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Estimation of pure quantum 
states in high dimension 
at the limit of quantum accuracy 
through complex optimization 
and statistical inference
Leonardo Zambrano1,2, Luciano Pereira1,2, Sebastián Niklitschek1,3 & Aldo Delgado1,2*

Quantum tomography has become a key tool for the assessment of quantum states, processes, and 
devices. This drives the search for tomographic methods that achieve greater accuracy. In the case 
of mixed states of a single 2-dimensional quantum system adaptive methods have been recently 
introduced that achieve the theoretical accuracy limit deduced by Hayashi and Gill and Massar. 
However, accurate estimation of higher-dimensional quantum states remains poorly understood. This 
is mainly due to the existence of incompatible observables, which makes multiparameter estimation 
difficult. Here we present an adaptive tomographic method and show through numerical simulations 
that, after a few iterations, it is asymptotically approaching the fundamental Gill–Massar lower bound 
for the estimation accuracy of pure quantum states in high dimension. The method is based on a 
combination of stochastic optimization on the field of the complex numbers and statistical inference, 
exceeds the accuracy of any mixed-state tomographic method, and can be demonstrated with 
current experimental capabilities. The proposed method may lead to new developments in quantum 
metrology.

The basic principles of quantum mechanics strongly limit the processes that can be performed in nature. The 
linearity of quantum operations prohibits the possibility of creating in a deterministic way perfect copies of 
unknown quantum states1. Information encoded in non-orthogonal quantum states can be perfectly recovered 
only at the expense of allowing a probability of error2–4. Measurements, a fundamental tool for understanding the 
natural world, are also limited. In remarkable difference with the classical realm, a measurement in a quantum 
system alters the quantum state of the system, which prevents further information gain. In this way, an ensemble 
of many equally prepared systems is necessary to obtain information about a quantum system and, consequently, 
quantum measurements become statistical in nature5–7. Furthermore, quantum mechanics establishes through 
the quantum Cramér–Rao bound8–10 a fundamental limit in the best accuracy that a measurement or estimation 
process can achieve as a function of the ensemble size.

The accuracy limit also bounds the estimation of unknown quantum processes and states. These are central 
problems in the theory of quantum measurements11 and play a key role in the control of quantum systems, the 
benchmarking of quantum technologies12–14, and quantum metrology15. Today there is a large collection of 
methods11,16–25 for estimating unknown quantum states, which are collectively known as quantum tomographic 
methods. These are based on the post-processing of data acquired through the measurement of a set of positive 
operator-valued measures in an ensemble of N identically, independently prepared copies of the unknown state to 
be estimated. Recently, there has been a great deal of research activity aimed at designing tomographic methods 
with increasing accuracy, in particular methods that saturate the quantum accuracy limit. From the theoretical 
and experimental point of view, it has been shown that a two-stage adaptive tomographic method achieves the 
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quantum accuracy limit in the case of unknown mixed states of a single qubit26,27. Unfortunately, this result does 
not hold in the higher dimensional case28.

Here, we report an adaptive tomographic method that asymptotically approaches the quantum accuracy limit 
in the important case of estimating unknown pure quantum states in high dimensions. This is an instance of 
multi-parameter estimation, where due to the information trade-off among incompatible observables the pro-
gress has been slow. In the case of pure states the quantum accuracy is limited by the Gill–Massar lower bound29. 
The method is based on the concatenation of the Complex simultaneous perturbation stochastic approximation 
(CSPSA), a recently proposed iterative stochastic optimization method on the field of the complex numbers30, 
and Maximum likelihood estimation (MLE), a well known statistical inference method31. The method here 
proposed reaches the quantum accuracy limit after a small number of iterations, typically of the order of 8, for 
all inspected dimensions. Thereby, the method makes an optimal use of the ensemble size and surpasses the 
estimation accuracy of known methods for pure-state tomography32–35. Moreover, the method also surpasses the 
estimation accuracy of any tomographic method designed to estimate mixed states via separable measurements 
on the ensemble of equally prepared copies.

