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Network inference 
from population‑level observation 
of epidemics
F. Di Lauro1, J.‑C. Croix1, M. Dashti1, L. Berthouze2 & I. Z. Kiss1*

Using the continuous-time susceptible-infected-susceptible (SIS) model on networks, we investigate 
the problem of inferring the class of the underlying network when epidemic data is only available at 
population-level (i.e., the number of infected individuals at a finite set of discrete times of a single 
realisation of the epidemic), the only information likely to be available in real world settings. To tackle 
this, epidemics on networks are approximated by a Birth-and-Death process which keeps track of 
the number of infected nodes at population level. The rates of this surrogate model encode both the 
structure of the underlying network and disease dynamics. We use extensive simulations over Regular, 
Erdős–Rényi and Barabási–Albert networks to build network class-specific priors for these rates. We 
then use Bayesian model selection to recover the most likely underlying network class, based only on 
a single realisation of the epidemic. We show that the proposed methodology yields good results on 
both synthetic and real-world networks.

Networks are an important tool for modelling systems with many interacting parts such as epidemics spreading 
within a population or neuronal activity in the brain. Indeed, the intricate interplay of many individual well-
defined units can be captured by the links of a network, and this can be done with an unprecedented level of 
detail5,15,18,29,35. For instance, directed, weighted or temporal links can all be considered within this modelling 
paradigm. A main feature of network epidemic models is that the topology of the contact structure is treated 
separately from the characteristics of the pathogen (such as infectivity and typical recovery time), in contrast 
to mass action models such as Kermack–McKendrick17. The transmission dynamics of epidemic spreading on 
networks can be modelled as a continuous time Markov Chain process on a network33. Unfortunately, the lit-
erature only show few exact results, and these are mainly related to specific cases or small networks. Therefore, 
approximations are often introduced to simplify the exact model and derive quantitative results. Most notably, 
well-known and widely used theoretical approaches include mean-field and higher order approximations12,18, 
edge-based dynamics24,42, percolation10,23,25 and generating functions29,33.

These approaches have led to the realisation that the structure of the network has a profound impact on how 
diseases invade, spread and how to best control them. This impact is particularly well understood for degree 
heterogeneity and assortativity/disassortativity, and to a lesser extent, for clustering, the propensity of nodes that 
share a common neighbour to be connected18,33.

However, depending on the field of application, the precision to which the underlying network is known can 
vary greatly, from absolute (when full description is available) to absent (when a description is entirely lacking). 
For example, whereas some technological networks can be mapped out to a great degree of detail, social networks 
can be challenging to query2. This has resulted in a significant amount of research aimed to develop methods 
for link prediction (for a survey, see2). Instead of assuming the availability of explicit information about nodes 
and edges, these methods rely on ‘observables’ from dynamical processes taking place on the network, under 
the assumption that these provide latent information about the missing underlying network structure. In the 
framework of epidemics on networks this suggests that it is possible to get insights about the structure of the 
network by observing quantities of interest at node and perhaps population level. Indeed, the inverse problem 
of inferring networks from epidemic data has been the subject of great scrutiny.

In particular, in the context of statistical inference, this task has been approached by either formulating it as a 
likelihood optimisation problem6,11,12,26,28 or using Bayesian inference1,7,13,31,41. Compared to maximum likelihood 
optimisation methods (e.g. independent cascade model12), the Bayesian inference is usually based on a smaller 
number of observations of the epidemic1,7,13. However, both network inference approaches (explicit link inference 
and inferring parameters of a known network model) lead to good estimates for the network and parameters of 
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the epidemic dynamics. Moreover, there is an interesting tradeoff between them. The former is able to identify 
the adjacency matrix, but requires the observation of a large number of cascades, whereas the latter can only infer 
some structural parameters (such as the probability of a link between two nodes), but relies on fewer observa-
tions. Recently, it has been conjectured36 that an exact (link-by-link) reconstruction of networks might not be 
feasible due to requiring a subexponentially increasing number of observations and an exponentially increasing 
computation time with respect to the number of nodes in the network.

A common feature of the above mentioned work is their reliance on the availability of detailed data at node 
level, such as the complete temporal knowledge of all cascade trees in12 or the observation of all the removal/
infection times in the Bayesian framework of1. However, in most real-world scenarios, such detailed information 
is unlikely to be available. A more reasonable expectation is to be provided with population-level observations, 
that is, the number of infected nodes in the whole network at various times. Our aim in this paper is to establish 
the feasibility of inferring the class of the underlying network from population-level observations. Whilst a very 
recent paper21 provides an algorithm to infer properties of a given network-type from prevalence data, we are not 
aware (for a survey, see5) of any research that specifically addresses the problem of network class inference based 
purely on population-level observations. We do so within the framework of continuous-time SIS epidemics on 
networks when only population-level data from a single realisation of the epidemic are available.

We treat this problem as an inverse problem and adopt a Bayesian approach which involves the following 
steps: 

(a)	 propose a parametric forward model that reproduces network/population-level dynamics and reflects 
network structure;

(b)	 build a prior distribution for these model parameters on a network class basis;
(c)	 use the posterior measure to identify the most likely network class.

