Laser Phys. 24, 065201 (2014).
	61.	 Jena, S. N., Panda, P. & Tripathy, T. C. Ground states and excitation spectra of baryons in a non-Coulombic power-law potential 

model. Phys. Rev. D 63, 014011 (2000).
	62.	 Jena, S. N. & Rath, D. P. Magnetic moments of light, charmed, and b-flavored baryons in a relativistic logarithmic potential. Phys. 

Rev. D 34, 196 (1986).
	63.	 Berrada, K., El Baz, M. & Hassouni, Y. Generalized Heisenberg algebra coherent states for power-law potentials. Phys. Lett. A 375, 

298–302 (2011).



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19600  | https://doi.org/10.1038/s41598-020-76059-5

www.nature.com/scientificreports/

	64.	 Agarwal, G. S. Nonclassical statistics of fields in pair coherent states. J. Opt. Soc. Am. B 5, 1940–1947 (1988).
	65.	 Zyczkowski, K., Horodecki, P., Sanpera, A. & Lewensteinm, M. Volume of the set of separable states. Phys. Rev. A 58, 883–892 

(1998).
	66.	 Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
	67.	 Riccardi, A., Macchiavello, C. & Maccone, L. Tight entropic uncertainty relations for systems with dimension three to five. Phys. 

Rev. A 95, 032109 (2017).
	68.	 Abdalla, M. S., Obada, A.-S.F. & Abdel-Khalek, S. Entropy squeezing of time dependent single-mode Jaynes-Cummings model in 

presence of non-linear effect. Chaos Solitons  Fract. 36, 405–417 (2008).
	69.	 Khalil, E. M., Abdalla, M. S. & Obada, A.-S.F. Entropy and variance squeezing of two coupled modes interacting with a two-level 

atom: Frequency converter type. Ann. Phys. 321, 421–434 (2006).
	70.	 Fang, M.-F., Zhou, P. & Swain, S. Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043–1053 (2000).

Acknowledgements
Taif University Researchers Supporting Project number (TURSP-2020/17), Taif University, Taif, Saudi Arabia.

Author contributions
E.K., K.B and S.A. wrote the manuscript. A. A.  and J. P.  reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Entanglement and entropy squeezing in the system of two qubits interacting with a two-mode field in the context of power low potentials
	Physical model
	Measures and numerical results
	Population inversion. 
	Qubits–field entanglement. 
	Qubit–qubit entanglement. 
	Single qubit squeezing phenomena. 

	Conclusion
	References
	Acknowledgements