Method
The accuracy achieved in the estimation of the parameters of a quantum state can be studied by means of 
three fundamental inequalities. These are the Cramér–Rao inequality36 C ≤ I−1 , the quantum Cramér–Rao 
inequality36,37 C ≤ J −1 , and the Gill–Massar inequality29 Tr(IJ −1) ≤ d − 1 , where d, C , I  , and J  are the 
dimension of the Hilbert space, the covariance matrix, the classical Fisher information matrix, and the quantum 
Fisher information matrix, respectively. These inequalities allows one to deduce lower bounds for several metrics 
of accuracy, such as infidelity or mean square error, considering the impact of the ensemble size. As accuracy 
metric we employ the infidelity38,39 I(|ψ̃�, |ψ̂�) = 1− |�ψ̃ |ψ̂�|2 between an unknown state |ψ̃� and its estimate 
|ψ̂� . The estimation accuracy is given by the expectation or mean value Ī(|ψ̃�) of the infidelity with respect to all 
possible estimates |ψ̂� of a fixed unknown state |ψ̃� , that is,

where p(|ψ̂�) is the probability density function of obtaining the estimate |ψ̂� . Depending on the general charac-
teristics of the estimation process, the fundamental inequalities lead to various lower bounds for the estimation 
accuracy. For the estimation of pure states, which have 2(d − 1) independent parameters, the ultimate quantum 
estimation accuracy is given by the inequality Ī(|ψ̃�) ≥ Īp , with Īp = (d − 1)/N29,40,41 the Gill–Massar lower 
bound. This state-independent bound can be used as a benchmark to assess tomographic methods.

Our main goal is designing a tomographic method for pure quantum states in high dimensions that 
achieves an estimation accuracy equal to Īp . The design of the proposed tomographic method originates from 
observing42–45 that an unknown and fixed pure quantum state |ψ̃� can be characterized as the minimizer of the 
infidelity in the Hilbert space of the estimate |ψ̂� , that is, I = 0 when |ψ̂� = |ψ̃� . Then, we can envision the use 
of an optimization method to iteratively drive a sequence of estimates toward decreasing values of the infidelity.

The choice of the optimization method requires certain consideration. Traditional optimization methods are 
based on the evaluation of higher derivatives of the function to be optimized. In the case of the infidelity this is 
not possible, since the derivatives depend on the state to be estimated, which is unknown. We also require a fast 
convergence rate from the optimization method. Furthermore, the implementation of the method should be as 
economical as possible from the point of view of computing and physical resources.

To deal with these situations we resort to the Complex simultaneous perturbation stochastic approximation. 
This method can optimize real valued functions of complex variables that also depend on unknown complex 
parameters. The infidelity is a non-holomorphic function, that is, it violates the Cauchy-Schwarz conditions, 
which are necessary for the existence of a complex derivative. In this case, the usual approach is to optimize 
with respect to a real parametrization of the complex variables entering in the infidelity, that is, the complex 
probability amplitudes. This approach has some unwanted side effects. The elements of the real-valued gradi-
ent of the infidelity are in general more convoluted than would be those of a complex gradient formed by first 
order derivatives with respect to the initial complex variables. Additionally, any inherent structures present in 
the complex derivatives of the infidelity, which could be exploited to enhance the performance of optimization 
methods, are unused46. The CSPSA method has been designed to avoid these unwanted features. The main tool 
in the formulation of CSPSA is the Wirtinger complex calculus. For a target function f (z , z∗) : Cn × C

n → R 
the Wirtinger derivatives are defined by47

where xi and yi are the real and imaginary parts of zi , respectively. These derivatives exist even if f (z , z∗) is non-
holomorphic. Extremal points of f (z , z∗) are completely characterized by the conditions ∂z∗i f = 0 ∀ i = 1, . . . , d 
or, equivalently, ∂zi f = 0 ∀ i = 1, . . . , d48–50. Thereby, the complex gradient is defined by g = ∂z∗ f  with 
∂z∗ = (∂z∗1 , . . . , ∂z

∗
d
) . The CSPSA method is defined by the iterative rule30

where ak is a positive gain coefficient and ẑk is the estimate of the minimizer z̃ of f (z , z∗) at the k-th iteration. The 
iteration starts from an initial guess ẑ0 , which is randomly chosen. Instead of employing the complex gradient 