A complete description of the SIS dynamics on a network with N nodes requires to solve 2N equations, one per 
possible state. The distribution of population-level statistics in time can be described via the count of the number 
of infected nodes in this dynamics; however, this process scales exponentially with the size of the network. Here, 
we take a different route and choose to use a surrogate model to represent the evolution of the count of infected 
nodes in the population. A reasonable candidate for this is a Birth-and-Death process (BD), see27, characterised 
by only (N + 1) equations and 2(N + 1) free parameters, the rates of infection and recovery, that need to be tuned 
to best represent the exact model. Whilst the rates of recovery are network independent and known exactly, the 
rates of infection in the surrogate model are more challenging to define.

In this work, the rates of infection in the surrogate model are provided by a simple parametric model, 
together with an estimation procedure based on extensive and detailed simulations of epidemics on three classes 
of well-known random networks: Regular, Erdős–Rényi and Barabási–Albert. This procedure leads to distinct 
rate models for the three classes of networks. These observations are encapsulated in a prior distribution for the 
rates of the BD process.

Finally, when one observes a single epidemic through population-level data, our prior and forward model can 
be used within a Bayesian model selection framework to identify the most likely underlying network class. It is 
worth noting that this framework is versatile enough to be used in conjunction with any set of population-level 
epidemic data, as it will still output the most likely network class, that is, the closest class (in terms of heteroge-
neity of the degree distribution) to that of the true underlying network.

The paper is structured as follows. In Sect. "The forward model" we describe the BD surrogate forward model 
together with a three-parameter model for its rates of infection. Section "Bayesian inference of network class 
from single epidemics" includes all aspects of the Bayesian approach we used, from building priors to model 
selection and model validation/stress testing. We conclude with a discussion and further research directions in 
Sect. "Discussion".

The forward model
A population of N individuals is considered with the contact structure between individuals described by an 
undirected network with adjacency matrix G = (gij)i,j=1,2,...,N where gij = 1 if nodes i and j are connected and 
zero otherwise. Self-loops are excluded, so gii = 0 and gij = gji for all i, j = 1, 2, . . .N . The standard SIS epidemic 
dynamics on a network18 is considered, which is driven by two type of events: (a) infection and (b) recovery 
from infection. Infection can spread from an infected and infectious node (I) to any of its susceptible neigh-
bours (S) and this is modelled as a Poisson point process with per-link infection rate τ . Infectious nodes recover 
at constant rate γ , independently of their neighbours and become susceptible again. Initialization is made by 
randomly choosing I0 nodes to be infected at the initial time, the others being susceptible. The resulting model 
is a continuous-time Markov Chain, and to fully specify its state we need an equation for each arrangement of 
length N with entries being either S or I, resulting in a state space of 2N elements. While this is easy to formalise 
and write down theoretically, the numerical integration of the system becomes intractable even for modest values 
of N5,18,39,40. This motivates us to use a surrogate model, offering sufficient flexibility to approximate the time 
evolution of the number of infectious nodes in the network.

Birth‑and‑death approximation of SIS epidemics.  We use a BD process, a continuous-time Markov 
chain with state space {0, . . . ,N} and transitions of unit size, as the surrogate model. The up-jumps or infections 
are described by rates ak , that is, the rates of infection in the presence of k infected nodes and encode the network 
structure. The down-jumps or recoveries are described by rates ck = γ k . To understand why, we first observe 
that recoveries are independent events (since once a node is infected, its status no longer depends on other 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18779  | https://doi.org/10.1038/s41598-020-75558-9

www.nature.com/scientificreports/

nodes). An infected node recovers after a time drawn from an exponential distribution with rate γ . If k nodes 
are infected, the first recovery is going to happen according to the minimum of all recovery times, which is again 
exponentially distributed with rate γ k . Hence, the transition probabilities of the surrogate process are given by 
the following forward Kolmogorov (or Master) equation:

together with a−1 = cN+1 = 0 and an initial condition k0 ∈ {0, . . . ,N} , with pk0,k(t) the probability of being in 
the state with k infected at time t, given initial k0 infected. The solutions of Eq. (1) and the rates of infection will 
be denoted by pαk0,k and aαk , respectively, when the dependence on additional parameters α needs to be enforced.

The quality of the surrogate model, i.e., how well it approximates the exact model, depends strongly on the 
choice of infection rates ak . The way ak depends on k is determined by the underlying network structure. An 
analytic formula for ak is only available for the fully connected network, namely: ak = τk(N − k) , that is the 
number of S–I links (i.e., links connecting susceptible and infected nodes) in the network multiplied by the 
per-contact rate of infection τ.

