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An exact analysis of unsteady 
MHD free convection flow 
of some nanofluids with ramped 
wall velocity and ramped 
wall temperature accounting 
heat radiation and injection/
consumption
Talha Anwar1,3, Poom Kumam2,3,4* & Wiboonsak Watthayu1

This article investigates the influence of ramped wall velocity and ramped wall temperature on time 
dependent, magnetohydrodynamic (MHD) natural convection flow of some nanofluids close to an 
infinitely long vertical plate nested in porous medium. Combination of water as base fluid and three 
types of nanoparticles named as copper, titanium dioxide and aluminum oxide is taken into account. 
Impacts of non linear thermal radiation flux and heat injection/consumption are also evaluated. The 
solutions of principal equations of mass and heat transfer are computed in close form by applying 
Laplace transform. The physical features of connected parameters are discussed and elucidated with 
the assistance of graphs. The expressions for Nusselt number and skin friction are also calculated and 
control of pertinent parameters on both phenomenons is presented in tables. A comparative study is 
performed for ramped wall and isothermal wall to evaluate the application extent of both boundary 
conditions.

Nomenclature
V	� Fluid velocity vector
J	� Current density
B	� Total magnetic field
r	� Darcy resistant vector
ρ	� Fluid density
t	� time
g	� Force of gravity
β	� Thermal expansion coefficient
�	� Fluid temperature
�∞	� Ambient temperature
Kf 	� Thermal conductivity of fluid
γ1	� Viscous dissipation term
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Cp	� Specific heat capacitance
Qr	� Thermal radiation flux
Q	� Heat injection/consumption constant
k∗	� Porosity term
E	� Electric field
B0	� Imposed magnetic field
t0	� Characteristic time
φ	� Nanoparticle volume fraction
kr	� Coefficient of Rosseland adsorption
u	� Dimensionless velocity
y, ξ	� Space variables
Gr	� Grashof number
M	� Magnetic parameter
Nr	� Radiation parameter
Pr	� Prandtl number
K	� Permeability parameter
Q0	� Heat injection/consumption parameter
L	� Laplace transform operator
L
−1	� Laplace transform operator

p	� Complex Laplace frequency
G(.)	� Standard Heaviside function
Nu	� Local Nusselt number
Cf 	� Skin friction
erfc(.)	� Complementary error function
erf(.)	� Standard error function
γ2	� Permeability
µm	� Magnetic permeability
σ	� Fluid electrical permeability
U0	� Uniform velocity
�w	� Wall temperature
σr	� Stefan–Boltzmann constant
νw	� Fluid kinematic viscosity
τ	� Dimensionless time

In modern times, nanotechnology is attracting researchers and scientists for its practical utilities in engineering 
and industrial sciences. Contemporaneously, nanoliquids are involved in heating and cooling processes such 
as calming down the nuclear reactors, minimizing the temperature of radiators in vehicles, handling the heat 
generation in computer processes and controlling thermal flows through heat valves. In pharmaceutical indus-
try, diagnoses and treatment of cancer is based on nanoliquid operators which comprise of different radiations. 
These noteworthy physical attributes of nanofluids and their implications are fascinating scientists and research-
ers. The term nanofluid is referred to addition of some solid nanoparticles in regular fluid, sometimes known 
as base fluid. This idea was first introduced by Choi1. Nanoparticles have the tendency to elevate the thermal 
conductivity of usual fluids such as water, ethylene glycol and mineral oils. The formation of nanoparticles com-
prises of carbides, metals and carbon nanotubes. Some practical utilities of nanoparticles these days are such as, 
vehicles have more lighter weight bumpers, cars have sunscreens which provide resistant to radiations, stronger 
synthetic bones, several sports balls are more durable and clothes are stain repellent. In addition, in the modern 
era of nanotechnology, where each object is getting enrich in features and reducing in size, nano-catalysts have 
significant applications in numerous process like water purification, drugs delivery, bio diesel production, solid 
rocket propellants and formation of carbon nanotubes2. As reported by Masuda et al.3, nanofluid has higher 
thermal conductivity due to addition of nanoparticles, but certainly it has different structure depending upon 
the size and shape of nanoparticles. Das et al.4 presented two to four times enhancement in thermal conductivity 
of Al2O3-water and TiO2-water nanofluids for a small temperature range of 21–51 °C.