(1)Ī(|ψ̃�) = E[I(|ψ̃�, |ψ̂�)||ψ̂�] =
∫

I(|ψ̃�, |ψ̂�)p(|ψ̂�)dψ̂ ,

(2)∂zi =
1

2
(∂xi − i∂yi ) and ∂z∗i = 1

2
(∂xi + i∂yi ),

(3)ẑk+1 = ẑk − ak ĝk(ẑk , ẑ
∗
k),
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g  , CSPSA resorts to an estimator ĝk(ẑk , ẑ
∗
k) for the Wirtinger gradient g  of f (z , z∗) the components of which 

are defined by

with ẑk± = ẑk ± ck�k , ck a positive gain coefficient, and ǫk,± describes the presence of noise in the values of 
f (ẑk±, ẑ

∗
k±) . The components of the vector �k ∈ C

n are identically and independently distributed random vari-
ables in the set {±1,±i} . The gain coefficients ak and ck control the convergence of CSPSA and are chosen as

where the values of a, A, s, b and r can be adjusted to increase the rate of convergence. The estimates ẑk provided 
by CSPSA converge asymptotically in mean to the minimizer of z̃ of f and ĝk is an asymptotically unbiased 
estimator of the Wirtinger gradient.

The use of an estimator ĝk(ẑk , ẑ
∗
k) for the Wirtinger gradient g  allows CSPSA to optimize functions with 

unknown parameters, provided that the values of f (ẑk±, ẑ∗k±) can be obtained and the unknown parameters 
remain constant along the optimization procedure. This is precisely the case of the infidelity. Considering an 
unknown pure quantum state |ψ(z̃)� of a qudit given by

with N =
∑d−1

i=0 |z̃i|2 , and an estimate |ψ(ẑ)� of |ψ(z̃)� given by

with K =
∑d−1

i=0 |ẑi|2 , the infidelity becomes

This function quantifies the deviation of the estimate |ψ(ẑ)� from the true unknwon state |ψ(z̃)� . In this function 
ẑ is a set of complex variables and z̃ plays the role of a set of fixed unknown complex parameters. According 
to Eq. (4) CSPSA evaluates at each iteration k the infidelity I(|ψ(z̃)�), |ψ(ẑ)� at ẑ = ẑk± . These values can be 
obtained by projecting the unknown state |ψ(z̃)� onto a d-dimensional orthonormal base Bk± = {|ψi,k±�} (with 
i = 0, . . . , d − 1 ) that contains the state |ψ(ẑk±)� . This procedure generates the detection statistics ni,k± that lead 
to the probability distributions pi,k± = ni,k±/

∑
j nj,k± , where Nest =

∑
j nj,k± is the total number of copies of 

the unknown states employed in the projective measurements. These probability distributions are employed to 
obtain the estimates

for the infidelity, where we have assumed the convention |ψ0,k±� = |ψ(ẑk±)� . These estimates together with 
Eq. (3) generate the next estimate |ψ(ẑk+1)� for the unknown quantum state |ψ(z̃)� . The CSPSA method can be 
understood as a generalization of the Simultaneous perturbation stochastic approach (SPSA)51,52, a well known 
stochastic gradient-free optimization method working in the field of the real numbers. SPSA has been proposed42 
and experimentally demonstrated44 as tomographic method for pure quantum states. In this context, it has been 
show30 that CSPSA achieves a higher convergence rate than SPSA.

(4)ĝk,i =
f (ẑk+, ẑ

∗
k+)+ ǫk,+ − (f (ẑk−, ẑ

∗
k−)+ ǫk,−)

2ck�
∗
k,i

,

(5)ak =
a

(10k + 1+ A)s
, ck =

b

(10k + 1)r
,

(6)|ψ(z̃)� = 1√
N

d−1∑
i=0

z̃i|i�,

(7)|ψ(ẑ)� = 1√
K

d−1∑
i=0

ẑi|i�,

(8)I|ψ(z̃)�, (|ψ(ẑ)�) = 1− |ẑ · z̃∗|2
NK

.