In fact, in a stochastic simulation of the epidemic on a network, the rate of going from k to k + 1 infected 
nodes is exactly τ × #S-I links . Hence, during a simulation it makes sense to keep track of the number of infected 
nodes, the number of S–I links and the time spent in each respective state. Further important observations can 
be made. The number of S–I links is a random variable and given a fixed number of infected nodes, say k, the 
number of S–I links can take different values. This is simply due to the stochasticity in how the infected nodes 
are laid out in the network. Thus a plausible choice for the rate ak may be simply the average of the number of S–I 
links when there are exactly k infected nodes. However, some states are longer lived than others and this needs 
to be accounted for. Combining all the above, an empirical average rate of infection emerges, that is

where ti,k is the lifetime of a state with k infected nodes and i S–I links. We will use the notation âθ ,τ ,γk  to indicate 
the resulting estimate given the network class θ ∈ �:

where we use Regular (Reg), Erdős–Rényi (E–R) and Barábasi–Albert (B–A) network classes. There are a number 
of reasons for this choice. First, these three classes are perhaps the most popular random network models, so 
they provide a good benchmark to test our model. Second, they can produce rich topologies in terms of degree 
heterogeneity, and therefore allow us to test the flexibility of our framework. Finally, the absence of higher-order 
structures (such as communities, or clustering) enables us to simplify the problem of fitting the (k, ak) curves 
and thus to focus more specifically on the problem of network inference.

Hence, we can calibrate the infection rates ak through a statistical analysis based on stochastic simulations 
of the SIS epidemics on networks. Namely, for a network class (with given average degree) and given disease 
parameters ( τ , γ ), we run 50 outbreaks on 50 different realisations of the network. We keep track of the states 
that the process visits along with the number of infected nodes, number of S–I links and lifetime of the states. 
This data feeds into Eq. (2) and leads to the value of âk for all 0 ≤ k ≤ N . To cover the entire range, 0 ≤ k ≤ N , 
half of the outbreaks are started from k0 = 5 infected nodes, chosen uniformly at random, and the other from 
k0 = N infected nodes. The former allows us to explore the curve up to the steady state, while the latter, although 
an artificial scenario, allows us to explore the curve from the steady state to N. Typical (k, âθ ,τ ,γk ) curves are 
shown in Fig. 1. In what follows we assume that these rates are ‘optimal’ and that they lead to a surrogate model 
that agrees well with the exact one. This choice is motivated by the heuristics presented above which is further 
validated through extensive numerical simulations for three network classes and a large set of disease parameter 
values (see Sect. "Bayesian inference of network class from single epidemics").

Three‑parameter model of infection rates.  Consistent with results in27, we notice that, although esti-
mated âk curves are distinct for different network classes, they all share some common features: specifically, they 
all satisfy â0 = âN = 0 and exhibit a single maximum in [0, N]. Perhaps the most important features that change 
between the three distinct network classes are the flatness and skewness of the âk curves (see Fig. 1). It is clear 
that high heterogeneity in the degree distribution (i.e. Reg → E–R → B–A, displaying respectively no → medium 
→ high heterogenity) increases the left skew.

The intuitive reason for these differences in the ( k, âk ) curves is that epidemics on such different networks 
spread with distinct enough characteristics. In scale-free networks for example, the most exposed nodes are the 
hubs, so they get infected early on. This skews the (k, âk) curve to the left, because once infected these hubs gen-
erate a disproportionately large number of S–I links. On the contrary, when all nodes have similar degrees, the 
(k, âk) curves are more symmetric. Concerning E–R and Reg networks, the most important difference is that the 
former allows for some degree heterogeneity, whereas the latter does not. Degree heterogeneity plays an impor-
tant role when it comes to disease transmission so it is no surprise that epidemics on E–R networks can affect a 
higher proportion of nodes in the initial stage of an outbreak when compared to epidemics on Reg networks18.

This suggests that âk curves could be parametrised with a low dimensional model. The departure from the 
fundamental assumption of homogeneous random mixing in epidemiological and ecological models has led 
to a myriad of models where bi-linear transmission terms proportional to ∼ I × S or ∼ I × (N − I) have been 
replaced by non-linear infection terms such as IpSq14,20,37. In particular it is noted that, in the context of classical 
compartmental and mean-field models, such terms can be inferred from the number of S–I links taken from 

(1)∀k ∈ {0, . . . ,N}, ṗk0,k(t) = ak−1pk0,k−1(t)− (ak + ck)pk0,k(t)+ ck+1pk0,k+1(t),

(2)âk = τ

∑

i iti,k
∑

i ti,k
, 1 ≤ k ≤ N ,

� := { Reg, E-R, B-A }.
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simulation and that they can lead to more exotic model behaviours. In the same spirit, we put forward the fol-
lowing model for the rates:

where the three parameters C, a and p offer flexibility to adapt to various networks and epidemics of different 
severity. This choice is motivated by the heuristic thinking of how the epidemic unfolds on the network. The 
parameter C > 0 gives a general scaling, dealing with different infection intensities, a ∈ [−2, 2] helps to shift the 
peak from the centre (e.g. a < 0 shifts the peak to the left), and p > 0 allows for different flatnesses (smaller p 
values leading to flatter curves). Note that, when a = 0 , the model results in a particular case of the previously 
mentioned non-linear models. Immediately, one can note that this model fulfils a number of desirable properties: 
(a) it is low dimensional/parsimonious, (b) the model satisfies a0 = aN = 0 by construction, (c) it includes the 
complete network when ak = τk(N − k) and finally, (d) it has a single maximum within [0, N].

The C, a, p values are obtained using a non-linear least-square fit (using a particle swarm algorithm16):

Figure 1 showcases the flexibility of the model in fitting âk curves coming from different network classes and 
confirms our observations about the rates being more left-skewed with increasing heterogeneity in node degree.