The study of mass and thermal flows of incompressible, viscous nanofluids is highly significant because of 
essential applications of such flows in engineering, chemistry and physics. Imposition of external magnetic 
field and placement of cavities filled with fluid and porous medium affect the flow of electrically insulated fluid 
in bearings, pumps, MHD motors, and generators. Such cavities can be portioned as horizontal cavities5,6 and 
vertical cavities7,8. From the variety of purposeful applications of these cavities in industrial and environmental 
sciences, a few are named as thermal insulation, cooling of nuclear fuel, solar collectors and solidification. Hamad 
et al.9 examined the characteristics of naturally convective flow of nanofluid over a semi-infinite vertical plate 
in existence of external magnetic field. Das and Jana10 investigated the influence of magnetic field on nanofluid 
flow over an infinite vertical plate. An exact analysis of mass and heat transfer for MHD slip flow of nanofluids 
is provided by Turkyilmazoglu11. Sheikholeslami and Ganji12 numerically studied the flow of nanofluid over a 
permeable surface in rotating system. Hussanan et al.13 examined unsteady flow of some nanofluids over an 
accelerating wall nested in porous media in presence of magnetic field. Problems associated to modeling of heat 
and mass transfer flows in porous material are discussed by Amhalhel et al.14. The impact of using porous mov-
ing wall for forced MHD laminar flow corresponding to convective boundary conditions was investigated by 
AbdEl-Gaied et al.15. Wang et al.16 theoretically analyzed the formation of vortex in magnetized superfluids by 
constructing the exact solutions through similarity transformation. Turkyilmazoglu17 derived analytical solutions 
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for momentum and energy transfer of MHD natural convective nanofluids motion over an instinctive upright 
wall. Mass transfer in porous stretching surface generating nonlinear MHD flow was reported by Singh et al.18.

The investigation of thermal flow features of transient, MHD natural convective flow of viscous fluids with 
insertion of solid nanoparticles is extremely valuable due to practicability of such fluids in heat transfer instru-
ments. Nanofluids have wide range of applications in numerous engineering process like advanced nuclear 
power plants and space aircraft due to convective heat transfer rates and higher thermal conductivity19. The 
other prime factors which can effectively control the rate of heat transfer are thermal radiation and heat injec-
tion/consumption. These factors have variety of practical utilities in food processing, ventilation, heat treatment 
and air conditioning20. Welding mechanics and thermal engineering deals with addition of heat sources or sinks 
to free and forced convective MHD flows to optimize the efficiency of cooling and heating processes21,22. Heat 
absorption/generation effects for MHD natural convective nanofluid flow over a vertical plate were reported by 
Chamkha and Aly23. Turkyilmazoglu and Pop24 conducted a theoretical study to analyze the radiation effects on 
MHD natural convection flow of nanofluids passing a vertical stretching sheet. Sheikholeslami et al.25 operated 
two phase model to analyze the impacts of heat radiation flux on heat transfer and MHD flow of nanofluids. Li 
et al.26 proved the global stability of nonlinear equations based ferromagnetic type solitons with the assistance of 
energy comparison. Influence of heat injection/consumption on nanofluid stagnation point flow was discussed by 
Soomro et al.27. Hamad and Pop28 studied and discussed the time dependent MHD natural convective nanofluid 
motion over a permeable flat vertical wall in a revolving frame of reference with constant heat generation. Reddy29 
investigated the impacts of thermal radiation and heat generation for a micro-polar fluid flow over a stretching 
surface. Khan et al.30 inspected heat transfer phenomenon for MHD flow of Casson type nanofluid in presence 
of heat generation/consumption and thermal radiation. Some identical investigations can be studied in31–35.

However, all these efforts were made for uniform boundary conditions only, though ramped boundary con-
ditions have enormous significant applications. According to authors’ knowledge there is no single article in 
literature which deals with simultaneous application of ramped velocity and ramped temperature at wall for 
unsteady natural convective MHD nanofluid mass and heat transfer. The principal reason behind this shortfall 
is that resulting mathematical relations are extremely intricate and handling them analytically is sometimes 
troublesome. The idea of operating ramped wall velocity and ramped wall temperature at the same time was first 
initiated by Ahmed and Dutta36 for unsteady flow and mass transfer of Newtonian fluid passing an impulsively 
moving vertical plate. Operating ramped wall temperature and ramped wall velocity is highly significant in vari-
ous subdivisions of present-day technology and science. For instance, ramped velocity is useful in evaluating 
the functioning of heart and blood vessels. Diagnoses of cardiovascular deceases, determining treatment and 
establishing prognosis involve treadmill testing and Ergometry, which operate on the basis of ramped velocity37. 
Bruce38 reported ramped velocity based analysis which provides the functional tolerance and exercise limita-
tions of cardiac patients. Furthermore, ramped exercise protocols for clinical exercise testing were investigated 
by Myers and Bellin39.