(9)I(|ψ(z̃)�, |ψ(ẑk±)�) = 1− p0,k±
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CSPSA generates 2 probability distributions at each iteration, that is, a total of 2d different probabilities. 
However, only two of them are employed to estimate the required values of the infidelity. The remaining 2d − 2 
probabilities are not occupied by the algorithm. Thus, CSPSA generates a large amount of accumulated data that 
is simply discarded. Here, we show that precisely this information can be used to improve the convergence rate 
of CSPSA in such a way that the estimation accuracy reaches the Gill–Massar lower bound for the estimation 
of pure quantum states. This is accomplished by resorting to Maximum likelihood estimation, a well known 
statistical inference method that is extensively employed as a post-processing stage in quantum tomographic 
methods. MLE is a method in statistical inference aimed at estimating unknown parameters of a population 
from observed data. The underlying idea is to choose as estimator the maximizer of the probability of obtaining 
the observed data53,54. MLE was introduced in quantum tomography as a post-processing method31 to obtain 
physically acceptable quantum states. A quantum system that undergoes a measurement process described by 
the set of projectors {|ai��ai|} has a likelihood function L(ρ) given by

where the detection statistic of each projector is given by the number of counts ni and the total number of counts 
is given by N =

∑
i ni . If the quantum state prior to the measurement is ρ , then L(ρ) is the total joint probability 

of registering data {ni} . MLE is defined by the convex optimization problem

At this point we link together CSPSA and MLE. Employing the accumulated data {ni,m±} between iterations 
m = 1 until m = k we define the accumulated likelihood Lk(ρ) by the expression

which is maximized in the set of pure states employing as starting guess the estimate |ψ(ẑk+1)� provided by 
CSPSA. The refined estimate provided by MLE is then employed as starting guess for the next iteration with 
CSPSA. We refer to this procedure as the CSPSA-MLE tomographic method. The main steps of the CSPSA-MLE 
tomographic method have been summarized as pseudocode in Algorithm 1 above.

Results
For a fixed unknown state, the CSPSA-MLE method exhibits three sources of randomness. Since there is no a 
priori information about the unknown state, the initial guess is chosen according to a Haar-uniform distribution. 
At each iteration, the vector �k is also randomly chosen and two measurements are performed on an ensem-
ble of size Nest , which leads to finite statistics effects. Thus, each time the CSPSA-MLE method is employed to 
estimate a fixed unknown state |ψ(z̃)� , a different estimate |ψ(ẑ)� is generated. In this scenario, the accuracy of 
the estimation procedure for a fixed unknown state |ψ(z̃)� is given by the expectation value Ī(|ψ(z̃)�) of Eq. (1).

To study the performance of the CSPSA-MLE method several Monte Carlo experiments in the regime of 
a small number of iterations were carried out. A set �d with 2× 102 pure quantum states |ψ(z̃)� of a single 

(10)L(ρ) = N !
�jnj!

�iTr(ρ|ai��ai|)ni ,

(11)argmax
ρ

L(ρ), s. t.Tr(ρ) = 1, ρ ≥ 0.

(12)Lk(ρ) = �k
m=1��=±�

d−1
i=0 Tr(ρ|ψi,m���ψi,m�|)ni,m� ,
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d-dimensional quantum system (qudit), uniformly distributed on the unit hypersphere, was generated. Each 
state in �d was reconstructed via the CSPSA-MLE- method considering a number G of initial guesses, also uni-
formly distributed on the unit hypersphere, and R independent simulations for each fixed pair of unknown state 
and initial guess. At each iteration the values of I(|ψ(z̃)�, |ψ(ẑk,±)�) were estimated considering a multinomial 
distribution on an ensemble of size Nest . For each state in �d ; mean, variance, median and interquartile range for 
the infidelity as functions of the number of iterations k for several values of ensemble size Nest were estimated. 
Similar numerical experiments were performed via CSPSA without MLE for comparison purposes. Since the 
optimization of the gains is a computational costly problem, we have resorted to the gains s = 1 and r = 0.166 . 
These lead to a high rate of convergence for CSPSA in the regime of few iterations. The resting coefficients have 
been set to A = 0, a = 3 , and b = 0.35, 0.3, 0.07, 0.06, 0.03 for Nest = 10, 102, 103, 104, 105 , correspondingly.