In the same figure, curves based on the (C, a, p) model are compared to the (k, âk) curves. Systematic numeri-
cal investigations (not all plots shown) demonstrate that the proposed parsimonious three-parameter model 
fits the (k, âk) curves well for all considered network classes, particularly Reg and E–R. For B–A networks small 
discrepancies between the ( k, âk ) curves and the (C, a, p) model are possible.

Dataset.  Proving that the behaviour of the exact system of 2N equation is well approximated by our proposed 
system of (N + 1) ordinary differential equations (1) is still an open question. Therefore, the validations that we 
provide in this paper are entirely based on extensive numerical simulations. Here, we discuss briefly the syn-
thetic dataset S underpinning those numerical validations. For each network class, we varied the average degree 
( 5 ≤ �k� < 20 ). This covers a large number of scenarios and the networks remain relatively sparse. Regarding the 
epidemic parameters, we varied the infection and recovery rates ( (τ , γ ) ∈ (0, 10] × (0, 10] ). Values for the rates 
were chosen via Latin hypercube sampling22. By doing so, we could observe many unique scenarios, providing a 
solid base upon which to test our methods.

However, there may be situations where the epidemic does not spread. Indeed, the behaviour of an epidemic is 
determined by the characteristics of both the network class and epidemic dynamics. The former includes quanti-
ties such as the average degree and higher-order moments, the latter includes per-link infection and recovery 
rates. All of this is captured by the reproduction number18, R0 , which is the number of secondary infections 
caused by a typical infectious individual introduced into a fully susceptible population:

(3)∀k ∈ {0, . . . ,N}, ak := a
(C,a,p)
k = Ckp(N − k)p

(

a

(

k −
N

2

)

+ N

)

,

(4)e(C, a, p;S) =
∑

k,
∑

i ti,k>0

(

a
(C,a,p)
k − âk

)2
.

0 Nk

â
k

Reg

E-R
B-A

Figure 1.   ak curves (markers) along with the best fits from the C, a, p model (plain lines) on 12 different 
combinations of network classes and epidemic parameters. Parameters of the simulations considered are, 
from top to bottom: Reg (crosses), (�k�, τ , γ ) = {(12, 1.43, 5.69)(6, 9.46, 4.23)(8, 4.47, 8.62)(13, 1.56, 9.18)} ; 
E–R (circles), (�k�, τ , γ ) = {(7, 5.96, 8, 07), (13, 5.8, 9.06), (6, 3.08, 7.61), (16, 0.99, 8.5)} ; and B–A (squares), 
(�k�, τ , γ ) = {(6, 3.09, 7.61)(8, 5.99, 7.01)(12, 0.79, 8.96)(16, 2.18, 5.81)}.
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If R0 ≤ 1 the infection will die out. However, if R0 > 1 , then an outbreak is expected. Since R0 depends directly 
on the sampled network and disease parameters, we accepted only situations where 1 < R0 ≤ 10 . This led to 
360 valid choices ( network class, 〈k〉, τ , γ ), with 120 per network class. For all the 360 scenarios, data from the 
simulations were used to determine network class- and disease-parameter specific infection rates âθ ,τ ,γk  and the 
corresponding (C, a, p) models.

Numerical validation of the forward model.  To validate our claim that the BD process is a good 
approximation of the true epidemic behaviour, we numerically integrated the master Eq. (1) with rates ak = âk 
and ck = γ k , where âk are the estimated rates via Eq. (2), for all 360 scenarios in S . The master equation was also 
numerically integrated with rates given by the (C, a, p) model. The expected number of infected nodes from the 
numerical solution of both master equations was then compared to the average number of infected nodes based 
on simulations. Four representative examples of epidemics for each network class are shown in Fig. 2. For the 
vast majority of the tested cases (not all shown), the agreement between simulation and the (C, a, p) model is 
good to excellent. It is worth noting that, in the case of B–A networks there are a few parameter combinations 
where the agreement between the master equation with the rates given by the (C, a, p) model and simulation 
results is poorer, see Fig. 2c. This is despite the seemingly small discrepancy between ( k, âk ) curve and the cor-
responding (C,  a,  p) model (not shown). However, the master equation with the âk-rates still leads to good 
agreement with simulations as shown in Fig. 2c (markers versus continuous line). Even so, it is reassuring to see 
that even when the agreement between the master equation with the (C, a, p) model breaks down, the agreement 
with the âk holds. In27, a similar surrogate model was used and the authors obtained good agreement between 
the BD model and simulations for an even wider range of network classes. This gives us confidence that the sur-
rogate model is a viable model.

Bayesian inference of network class from single epidemics
In the framework presented so far, we proposed a surrogate model which approximates the evolution of the 
total number of infected nodes in a SIS epidemic on a network. The rates of infection in this forward model (i.e. 
âk ) are parametrised by a three-parameter model (C, a, p) as detailed in Eq. (3). Early investigation shows that 
the ( k, âk ) curves (thus the associated C, a, p triple) are distinct across the three different network classes that 
we considered. Hence, one may expect that discrete observations taken from a single epidemic spreading on a 
unknown network carry sufficient information to identify its most likely class.