The credit of considering non-uniform (ramped or time-dependent) temperature conditions may be awarded 
to pioneer studies of Malhotra et al.40, Schetz41 and Hayday42. There are numerous methods available in chemical 
industry for the management of hazard material through thermal screening. To name a few only, e.g., Insulated 
Exotherm Test (IET), Differential Scanning Calorimeter (DSC), Thermal Screening Units (TSU), Differential 
Thermal Analysis, The Carius tube apparatus. With existence of these methods, ramped heating is an efficient 
technique to handle the anticipation of temperature rise under adiabatic conditions. Another significant prac-
ticability of time dependent temperature condition was highlighted by Kundu43. He reported that the purpose 
of destroying cancerous cells can be achieved by thermal therapy since time dependent temperature condition 
allows to reduce the side effects of this therapy to almost non-existence. Moreover, Kundu43 suggested five dis-
similar kinds of Fourier and non-Fourier heating based boundary conditions to optimize the effectiveness of 
the cancer treatment. Keolyar et al.44 examined unsteady radiative MHD flow of a nanofluid passing a flat plate 
with controlled temperature condition. Impact of ramped wall temperature boundary condition on convective 
viscous fluid flow was evaluated by Chandran et al.45. Seth et al.46 further elaborated this analysis of ramed wall 
temperature by considering the plate nested in porous medium. Narahari et al.47 used ramped wall temperature 
at boundary to discuss the influence of mass transfer on viscous convective fluid flow passing an infinite verti-
cal plate. Seth et al.48–50 gave attention to practical features of heat and mass transfer under different physical 
phenomenons like Hall current, chemical reaction and Darcy’s law for impulsive/accelerating motion of plate 
subjected to ramped temerature at the boundary. Zin et al.51 provided a comprehensive analysis of consider-
ing ramped temperature condition for transient MHD natural convection flow of Jaffery fluid passing over an 
upright wall. Maqbool et al.52 further extended this study by adding the ramped wall velocity condition at wall 
and porosity of the medium.

The primary goal of this investigation is to analyze the influence of simultaneous application of ramped wall 
temperature and ramped wall velocity on unsteady, natural convective flow of water based nanofluids passing 
an infinite vertical plate nested in porous medium. Along the direction perpendicular to the plate, a uniform 
magnetic field is imposed in existence of thermal radiative flux and heat injection/consumption. The nanofluids 
of three types containing water as base fluid along with nanoparticles of Copper (Cu), Titanium dioxide ( TiO2 ) 
and Aluminum oxide ( Al2O3 ) are chosen in this work. The nonlinear heat radiation flux is linearized with the 
aid of Taylor series. Employing ramped boundary conditions simultaneously results in intricate mathematical 
expressions which involve branch points and poles. Consequently, evaluation of inverse Laplace transformation 
becomes extremely burdensome. However in present work, exact solutions of momentum and energy equations 
are calculated by implementing Laplace transform and provided in close form. The dependence of velocity and 
thermal profiles on several connected parameters is interpreted with the assistance of graphs. The relations for 
Nusselt number and skin friction are computed and analyzed.
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Mathematical modeling
The principal governing equations of an incompressible free convective MHD flow and energy transfer in exist-
ence of nonlinear thermal radiative flux and heat injection/consumption of a fluid past an infinitely long vertical 
plate nested in a porous medium subject to Boussinesq’s approximation are given as36,53,54.

Consider unsteady natural convective fluid flow and energy transfer of a nanofluid past an infinitely long 
vertical plate nested in porous medium. Initially, both the plate and fluid are static at same temperature �∞ . At 
time t > 0 , the plate starts an impulsive motion with velocity U0

t
t0

 and temperature of vertical plate is raised to 
�∞ + (�w −�∞) t

t0
 for 0 < t ≤ t0 . Later on, a uniform velocity U0 and constant temperature �w is maintained 

for t > t0 . Assuming that flow is one dimensional and unidirectional, x-axis is considered in direction parallel to 
the vertical plate and y-axis is chosen perpendicular to the plate. The plate is considered to be situated at y = 0 
and nanofluid flow is restricted to y > 0 . Furthermore, assumptions made to idealize the considered model are 
mentioned as

•	 The nanofluid is comprised of base fluid water and nanoparticles named as Cu, TiO2 and Al2O3.
•	 Thermal equilibrium is maintained between base fluid and nanoparticles.
•	 Temperature buoyancy force in velocity equation is function of density.
•	 It is assumed that thermal radiative flux ( Qr ) has sufficiently small physical effect in direction parallel to the 

plate such that it can be neglected.
•	 In energy equation, viscous dissipation term is neglected.
•	 The resulting magnetic field because of nanofluid flow is neglected as compared to imposed magnetic field.
•	 Polarization effect of nanofluid is neglected in such a way that no external electric field is employed.
•	 It is considered that nanoparticles have uniform shape and size.

Since one dimensional and unidirectional flow is considered and it is assumed that vertical plate has infinite 
length, therefore only variation in t and y affect the temperature and velocity of nanofluid. The geometrical 
interpretation of physical model is provided in Fig. 1.

The Darcy’s law encounters the Newtonian fluid in following manner

The Maxwell’s equations to deal with magnetic field are given as

and use of Ohm’s law further leads to

(1)∇ .V = 0,

(2)ρ

[

∂V

∂t
+ (V.∇)V

]

= r + µ∇2V + J× B+ ρgβ(�−�∞),

(3)ρCp

[

∂�

∂t
+ (V.∇)�

]

= Kf∇2�+ γ1 −
∂Qr

∂n
− Q0(�−�∞).

(4)r = −µγ2

k∗
u.

(5)divB = 0, curlB = µmJ, CurlE = −∂B

∂t
,

(6)J× B = −(σB20u, 0, 0).