Figure 1 displays a log-log graphic of the mean infidelity Ī(|ψ(z̃)�) (stars), for two randomly chosen states 
|ψ(z̃)� in �2 , that is, for a single qubit, as a function of the number k of iterations and for several values of the 
ensemble size Nest . This mean infidelity is estimated as

with G = 500 and R = 20 . Within the first 10 iterations the mean infidelity Ī(|ψ(z̃)�) exhibits a fast 
decrease that is followed by an asymptotic linear behavior. The decrease of Ī(|ψ(z̃)�) becomes more pro-
nounced as Nest increases. After 10 iterations the CSPSA-MLE method leads to a mean infidelity Ī(|ψ(z̃)�) 
approximately equal to 10−2, 7× 10−4, 5× 10−5, 5× 10−6 and 5× 10−7 , for increasing Nest . For the same 
states CSPSA without MLE yields after 10 iterations a mean infidelity Ī(|ψ(z̃)�) approximately equal to 
2.1× 10−1, 5.2× 10−2, 4.1× 10−2, 4.0× 10−2 and 3.9× 10−2 (see Fig. 1 in30), for increasing Nest . Thus, the 
concatenation of CSPSA to MLE yields a mean infidelity that is 10−1 to 10−5 times closer to the true minimum 
than the one provided by CSPSA alone. Let us note that this comparison considers the same type and amount 
of physical resources for both methods, that is, ensemble size Nest for the estimation of the infidelity and total 
number 2dk of measurement outcomes. The estimation via CSPSA can reach similar mean infidelity values to the 
CSPSA-MLE method but at the expense of more iterations. For instance, with Nest = 104 and after 10 iterations 
the CSPSA-MLE method delivers a mean infidelity of 5× 10−6 . A similar value can be achieved via estimation 
with CSPSA with Nest = 104 after 100 iterations, which represents an increase of one order of magnitude in the 
total ensemble size N as well as in the total number of measurements. Thus, the concatenation of MLE to CSPSA 
provides a significative improvement in the rate of convergence and a large reduction of the required physical 
resources.

After 7 iterations and for Nest = 10, 102, 103, 104, 105 the mean infidelity Ī(|ψ(z̃)�) asymptotically approxi-
mates linear behavior. This resembles the Gill–Massar lower limit Īp for the average infidelity reached in the 
estimation of pure states, where now N = 2kNest is the total ensamble size employed after k iterations. This bound 
imposes a fundamental precision limit on the achievable mean infidelity: no method for the estimation of pure 

(13)Ī(|ψ(z̃)�) = 1

RG

∑

ẑ

I(|ψ(ẑ)�, |ψ(z̃)�),

Figure 1.   Mean and median infidelity Ī (stars) and M̄ (circles), respectively, as functions of the number k 
of iterations achieved by CSPSA-MLE method for two randomly selected pure states of a single qubit in �2 
with with Nest = 10 (violet), 102 (green), 103 (yellow), 104 (light blue) and 105 (purple) from top to bottom. 
Dashed lines indicate the Gill–Massar lower bound Īp for N = 2Nestk . Shaded areas represent interquartile 
range. Values of gain coefficients are: s = 1 , r = 1/6 , a = 3 , A = 0 , and b = 0.35, 0.3, 0.07, 0.06, 0.03 for 
Nest = 10, 102, 103, 104, 105 , respectively
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states attains a mean infidelity Ī(|ψ(z̃)�) lower than Īp . Dashed lines in Fig. 1 correspond to Īp as function of k 
for several values of Nest . Clearly, the CSPSA-MLE method delivers a mean infidelity of the same order of mag-
nitude than Īp , albeit slightly higher. However, the gap between Ī(|ψ(z̃)�) and Īp tends to close asymptotically as 
k increases. Thus, the infidelity provided by the CSPSA-MLE method tends to approach the Gill–Massar lower 
bound Īp with a convergence rate that increases with Nest.

Figure 1 also displays the median infidelity M̄(|ψ(z̃)�) of I(|ψ(ẑ)�, |ψ(z̃)�) as a function of k for both ran-
domly chosen states ψ(ẑ)〉 and for several values of Nest . This exhibits a much faster decrease and an earlier 
onset of the asymptotic linear behavior. The shaded areas in Fig. 1 correspond to the interquartile range, which 
is divided into two areas above and below the median infidelity M̄(|ψ(z̃)�) . In the lineal regime, the Gill–Mas-
sar lower bound Īp lays in the upper half of the interquartile range. This indicates that more than 50% of the 
reconstruction attempts lead to an infidelity lower than Īp . Nevertheless, the mean infidelity Ī(|ψ(z̃)�) is above 
the median M̄(|ψ(z̃)�) . This points to the existence of a small fraction of realizations with high values of the 
infidelity, which increases the value of the mean infidelity above the median infidelity. As the number of iterations 
increases the impact of these realizations on the value of the mean infidelity decreases and mean and median 
infidelity tend to reach similar values.