To be more precise, we consider a population-level dataset y = (k1, . . . , kn) where kj ∈ {0, . . . ,N} for 
any j = 1, . . . , n is the number of infected nodes in the network at time tj ∈ [0,T] , and we define the vector 
s = (t1, . . . , tn) . Our objective is to predict the class θ ∈ � of the underlying network from y. Figure 3 illus-
trates 10 distinct data sets for each of the three network classes. These data are obtained directly from Gillespie 
simulations8,9 of the SIS epidemic on the respective networks. Observations are taken at regular times from the 
start of the epidemic to the point where the quasi steady-state is approached.

For each value of θ (that is a network class), we build a distribution π0,θ over the parameters C, a, p based on 
offline simulations of SIS epidemics for a range of networks in each given class θ (see Sect. "Prior distributions 
for each network class"). By looking at the outcomes of our simulations, we observe that, for our chosen set of 
candidate classes � , the distributions π0,θ (C, a, p) , θ ∈ � , cluster in distinct regions of the (C, a, p) parameter 
space. This is necessary for the inference to work, and it contributes to the validation of our model of choice for 
the rates âk . Assuming a non-informative uniform prior for θ , we derive a prior distribution π0(C, a, p, θ) in the 
form of a mixture:

(5)R0 =
τ

γ + τ

�k2 − k �

�k �
.

π0(C, a, p, θ) =
1

3
π0,θ (C, a, p).

10 .5
0

N

I
( t
)

t
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Figure 2.   Average number of infected nodes from simulations (markers) and the numerical solutions of system 
(1) with rates ak given either by the raw data âk (continuous curve) or by the (C, a, p) model (dotted curves), 
with initial condition k0 = 5 . Three network classes are reported, each with N = 1000 nodes, from left to right, 
ordered by increasing heterogeneity, from Reg (a) and E–R (b) to B–A (c) networks. Networks and epidemic 
parameters are the same as in Fig. 1.
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Our objective is the prediction of the underlying network θ given the data (y, s), which will be done using the 
posterior distribution π(θ |y, s) obtained by Bayes’ rule:

where, given C, a, p, the likelihood LC,a,p can be expressed in terms of the solution operator of the forward model 
discussed above (see Sect. "The forward model"). This Bayesian classification methodology is also known as model 
selection, where the model is a particular class of networks. Once we have computed the posterior distribution 
π(θ |y, s) (see Sect. "Numerical method for posterior marginals computations"), we simply pick the most likely 
underlying network class (Maximum a posteriori estimator for θ given the data (y, s)).

Prior distributions for each network class.  In this work, we consider prior distributions for each net-
work class as a different density π0,θ over the C, a, p space. To do this, we use the very same dataset that was used 
for numerical validation (see Sect. "The forward model"). Given the C, a, p values of each network class (see 
Fig. 4), we choose 100 triples to estimate a probability distribution and leave 20 for testing. The (C, a, p) values 
associated with the training scenarios are used to infer three Gaussian kernel density estimators34 to be used as 
prior distributions. The bandwidth of these estimators is set by 10-fold cross-validation.

Numerical method for posterior marginals computations.  Finally, to predict the underlying net-
work class given a dataset (y, s), we need to compute the three marginals given in Eq. (6) (one per network class) 
and this is done by Monte-Carlo estimation. As already mentioned, the likelihood LC,a,p(y, s) can be obtained 
using the forward operator associated with Eq. (1). Indeed, given a (C, a, p)-triple, the likelihood of a dataset 
(y, s) is given by:

using the fact that the BD process is time homogeneous. We choose to compute each term pC,a,pki ,ki+1
(ti+1 − ti) 

where 1 ≤ i ≤ n− 1 using the algorithm introduced in3, allowing BD transition probabilities to be computed 
individually. This represents a significant reduction in computational time, when compared to matrix exponential 
since we are working with a network of size N = 1000 nodes.

Once we have an efficient numerical method to compute the likelihood, we use the corrected Arithmetic 
Mean estimator, recently introduced in32 for the Monte-Carlo estimation of all marginals. Let A be a given subset 
of the (C, a, p) space, then it follows that:

where πA,θ is the prior density of network class θ , conditional on θ ∈ A . Each marginal is then estimated using 
the following procedure: 

1.	 Find 

(6)

π(θ |y, s) =

∫
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∝
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∝
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Figure 3.   3 examples on different network classes of 10 average epidemic paths, taken from dataset S . 
Continuous curves represent the evolution of infectious counts and dots the observations y. Network and 
epidemic parameters for each panel are, from left to right, Regular (a) with �k� = 17 , τ = 2.62 , γ = 4.03 , Erdős–
Rényi (b) with �k� = 13 , τ = 5.80 , γ = 9.06 , and Barabási–Albert (c) with �k� = 6 , τ = 8.16 , γ = 8.23 . In each 
realisation, k0 = 5 randomly selected nodes are infected at the beginning of the epidemic.
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 This is done via a combination of global/local optimisation routines.
2.	 Sample the distribution πθ (C, a, p|y, s) using a Random-Walk Metropolis-Hastings algorithm starting from 

(C∗, a∗, p∗) and denote the samples by (Ci , ai , pi)1≤i≤K with K = 500.
3.	 Let H be the Fisher information evaluated at (C∗, a∗, p∗) and let d(C, a, p) be defined as 

 We then take A :=
{

(C, a, p)|d(C, a, p) ≤ r
}

 where r = max1≤i≤K d(Ci , ai , pi) . This choice was already sug-
gested in32. In particular, it leads to πθ |(y,s)(A) ≈ 1 , which simplifies the right-hand-side of Eq. (7).