Figure 1.   Geometry of the considered model.
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In the light of Eqs. (4)–(6) and all aforementioned assumptions, Eqs. (2) and (3) for a nanofluid can be 
expressed as

The initial and boundary conditions corresponding to momentum and energy equations are respectively 
stated as

The expressions for dynamic viscosity µnf  , heat capacitance (ρCp)nf  , coefficient of thermal expansion (ρβ)nf  , 
density ρnf  and electrical conductivity σnf  of nanofluid are respectively calculated as55

Hamilton and Crosser model is applied to effectively anticipate the the thermal conductivity of 
nanoparticles24,56.

In Eqs. (7), (8), (13) and (14), the subscripts w, np and nf are associated to the properties of base fluid water, 
nanoparticles and nanofluid respectively. Moreover it is significant to mention that relations (13) are confined 
to spherical shape nanoparticles. The assumption of optically thick fluid and Rosseland approximation57,58 leads 
to the following expression of radiation heat flux

From above expression, it is clear that heat radiation flux is non-linear function of temperature. However, it 
can be linearized with the assumption that during nanofluid flow, temperature differences are sufficiently small. 
Expansion of Taylor series of �4 around uniform ambient temperature �∞ and elimination of higher order terms 
on the basis of previous assumption leads to the following linear relation

In the light of Eqs. (15) and (16), Eq. (8) turns out as

Some non-dimensional variables are introduced as follows

Employing above dimensionless terms together with Eqs. (13) and (14) in Eqs. (7) and (17) and dropping 
the * notation on u for the sake of brevity, we acquire the following dimensionless coupled system of partial 
differential equations

(7)ρnf
∂u

∂t
=µnf

∂2u

∂y2
−

µnf γ2

k∗
u+ g(ρβ)nf (�−�∞)− σnf B

2
0u,

(8)(ρCp)nf
∂�

∂t
=Knf

∂2�

∂y2
− ∂Qr

∂y
− Q0(�−�∞).

(9)u(y, 0) = 0, �(y, 0) = �∞ for y ≥ 0,

(10)u(0, t) =
{

U0
t
t0

0 < t ≤ t0
U0 t > t0,

(11)�(0, t) =
{

�∞ + (�w −�∞) t
t0

0 < t ≤ t0
�w t > t0,

(12)
u(y, t) → 0, �(y, t) → �∞,

when y → ∞ for t > 0.

(13)

µnf =
µw

(1− φ)2.5
, (ρCp)nf = (ρCp)w

[

1− φ + φ
(ρCp)np

(ρCp)w

]

,

(ρβ)nf = (ρβ)w

[

1− φ + φ
(ρβ)np

(ρβ)w

]

, ρnf = ρw

[

1− φ + φ
ρnp

ρw

]

,

σnf = σw

[

1+ 3φ(σ − 1)

(σ + 2)− φ(σ − 1)

]

, σ = σnp

σw
.

(14)
Knf

Kw
= Knp + 2Kw − 2(Kw − Knp)φ

Knp + 2Kw + (Kw − Knp)φ
.

(15)Qr = −4σr

3kr

∂�4

∂y
.

(16)�4 ≈ 4��3
∞ − 3�4

∞.

(17)(ρCp)nf
∂�

∂t
=

(

Knf +
16σr�

3
∞

3kr

)

∂2�

∂y2
− Q0(�−�∞).

(18)u∗ = u

U0

, ξ = yU0

νw
, τ = tU2

0

νw
, θ = �−�∞

�w −�∞
.
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where

The dimensionless form of initial and boundary conditions is determined as

Analytical solutions
Laplace transformation59 is an efficient tool to derive the solution of present problem, since the numerous tra-
ditional techniques such as separation of variables, perturbation method and Homotopy analysis method fail 
to overcome the complexity of time controlled boundary conditions. Formulation of integral form of Laplace 
transform pair to evaluate the results of considered model is proposed as

In current problem, R ∈ {θ , u} . The condition Re(p) > γ0 guarantees the convergence of integral in Eq. (25), 
where γo is an arbitrary real constant and p = � + i� , with i =

√
−1 . The integral form of inverse Laplace 

transformation to obtain the solutions in real time domain is given as

Temperature field.  Applying the definition of Laplace transform provided in Eq. (25) on Eqs. (20), (23)2, 
(24)2 and plugging Eq. (22) yields

where

The solution of ordinary differential Eq. (27) corresponding to boundary conditions (28) is derived as

(19)ϕ1
∂u

∂τ
=ϕ4

∂2u

∂ξ2
+ ϕ2Grθ − ϕ3Mu− ϕ4

u

K
,

(20)
∂θ

∂τ
=
(

ϕ5 + Nr

ϕ6Pr

)

∂2θ

∂ξ2
− Q

ϕ6
θ ,

(21)

ϕ1 =
[

1− φ + φ

(

ρnp

ρw

)]

, ϕ2 =
[

1− φ + φ
(ρβ)np

(ρβ)w

]

,

ϕ3 =
[

1+ 3φ(σ − 1)

(σ + 2)− φ(σ − 1)

]

, ϕ4 =
1

(1− φ)2.5
,

ϕ5 = Knp + 2Kw − 2(Kw − Knp)φ

Knp + 2Kw + (Kw − Knp)φ
, ϕ6 =

[

1− φ + φ
(ρCp)np

(ρCp)w

]

,

Gr = g(�w −�∞)(νβ)w

U3
0

, Pr =
(

µCp

K

)

w

,
1

K
= γ2ν

2
w

U2
0 k

∗ ,

M = B20
U2
0

(

σν

ρ

)

w

, Nr = 16σr�
3
∞

3krKw
, Q = Q0

U2
0

(

ν

ρCp

)

w

.