The main features exhibited in Fig. 1 are typical, that is, all randomly chosen states in �d display a similar 
behavior. This is shown in Fig. 2 where mean Ī (stars), median M̄ (dots) and interquartile range (shaded areas) 
of the mean infidelity Ī(|ψ(z̃)�) over all states in �d as a function of k for several values of Nest are depicted 
and compared to Īp (dashed lines). The mean Ī (stars) correspond to the expectation value of Ī(|ψ(z̃)�) on the 
Hilbert space, that is,

where f (|ψ̃�) is the probability density function of randomly and uniformly generating the unknown state |ψ̃� . 
The mean Ī is estimated as

Figure 2 exhibits a fast decrease of Ī until approximately iteration 7, which is followed by asymptotic linear 
behavior. The median M̄ shows a similar behavior, although it enters an asymptotic linear behavior faster than 
the mean Ī in iteration 5 approximately. As the number k of iterations increases mean Ī and median M̄ overlap 
almost perfectly in the linear regime. The interquartile range is very narrow and nearly indistinguishable from 
these two quantities. This indicates that in the linear regime the mean infidelities Ī(|ψ(z̃)�) of the states in �d 
are concentrated in an extremely narrow interval around the mean Ī and the median M̄ . Thus, all states in �d 

(14)Ī = E[Ī(|ψ̃�)||ψ̃�] =
∫

Ī(|ψ̃�)f (|ψ̃�)dψ̃ ,

(15)Ī = 1

200

∑
|ψ(z̃)�∈�

Ī(|ψ(z̃)�).

Figure 2.   Mean and median infidelity Ī (stars, upper row) and M̄ (solid circles, lower row) as functions of the 
number k of iterations obtained via the CSPSA-MLE method for the estimation of single d-dimensional pure 
quantum states in �d for d = 2, 4, 8, 16 , from left to right, with Nest = 10 (violet), 102 (green), 103 (yellow), 
104 (light blue) and 105 (purple), from top to bottom. Shaded areas describe interquartile range. Dashed lines 
indicate the value of the Gill–Massar lower bound Īp for N = 2kNest . Mean Ī (solid orange squares, upper row) 
and median M̄ (solid orange rombos, lower row) as functions of the number k of iterations obtained via the 
CSPSA method for the estimation of single d-dimensional pure quantum states in �d for d = 2, 4, 8, 16 with 
Nest = 105 . Gain coefficients as in Fig. 1
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are estimated by the CSPSA-MLE method with an accuracy that is very close to Ī . Furthermore, the estimation 
accuracy Ī provided by the CSPSA-MLE method tends to converge from above to Īp . Thereby, the CSPSA-MLE 
method produces a mean infidelity Ī for any unknown pure state that approaches asymptotically the best pos-
sible estimation accuracy of pure states Īp allowed by the laws of quantum mechanics. Figure 2 also displays the 
behavior of Ī (squares) and median M̄ (rombos) obtained with the use of CSPSA only, that is, without employing 
MLE to refine the guesses provided by CSPSA, for the case of Nest = 105 . Clearly, the CSPSA-MLE tomographic 
method outperforms the CSPSA tomographic method by at least 5 orders of magnitude. Therefore, the concat-
enation of MLE to CSPSA plays a key role in improving the accuracy of the estimation and bringing it closer to 
the lower bound of Gill–Massar.

Once the CSPSA-MLE method enters in a lineal regime, after approximately 10 iterations in the inspected 
dimensions, delivers an estimation accuracy Ī(|ψ̃�) close to Īp . Thereby, we can write

or since N = 2Nestk also

Thus, in a given dimension d the CSPSA-MLE tomographic method achieves a predefined estimation accuracy 
with an ensamble size N that can be divided into 2k ensambles of size Nest each one. Thereby, we can employ a 
small value of Nest and a large number of iterations or a large value of Nest and a small number of iterations. The 
last alternative provides a faster convergence rate. In this case, the estimation of the complex gradient is closer to 
the exact gradient and the convergence of CSPSA becomes similar to a complex formulation of a deterministic 
first-order iterative optimization algorithm. However, whether the first or second alternative is more appropri-
ate also depends largely on the characteristics of the experimental platform where the estimation is realized.