4.	 Use a Gaussian distribution N
(

(C∗, a∗, p∗),H−1
)

 to estimate both πθ ,0(A) and the integral term on the 
right-hand-side of Eq. (7) by importance sampling.

Our complete Python implementation of this routine is available online, https​://githu​b.com/BayIA​net/Netwo​
rkInf​erenc​eFrom​Popul​ation​Level​Data.

Network class inference.  In this section, we provide numerical results assessing the overall quality and 
applicability of our approach. We start by inferring networks from a testing dataset, where all data are simulated 
from either Regular, E–R or B–A networks, see Sect.  "Inference based on the testing set". We then consider 
networks outside of our framework, namely synthetic networks with negative binomial degree distributions 
(Sect. "Inference of synthetic networks") and real-world networks (Sect. "Inference of real-world networks"). In 
all cases, we provide posterior probabilities for each network class across independent repetitions of the datasets 
to quantify uncertainty.

Inference based on the testing set.  During the construction of the prior, we deliberately set aside 60 estimated 
(C, a, p) values to build a test set (20 per network class taken at random), meaning that they were not used in the 
calibration of the prior. In this section, we use this set to check if we can infer the known underlying network 
class.

The inference was performed as follows. For each of the (C, a, p) parameters in the testing set, we used the 
known underlying network and disease parameters ( network class , 〈k〉 , τ , γ ) to simulate a dataset (y, s) with 
Gillespie’s algorithm. We only generated a single network from the appropriate class and simulated a single epi-
demic. However, we generated 10 independent datasets, as shown in Fig. 3, and ran our inference model on each 
of them separately. The second step was to compute the 3 posterior probabilities corresponding to the different 
network classes, as detailed earlier. We thus obtained 3 posterior probabilities for each of the 60 elements in our 
test set and predicted the most likely underlying network class. To assess the uncertainty due to data sampling, 
we considered the results across all the independent datasets.

The quality of the inference is shown by the confusion matrix (Table 1), which provides the averaged pos-
terior probabilities along with their standard deviation for each of the possible outcomes. The level of accuracy 
achieved in our tests is remarkable, with a score as high as 95% for Barabási–Albert, and a minimum of 79% for 
Erdős–Rényi. This also shows that there can be a moderate confusion between the Regular and Erdős–Rényi 
network classes, as their characteristics are quite similar w.r.t. (C, a, p) values (see Fig. 4) whereas Barabási–Albert 

(C∗, a∗, p∗) = argmax
C,a,p

(

logLC,a,p(y, s)+ logπθ ,0(C, a, p)
)

.

d(C, a, p) :=
〈

(Ci , ai , pi)− (C∗, a∗, p∗),H
[

(Ci , ai , pi)− (C∗, a∗, p∗)
]〉

.

C · 10−4

0

4

8

a−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

p
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Figure 4.   Estimated C, a, p values from the dataset S (360 points in total, each coming from a unique 
combination of (network class, 〈k〉 , τ , γ)). From left to right, we observe three distinct regions corresponding to 
Barabási–Albert (triangles), Erdős–Rényi (squares) and Regular networks (circles) networks.

https://github.com/BayIAnet/NetworkInferenceFromPopulationLevelData
https://github.com/BayIAnet/NetworkInferenceFromPopulationLevelData
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is rarely miss-classified. Further, the standard deviations show that these scores are stable across different data 
realisations, suggesting that our approach is consistent.

To get a more precise description of the classification results, we computed the average posterior probability 
for each of the 60 test elements, see Fig. 5. This revealed that the average posterior probability varies within each 
of the network class, probably due to differences in network or disease parameters. In some sense, this shows 
that for some network and disease parameters, the similarity between Regular and Erdős–Rényi is significant. 
For example, when the epidemic spreads fast and infects many nodes early on, the structure of the network is 
less important as the infection will be transmitted on. This means that the average degree is more important 
than the degree distribution. Nevertheless, our inference methodology returns a good classification in most 
cases. In fact, these tests show that our approach can successfully recover the network class from as little as 21 
observations of a single epidemic.

Finally, we detail specificity and sensitivity for the 10 repetitions of the classification, offering per network 
class and global statistics in Fig. 6. We note that each marker has 10 occurrences but in some cases these are 
superimposed. Here again, one can see the stability and high efficiency of our approach for Barabási–Albert, 
with more confusion for Erdős–Rényi.

Inference of synthetic networks.  We have shown that our methodology performs well when applied to the data 
generated on the networks that it was trained on. In this Section, we consider alternative network types for two 
reasons: (a) to stress-test the classification by using networks whose degree distributions do not come from the 
models used to build priors, and (b) to study the extent to which it can distinguish between different levels of 
heterogeneity in degree distribution.