(22)u(ξ , 0) = 0, θ(ξ , 0) = 0 for ξ ≥ 0,

(23)u(0, τ) = θ(0, τ) =
{

τ 0 < τ ≤ 1

1 τ > 1,

(24)u(ξ , τ) → 0, θ(ξ , τ) → 0 as ξ → ∞ for τ > 0.

(25)R̄(ξ , p) =
∞
∫

0

e−pτR(ξ , τ)dτ = L[R](τ ).

(26)R(ξ , τ) = 1

2π i

∫

BR

epτ R̄(ξ , p)dp = L
−1[R̄](p),

(27)
d2θ̄

dξ2
− (pα + �)θ̄ = 0,

(28)θ̄ (0, p) = 1− e−p

p2
, θ̄ (ξ , p) → 0 as ξ → ∞,

(29)α = ϕ6Pr

ϕ5 + Nr
, � = QPr

ϕ5 + Nr
.
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Implementing inverse Laplace transformation provided in Eq. (26) on Eq. (30) emits

where

with G(τ − 1) denoting a Heaviside function.

Velocity field.  Employing Laplace transform on Eqs. (19), (23)1, (24)1 and using Eq. (22) gives

where

Introducing Eqs. (30) into (33) results in the following form

The solution of ordinary differential Eq. (36) subjected to boundary conditions (34) is computed as

where

Operating inverse Laplace transform on Eq. (37) results as

where

(30)θ̄ (ξ , p) =
(

1− e−p

p2

)

e−
√

pα+�ξ .

(31)θ(ξ , τ) = ψ1 − ψ̂1 × G(τ − 1),

(32)

ψ1

(

1

α
,
1

�
, ξ , τ

)

= 1

2

[(

τ + αξ

2

√

1

�

)

eξ
√
�erfc

(

ξ

2

√

α

τ
+

√

�τ

α

)

+
(

τ − αξ

2

√

1

�

)

e−ξ
√
�erfc

(

ξ

2

√

α

τ
−

√

�τ

α

)]

,

ψ̂1

(

1

α
,
1

�
, ξ , τ − 1

)

= 1

2

[(

τ − 1+ αξ

2

√

1

�

)

eξ
√
�erfc

(

ξ

2

√

α

τ − 1
+

√

�(τ − 1)

α

)

+
(

τ − 1− αξ

2

√

1

�

)

e−ξ
√
�erfc

(

ξ

2

√

α

τ − 1
−

√

�(τ − 1)

α

)]

,

(33)
d2ū

dξ2
− (pη + ω)ū = −Grmθ̄ ,

(34)ū(0, p) = 1− e−p

p2
, ū(ξ , p) → 0 as ξ → ∞,

(35)η = ϕ1

ϕ4
, ω = M

ϕ3

ϕ4
+ 1

K
, m = ϕ2

ϕ4
.

(36)
d2ū

dξ2
− (pη + ω)ū = −Grm

(

1− e−p

p2

)

e−
√

pα+�ξ .

(37)ū(ξ , τ) =
(

1− e−p

p2

)[

e−
√
pη+ωξ + Grm

a(p− b)

{

e−
√
pη+ωξ − e−

√
pα+�ξ

}

]

,

(38)a = α − η, b = ω − �

α − η
.

(39)u(ξ , τ) = ψ2 − ψ̂2 × G(τ − 1)+ Grm

a
[ψ3 − ψ̂3 + ψ4 − ψ̂4],
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(40)

ψ2

(

1

η
,
1

ω
, ξ , τ

)

= 1

2

[(

τ + ξη

2

√

1

ω

)

eξ
√
ωerfc

(

ξ

2

√

η

τ
+

√

ωτ

η

)

(

τ − ξη

2

√

1

ω

)

e−ξ
√
ωerfc

(

ξ

2

√

η

τ
−

√

ωτ

η

)

]

,

ψ̂2

(

1

η
,
1

ω
, ξ , τ − 1

)

= 1

2

[(

τ − 1+ ξη

2

√

1

ω

)

eξ
√
ωerfc

(

ξ

2

√

η

τ − 1
+

√

ω(τ − 1)

η

)

(

τ − 1− ξη

2

√

1

ω

)

e−ξ
√
ωerfc

(

ξ

2

√

η

τ − 1
−

√

ω(τ − 1)

η

)]

,

ψ3 =
1
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Nusselt number.  The expression for rate of heat transfer (or Nusselt number) at wall is derived as

where

The gradients involved in Eq. (42) are provided in Eqs. (A1) and (A2).

Skin friction.  The skin friction coefficient at wall is computed as

where

The gradients involved in Eq. (44) are presented in Eqs. (A3)–(A5).