We can also compare the mean infidelity Ī achieved by the CSPSA-MLE method with the Gill–Massar lower 
bound Īm for the mean infidelity achieved in the estimation of full-rank mixed states via separable measure-
ments on the ensemble of equally prepared copies, which is given by Īm = [(d + 1)/2]2 Īp . Tomographic methods 
designed to estimate unknown mixed states cannot achieve a better accuracy than Īm as long as they resort to 
separable measurements on the ensemble of equally prepared copies. This departs quadratically from Īp and Ī 
as the dimensions increases. Thus, tomographic methods that do not employ the a priori information about the 
purity of the unknown state cannot estimate pure states with an accuracy better than Īm . Thereby, the CSPSA-
MLE method provides an advantage for pure state estimation over standard quantum tomography, two-stage 
standard quantum tomographic, and methods such as the ones based on mutually unbiased bases, symmetric 
informationally complete positive-operator-valued measures, and equidistant states.

Discussion
The accurate estimation of quantum states with a limited ensemble size is a difficult task. In the case of 2-dimen-
sional pure quantum states, the best measurement strategy, that is, the one that leads to the (local unbiased) esti-
mator that saturates the quantum Cramér–Rao bound, is generally a function of the parameters of the unknown 
state itself. Thereby, the use of the optimal estimation strategy is unfeasible55. It is possible, however, to employ 
an adaptive strategy that approaches the quantum Cramér–Rao bound. This strategy consists of a sequence of 
measurements where each one is optimal for a given guess of the unknown state56,57. The multi-parameter estima-
tion of an unknown d-dimensional quantum state, which is defined by 2d − 2 independent real numbers, cannot 
be carried out following a similar strategy since the optimal measurement strategy is unknown.

Instead, we have approached the estimation of unknown d-dimensional quantum states from the optimiza-
tion of the metric used to characterize the accuracy of the estimation process. The optimization is solved by a 
method based on the concatenation of CSPSA to MLE. The proposed a method allows for estimating quantum 
pure states with high accuracy. CSPSA drives a sequence of projective measurements toward the infidelity mini-
mizer. MLE provides at each iteration a refinement of the estimates considering the accumulated data generated 
by all previous measurements. Monte Carlo experiments for dimensions d = 2, 4, 8 and 16 indicate that the 
mean infidelity for a fixed arbitrary unknown state exhibits a fast decrease within few iterations followed by an 
asymptotic linear trend. In the linear regime the attained mean infidelity closely approaches the fundamental 
limit on the accuracy established by the Gill–Massar lower bound for the mean infidelity of the estimation of 
pure states. Hence, the CSPSA-MLE method surpasses the accuracy of known tomographic methods for pure 
quantum states. The mean infidelity is also lower than the Gill–Massar lower bound for the infidelity of the 
estimation of mixed quantum states. Consequently, no tomographic method for mixed states can achieve a 
mean infidelity lower than the one attained by the CSPSA-MLE method. The median infidelity is also below the 
Gill–Massar lower bound for pure states. Therefore, more than 50% of the estimation attempts leads to lower 
infidelities than the Gill–Massar lower bound.

The CSPSA-MLE method exhibits a clear trade-off. The concatenation of CSPSA to MLE increases the rate 
of convergence of the mean infidelity, which leads to a decrease in the number of iterations and in the ensemble 
size. However, there is an increase in the computational complexity of the algorithm because in each iteration 
it is now necessary to solve the optimization problem corresponding to MLE. Recently, optimized methods for 
MLE in high dimension have been proposed58,59.

An experimental realization of the CSPSA-MLE method applied to state of a single 2-dimensional quantum 
system can be carried out with current experimental techniques44,57 for generating and measuring single-photon 

(16)N ≈ d − 1

Ī(|ψ̃�)
,

(17)Nestk ≈ d − 1

2Ī(|ψ̃�)
for k ≥ 10.
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polarization states. The higher dimensional case can be demonstrated by means of experimental setups based on 
single photons and concatenated spatial light modulators32,60,61 or via integrated quantum photonics62,63. These 
two experimental platforms offer the possibility of performing electronically controlled adaptive measurements.

Code availability
The source codes that support the results of this study are available from the corresponding author upon reason-
able request.
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