To do this, we generated three synthetic networks using the configuration model30 and a negative binomial 
degree distribution with parameters (p, n):

where p is the probability of success and n the number of failures. This choice is motivated by both the simplicity 
and the flexibility of this distribution. The average degree in all three networks was identical (i.e. fixed at �k� = 6 ) 
but with different levels of heterogeneity depending on the variance, see Fig. 7a. To avoid the possibility of hav-
ing disconnected components, the degree distributions were shifted so that the minimum was greater or equal 
to 3. Here, the degree distributions were chosen to exhibit different levels of heterogeneity, from low to a level 
comparable to those achieved in B–A networks. We then ran 10 independent epidemics with parameters γ = 1 
and τ = 0.5 , starting from 5 infected nodes. As in Sect. "Inference based on the testing set", the inference was 
based on a dataset with 21 equally-spaced observations of the number of infected nodes. The results are shown 

(8)∀k ∈ {0, n}, P(k) =

(

k + n− 1

k

)

pk(1− p)n−k ,

Table 1.   Averaged confusion matrix based on the test dataset (standard deviation is brackets).

True/predicted Regular Erdős–Rényi Barabási–Albert

Regular 85.5% ( 7.9%) 14.5% ( 7.9%) 0.0% ( 0.0%)

Erdős–Rényi 21.5% ( 10.7%) 78.5% ( 10.7%) 0.0% ( 0.0%)

Barabási–Albert 0.0% ( 0.0%) 5.0% ( 5.0%) 95.0% ( 5.0%)
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Figure 5.   Average posterior probability over the 60 tests (20 per network class and 10 realisations).
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in Fig. 8, and confirm that our inference scheme is able to distinguish between networks with high/low levels of 
degree heterogeneity. In particular, by looking at Fig. 7a it is reasonable to expect that the first and third networks 
are going to be classified as E–R and B–A networks, respectively. Indeed, Fig. 8 shows that the first network in 
Fig. 7a is identified as E–R 80% of the time, whereas the third network in Fig. 7a is correctly classified as B–A 
for every single epidemic realisation. 

When the degree distribution of the test network is such that its variance falls between typical variances 
observed in E–R and B–A networks (see the second network in Fig. 7a) our results are more sensitive to the 
individual realisation of the epidemic. However, even in this case, the network is identified to the closest type 
in terms of degree distribution. Moreover, heuristically at least, the B–A network seems to be favoured, which 
seems reasonable upon inspecting the degree distribution of the test network.

Inference of real‑world networks.  Finally, the last test we conducted was based on real world networks, which 
can exhibit higher-order structure beyond degree heterogeneity. We chose three real networks: the first is labelled 
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Figure 6.   Specificity and sensitivity of the 10 independent classification at global and per-network levels.
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Figure 7.   Degree distributions, ordered by variance, of three single negative binomials (a) following 
Eq. (8) and of the three real networks (b) used for the stress test. For (a), the average degree is �k� = 6 for all 
networks. From low to high variance we have σ = 8 (Negbin 0), σ = 40 (Negbin 1), σ = 120 (Negbin 2). The 
values of (p, n) are (0.23, 20), (0.85, 1), (0.95, 0.3), respectively. For (b) the basic metrics of these networks 
are {�k�, σ 2, Assortativity, Clustering} = {2.53, 5.24, 0.102, 0.02}, {2.77, 40,−0.21, 0.04}, {12.30, 268.90,−0.08, 0.09} , 
respectively.
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euroroads and is part of the KONECT collection19, the second and third, bio-grid-mouse and fb-messages, are 
part of the network data repository Networkrepository38. The euroroads is an infrastructure network, bio-grid-
mouse is a protein-protein network whilst fb-messages is based on the interactions of an online community of 
students at University of California. In Fig. 7b the degree distributions of these networks are shown. To keep 
the number of nodes equal to N = 1000 , we only considered the largest connected component, and then, where 
necessary, removed peripheral, low-degree nodes such that the resulting network was still connected.

In line with Sect. "Inference of synthetic networks", we fixed γ = 1 , and ran 10 distinct epidemics on each 
network in order to generate data for the inference. Values for the infection parameter were τ = {1.5, 2.5, 0.4} 
for euroroads, bio-grid-mouse and fb-messages, respectively. The posterior probabilities obtained from our 
approach are reported in Fig. 9 and are in line with our expectations based on the inspection of the respective 
degree distributions: the infrastructure network is very homogeneous, whilst the other two are scale-free, and 
hence correctly classified as B–A.

Discussion
In this paper, we proposed a new inference scheme that uses population-level incidence data at discrete regular 
times to infer the most likely network class over which the epidemic has initially spread. This is a challenging 
task because the exact epidemic model on a given network is forbiddingly high-dimensional meaning that 
even a numerical solution is out of reach. The key to carry out the inference is the approximation of the exact 
epidemic model by a BD process, whose rates not only encode the structure of the networks but also allow us 
to distinguish between the different network classes through a parsimonious three-parameter model. Whilst 
we have successfully numerically validated this surrogate model over a number of network classes and different 
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Figure 8.   Posterior probabilities for the 10 repetitions on each synthetic network.
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Figure 9.   Posterior probabilities for the 10 repetitions on each real-world network.
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values of disease parameters, with further evidence in27, a mathematical characterisation of the relation between 
the exact and this surrogate model remains an open problem.