Limiting models
Case 1.  The energy and momentum solutions for isothermal plate temperature and uniform plate velocity 
take the following form
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Case 2.  The cause of authentication of our current results is achieved, when pure viscous fluid (φ = 0) with 
ramped wall temperature is considered we recover solutions of Seth et al.46. In addition, if magnetic parameter 
M → 0 and porosity parameter 1K → 0 , we obtain the solutions calculated by Chandran et al.45.

Parametric study
In order to achieve the goal of having comprehensive understanding of physical mechanism of current problem 
completely, a parametric analysis is performed, and computed solutions are revealed with the assistance of graphs 
and tables. In this section, solid lines present the solutions of velocity and energy equations with ramped wall 
velocity and temperature conditions, and similarly dashed lines present solutions under isothermal (constant) 
wall velocity and temperature conditions. The noteworthy physical attributes of associated parameters such as 
radiation parameter (Nr), heat injection/consumption parameter (Q), permeability parameter (K), magnetic 
parameter (M), time ( τ ), volume fraction of nanoparticles (φ) and Grashof number (Gr) on dimensionless 
energy and velocity are investigated and plotted for both ramped and isothermal wall boundary conditions. 
Extensively, contribution of connected parameters in heat transfer and skin friction is discussed with the aid of 
tables comprised of numerical computations.

Figure 2 illustrates the distribution of dimensionless temperature (θ) , when three different kinds of nano-
particles named as Cu, Al2O3 and TiO2 are suspended in base fluid water. It is witnessed that temperature of 
Cu-water nanofluid is relatively higher than Al2O3-water and TiO2-water nanofluids. It is obvious because the 
first nanofluid has much greater thermal conductivity than the later nanofluids. It is also witnessed that since 
the thermal conductivity of Al2O3 and TiO2 are close enough therefore, the corresponding temperature curves 
are passing at at very small distance to each other. Furthermore, implementation of ramped wall temperature 
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Figure 2.   Comparison of temperature profile [Eq. (31)] of different nanofluids when Nr = 0.5 , φ = 0.1 and 
Q = 0.5.
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Figure 3.   Temperature distribution [Eq. (31)] for various values of Nr when φ = 0.1 and Q = 0.5.
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boundary condition leads to decay the temperature profile. It is noted that Cu-water has more thick temperature 
boundary layer in contrast to Al2O3 and TiO2 . The distribution of dimensionless temperature for ramped wall 
condition and isothermal wall condition, corresponding to variation of radiation parameter (Nr) is plotted in 
Figure 3. In both cases, temperature profile follows similar trend, however, it has higher profile for isothermal 
wall. It is seen that increase in Nr enhances the temperature of nanofluids. Since, for specific values of �∞ and 
Knf  , Rosseland absorptivity kr reduces while following a rise in values of Nr. This decrease in kr provides suf-
ficient ground for enhancement of nonlinear thermal radiation flux ( ∂Qr

∂y ) , which ensures that rate of radiative 
heat transfer to fluid grows rapidly. Consequently, the temperature profile of nanofluid rises.

Figure 4 displays the crucial role of solid volume fraction (φ) of nanoparticles on temperature solution. It 
is found that enlargement in values of φ uplifts the temperature profile for both ramped and isothermal wall. 
Moreover dimensionless temperature of Cu-water nanofluid has thicker thermal boundary layer in contrast to 
pure base fluid water (φ = 0) . The physical justification of this higher thermal boundary layer is that suspen-
sion of Cu nanoparticles in water sums up the thermal conductivity of water and Cu and due to higher thermal 
conductivity of Cu, this addition results in increased thermal conductivity of nanofluid. This behavior reveals 
the significance of nanofluids in cooling and heating processes. Figure 5 demonstrates the temperature dis-
tribution, when a heat injector or sink (Q) is attached to the system. In respective graph, Q > 0 denotes heat 
consumption, Q < 0 denotes heat injection and Q = 0 denotes that there is no heat injection or consumption. 
Physically, it is clear from the statement that heat injection means elevation of nanofluid temperature and heat 
consumption means nanofluid temperature faces a decay. This physical explanation well agrees with the results 
presented in corresponding Figure. Moreover, it is observed that temperature of nanofluid has lower profile 
in case of ramped wall boundary condition in presence of a heat source or sink. Transient effect on nanofluid 
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Figure 4.   Temperature distribution [Eq. (31)] for various values of φ when Nr = 0.5 and Q = 0.5.
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Figure 5.   Temperature distribution [Eq. (31)] for various values of Q when Nr = 0.5 and φ = 0.1.
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temperature is sketched in Fig. 6. As τ progresses, temperature of nanofluid gets elevation for both ramped wall 
and isothermal wall. It is spotted that temperature has higher values for isothermal wall profile in contrast to 
ramped wall profile. Furthermore, initially nanofluid temperature has higher profile close to the wall and later 
far away from the wall it attains zero value asymptotically.