Our analysis has focused on three classes of random networks: Regular, Erdős–Rényi and Barabási–Albert. 
This choice is motivated by the fact that such classes are well-known, simple to describe (depending only on 
one parameter) while differing in terms of degree heterogeneities. For each network class, the rates of infection 
in the corresponding BD approximation was obtained by using the time-weighted mean of S–I link counts. 
Despite these rates being network class-dependent, they all share some common features. This in turn allowed 
us to propose a parsimonious three-parameter model (C, a, p) that works across all network classes and, at the 
same time, can capture the differences in the rates of the approximating BD process. In addition to being robust 
to different values of τ , γ and average degree, these parameters exhibit a clear distinction between the three dif-
ferent network classes when plotted in the 3-dimensional (C, a, p) space. This knowledge is then encoded into 
prior distributions, constructed using kernel density estimators over the (C, a, p) space. Our Bayesian model 
selection procedure then consists in the numerical estimation of the relative marginal probabilities. Our results 
show that the inference scheme has good specificity and sensitivity, despite the simplicity of the model. These 
encouraging results lead to a number of questions and remarks. First of all, our choice of classes of random 
networks means that the main feature of the networks is their degree heterogeneity. We have yet to consider 
more complex networks, such as those exhibiting clustering or community structure. This would certainly lead 
to ( k, âk ) curves of different shapes, potentially having other features such as multiple peaks for networks with 
multiple communities, and thus requiring either a more sophisticated or non-parametric model. Nevertheless, 
considering epidemics in terms of an approximate BD process appears to be a powerful approach if a tractable 
likelihood is desired. Moreover, once the most likely network class has been identified, one could continue and 
estimate τ , γ and the average degree.

We have used a fixed number of nodes ( N = 1000 ) in all our numerical experiments. We do not expect major 
changes when the number of nodes is different. Preliminary numerical tests, see Fig. 10, suggest that there is a 
good degree of universality such that the ( k, âk ) curves only differ by a scaling factor when the number of nodes 
changes, all other parameters being fixed. In this respect, our methodology could easily be adapted by directly 
considering the scaled epidemic (on [0, 1]) and repeating our tests for different values of N. Fortunately, our 
numerical method4 scales well with N, since the transition probabilities in the likelihood are computed individu-
ally (with deeper continued fractions). The question of the limiting behaviour in the limit of large N can also be 
further investigated.

An interesting open question is that of the extent to which different network families are mapped onto dis-
tinct regions in the C, a, p space if networks are weighted, i.e., if the adjacency matrix has entries of magnitude 
0 ≤ gij ≤ 1 . While a comprehensive answer to this query would require extensive simulations beyond the scope 
of this paper, there are a couple of points worth making. First, we already see that Regular and Erdős–Rényi 
classes are only really distinguishable when networks are sparse. If we keep τ , γ fixed and increase the average 
degree 〈k〉 , we observe that both tend to the fully-connected network limit, where C = τ

N  , a = 0 , p = 1 . This is 
because the fully-connected network can be seen both as a regular network with degree �k� = N − 1 and as an 
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Erdős–Rényi with p = 1 , see Fig. 11. This means that there is some degree of un-identifiability when network 
classes generate networks that are topologically almost identical to one another. Further, any unweighted network 
can be seen as a weighted fully-connected network, with weights either 0 or 1. For instance, an Erdős–Rényi 
network is a weighted complete network such that the element gij has weight 0 with probability p, 1 otherwise. 
With this consideration in mind, the question can be rephrased as: is it possible to use this framework to infer 
the weight distribution over a fully-connected network? Our conjecture is that the answer is yes. Provided that 
the weight distributions are distinct enough and the k, ak curves can be captured by a model such as the C, a, p, 
we do expect to find similar scenarios to those shown by Fig. 4.

So far, we have used discrete data taken on a regular time grid covering the epidemic from its early stage (a 
few infectious nodes) up to its steady state. Increasing the frequency of data or restricting data to the very begin-
ning of the epidemic are of significant practical interest. In the former case, one expects the discrete likelihood 
to converge to the simpler continuous one, enabling faster and easier analysis. In the latter case, it would lead to 
a model that does not require describing the whole epidemic as we currently do. Focusing on the initial stages 
of the epidemic, the most critical period in many cases, and upon solving a potential un-identifiability problem, 
such an approach could have an important real-world impact, making it possible to predict and control more 
accurately yet-to-be epidemics.

Finally, the proposed inference scheme could be improved by using more sophisticated models for the infec-
tion rates and by learning a larger number of different network classes, leading to a wide portfolio of data which 
can then be used for estimation. Of course, there is a trade-off in terms of what we can infer about networks using 
population-level discrete data. We cannot infer individual links for example but this is to be expected since the 
data we use for inference is not at the link- or node-level. Nevertheless, we believe that our approach could have 
practical implications, as the inference scheme is based on the kind of data that is most likely to be available in 
real-world scenarios (e.g. the number of infected people every day or week). Where such data is available but 
little is know about the contact pattern, our inference scheme may be able to provide some high-level informa-
tion about the properties of the network which in turn could be exploited in the planning or implementation of 
control, in particular during the early stages of an epidemic.
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