Figure 7 describes the velocity profile of three different types of nanofluids (Cu-water, Al2O3-water and TiO2

-water) having same volume fraction. Due to higher density of Cu, nanofluid Cu-water has comparatively lower 
velocity than TiO2-water and Al2O3-water. It is seen that velocity of Al2O3-water and TiO2-water are very close 
to each other because of small density difference. Ramped wall velocity and isothermal wall velocity is com-
pared and it is evaluated that nanofluid motion is more rapid in case of isothermal wall condition. The impact 
of magnetic parameter (M) on velocity distribution for ramped condition and constant condition is observed 
in Fig. 8. It is found that nanofluid velocity is decreasing function of M. This behavior is elucidated with the fact 
that imposition of magnetic field on an electrically insulated nanofluid acts as a source for generation of Lorentz 
force, which behaves as a viscous dragging force. Intensification of M enhances the dragging power of Lorentz 
force and eventually nanofluid comes to rest gradually. Figure 9 shows distribution of nanofluid velocity for vari-
ation in Grashof number (Gr). It is observed that velocity has a direct relation with Gr. The physical logic behind 
augmentation of velocity is strong thermal buoyancy force. Since Gr deals with viscous and buoyancy forces, 
rise in Gr leads to decrease the strength of viscous force. Consequently, close to the moving plate, nanofluid 
velocity is accelerated and as nanofluid flows far away from the plate, these flow favoring forces become weak 
and motion of nanofluid is gradually retarded to zero value. Moreover, velocity has higher profile for isothermal 
plate against ramped plate.
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Figure 6.   Temperature distribution [Eq. (31)] for various values of τ when Nr = 0.5 , φ = 0.1 and Q = 0.5.
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Figure 7.   Comparison of velocity profile [Eq. (39)] of different nanofluids when M = 2.0 , K = 0.5 , Gr = 5.0 , 
Nr = 0.5 , φ = 0.1 and Q = 0.5.
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Figure 8.   Velocity distribution [Eq. (39)] for various values of M when K = 0.5 , Gr = 5.0 , Nr = 0.5 , φ = 0.1 
and Q = 0.5.
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Figure 9.   Velocity distribution [Eq. (39)] for various values of Gr when M = 2.0 , K = 0.5 , Nr = 0.5 , φ = 0.1 
and Q = 0.5.
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Figure 10.   Velocity distribution [Eq. (39)] for various values of K when M = 2.0 , Gr = 5.0 , Nr = 0.5 , φ = 0.1 
and Q = 0.5.
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Figure 10 highlights the relationship between permeability parameter (K) and dimensionless velocity of 
nanofluid for both ramped wall boundary condition and isothermal wall boundary condition. It is spotted that 
increase in values of K accelerates nanofluid’s motion. Physically, it is justified by the reason that enrichment of 
permeability of mushy (porous) material pushes the viscous force to face a significant decay which results in an 
increment of the momentum development of the regime. In addition, velocity solution has lower values in case 
of ramped boundary conditions in contrast to constant boundary conditions. The effect of solid volume fraction 
(φ) of nanoparticles on dimensionless velocity is described in Fig. 11. It is seen that nanofluid velocity and φ 
share an inverse relation for the cases of ramped plate and isothermal plate. This is explained by the logic that an 
increase in φ means nanofluid has more density coming from the added fraction of nanoparticles, which reduces 
both momentum boundary layer thickness and velocity of nanofluid. Figure 12 depicts the influence of radiation 
parameter Nr on nanofluid velocity. A comparison is drawn for the isothermal plate velocity and ramped plate 
velocity and it is observed that for both types of plate, Nr has similar effects however, in case of isothermal plate, 
nanofluid velocity has higher profile. The argument behind augmentation of velocity due to increasing variation 
of Nr is increased rate of energy transfer. Bonds between nanofluid particles become weak due to this higher rate 
of energy transfer and ultimately it leads to reduce the power of viscous forces. The remaining weak viscous forces 
allow nanofluid to flow more rapidly. Figure 13 reveals the contribution of time (τ ) in nanofluid flow. It is noted 
that nanofluid velocity enhances with an increase in τ for both the cases of ramped plate and isothermal plate.

Rate of heat transfer at wall ξ = 0 for different nanofluids is presented in Fig. 14. It is found that rate of heat 
transfer for Cu-water nanofluid is lowest among the three nanofluids. Higher thermal conductivity of Cu nano-
particles provides sufficient support to this behavior, as Cu-water nanofluid has a higher temperature, therefore 
the rate of heat transfer from plate to fluid is lower. The corresponding figure depicts that as φ increases rate of 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

u(
,

)

 = 0.0
 = 0.1
 = 0.2

Ramped wall
Isothermal wall

Figure 11.   Velocity distribution [Eq. (39)] for various values of φ when M = 2.0 , K = 0.5 , Gr = 5.0 , Nr = 0.5 
and Q = 0.5.
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Figure 12.   Velocity distribution [Eq. (39)] for various values of Nr when M = 2.0 , K = 0.5 , Gr = 5.0 , φ = 0.1 
and Q = 0.5.
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Figure 13.   Velocity distribution [Eq. (39)] for various values of τ when M = 2.0 , K = 0.5 , Gr = 5.0 , Nr = 0.5 , 
φ = 0.1 and Q = 0.5.
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Figure 14.   Comparison of heat transfer rate [Eq. (41)] for different nanofluids when Nr = 0.5 and Q = 0.5.

Table 1.   Nusselt number (rate of heat transfer) for variation of several parameters. The consecutive bold 
values of a parameter exhibit the variation in that parameter.

τ Nr Q Nu

0.3 0.5 0.5 1.5789

0.6 – – 2.3298

0.9 – – 2.9868

0.6 0.4 – 2.3961

– 0.6 – 2.2687

– 0.8 – 2.1596

– 0.5 − 0.6 1.8532

– – − 0.4 1.9452

– – 0.0 2.4976

– – 0.4 2.2888

– – 0.6 2.3703
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heat transfer decreases because enhancement in values of φ implies that temperature of fluid rises and ultimately 
small amount of heat is transferred from plate to the fluid. Furthermore, an interesting behavior is observed 
that rate of heat transfer has higher values in case of ramped plate. The contribution of several parameters in 
rate of heat transfer is computed in Table 1. It shows that rate of heat transfer has an inverse relation with τ and 
Nr, while heat consumption and heat injection increase and decrease the rate of heat transfer from plate to the 
fluid respectively.

For engineering process, skin friction (or shear stress) is a significant factor. In Fig. 15, the skin friction for 
different nanofluids is revealed for the cases of ramped wall and isothermal wall. It is observed that shear stress 
at wall ξ = 0 is greater for Cu-water due to higher density of Cu nanoparticles. Moreover, Al2O3 and TiO2 have 
almost the same shear stress because their densities are very close to each other. Shear stress for isothermal plate 
is found to have higher curves as compared to ramped plate. Table 2 provides the numerical computations of 
skin friction for variation of influencing parameters. It is evaluated that skin friction is decreasing function of 
M, φ and τ , while Gr, K and Nr bring an increase in the value of skin friction at wall. All the numerical values 
used to draw graphs and prepare tables are given in Table 3.
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Figure 15.   Comparison of skin friction [Eq. (43)] for different nanofluids when M = 2.0 , K = 0.5 , Gr = 5.0 , 
Nr = 0.5 and Q = 0.5.

Table 2.   Skin friction (shear stress) for variation of several parameters. The consecutive bold values of a 
parameter exhibit the variation in that parameter.

τ M K φ Gr Nr Cf

0.3 2.0 0.5 0.1 5.0 3.0 − 0.9710

0.6 – – – – – − 1.4069

0.9 – – – – – − 1.7779

0.6 1.0 – – – – − 1.2333

– 2.0 – – – – − 1.4069

– 3.0 – – – – − 1.5694

– 2.0 0.1 – – – − 2.4755

– – 0.5 – – – − 1.4874

– – 0.9 – – – − 1.2570

– – 0.5 0.00 – – − 0.8136

– – – 0.02 – – − 0.9255

– – – 0.04 – – − 1.0402

– – – 0.1 1.0 – − 1.8882

– – – – 3.0 – − 1.6475

– – – – 4.0 – − 1.5272

– – – – 5.0 1.0 − 1.4904

– – – – – 3.0 − 1.4069

– – – – – 5.0 − 1.3568
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Conclusion
The prime concern of this investigation is to evaluate the physical effects of application of simultaneous ramped 
wall velocity and ramped wall temperature condition on unsteady, MHD convection flow of some nanofluids 
over an infinite vertical plate. The Darcy’s law is applied to encounter the porosity of the medium. In addition, 
heat injection/consumption and heat radiative flux are also inculcated in the model. It is worth mentioning that 
simultaneous application of ramped and isothermal wall boundary conditions is physically significant but analyti-
cal handling of resulted mathematical expressions is burdensome at the same time. However, in this work, exact 
solutions are derived by employing the Laplace transform and presented in close form. The impact of associated 
parameters on dimensionless temperature and velocity solutions are illustrated graphically, meanwhile, the 
computed results for skin friction (shear stress) and Nusselt number are provided through tables. The solutions 
for isothermal plate boundary condition and ramped plate boundary condition are also compared.

The principal investigations of this analysis are concluded as

•	 In case of temperature, velocity, shear stress and rate of heat transfer, respective profile behaves in a similar 
manner for both ramped wall and isothermal wall boundary conditions.

•	 Momentum and thermal boundary layers have more thickness in case of isothermal wall in contrast to 
ramped wall.

•	 Nanofluid velocity is a decreasing function of magnetic parameter M and volume fraction φ.
•	 Momentum boundary layer thickness increases for increasing values of Grashof number Gr, permeability 

parameter K and radiation parameter Nr.
•	 The temperature of Cu-water is found to be higher but an exactly inverse statement holds for velocity field.
•	 Cu-water has higher skin friction at the wall (associated to shear stress).
•	 Rate of heat transfer at the wall is found to be higher for TiO2-water (related to Nusselt number).

Data availability
All the relevant material is available.
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