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The dose–response characteristics 
of four NTCP models: using 
a novel CT‑based radiomic method 
to quantify radiation‑induced lung 
density changes
Dustin Begosh‑Mayne1, Shruti Siva Kumar2, Steven Toffel2, Paul Okunieff2 & Walter O’Dell2*

Multiple competing normal tissue complication probability (NTCP) models have been proposed for 
predicting symptomatic radiation-induced lung injury in human. In this paper we tested the efficacy 
of four common NTCP models applied quantitatively to sub-clinical X-ray computed tomography (CT)-
density changes in the lung following radiotherapy. Radiotherapy planning datasets and follow-up 
chest CTs were obtained in eight patients treated for targets within the lung or hilar region. Image 
pixel-wise radiation dose exposure versus change in observable CT Hounsfield units was recorded for 
early (2–5 months) and late (6–9 months) time-points. Four NTCP models, Lyman, Logistic, Weibull 
and Poisson, were fit to the population data. The quality of fits was assessed by five statistical criteria. 
All four models fit the data significantly (p < 0.05) well at early, late and cumulative time points. 
The Lyman model fitted best for early effects while the Weibull Model fitted best for late effects. No 
significant difference was found between the fits of the models and with respect to parameters D50 and 
γ50. The D50 estimates were more robust than γ50 to image registration error. For analyzing population-
based sub-clinical CT pixel intensity-based dose response, all four models performed well.

The paradigm of disease treatment is changing. There is an undercurrent moving away from empirical treatment 
of disease to a personalized approach. The treatment of cancer is at the forefront of this movement. As technol-
ogy and laboratory techniques improve so does our understanding of biological responses to treatment. A new 
era of radiomics is emerging as a safe and effective way to measure in vivo treatment effects. The presence of 
radiomics is felt heavily in the field of radiation oncology. Historically, radiation oncology has relied on treatment 
protocols for various cancers and target organs. This empirical method will likely shift to biological-based treat-
ment planning. Incorporating radiomics in the investigation and use of treatment models will allow for a more 
patient specific approach. This approach may lead to dose escalation or de-escalation based on cancer genomics 
and patient factors such as comorbidities, inflammatory markers, cytokines and other serologies.

Current efforts of radiotherapy and dose escalation are limited by normal tissue complications produced 
by high-dose radiotherapy1. Radiation-induced lung injury such as radiation pneumonitis (RP) and radiation 
induced lung fibrosis (RILF), collectively known as radiation induced lung injury (RILI), are common compli-
cations of radiotherapy of the chest2,3. As current therapeutics to treat RP and RILF are lacking, great emphasis 
has been placed on reducing the probability of developing these lung toxicities. RP is an early effect character-
ized by inflammation, often appearing during or shortly after radiotherapy and may last upwards of 6 months4. 
Patients often experience shortness of breath, cough, and fever. The risk of developing moderate to severe RP 
is around 10–20%, however, this depends significantly on the radiotherapy technique and chemotherapy used 
for treatment5,6.

Unlike RP, RILF is a late effect evolving 6–24 months after radiotherapy and is marked by irreversible reduced 
lung function7,8. Symptoms often include a dry cough, chest pain, difficulty breathing, and fatigue. Due to a 
decreased mucous clearance and obstruction of airways, the fibrosis often worsens and frequently leaves the 
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patient at higher risk for infection9. Additionally, RILF is associated with pulmonary hypertension, increasing 
the risk of developing right heart failure9.

The use of dose–response relationships in radiation therapy is crucial in determining the expected out-
come for a patient. By establishing the proper normal tissue complication probability (NTCP) or dose response 
model, treatment plans can be optimized to increase the overall quality of life for patients. Historically the 
application of NTCP modeling addressed a binary outcome, being presence or absence of a clinical symptom 
(or survival of a cell, organ or subject) based on pretreatment dose-volume histograms (DVH) and follow-up 
clinical symptoms10,11. These NTCP outcomes typically followed a sigmoid shape and were modeled using two-
parameters, with one being D50, the dose that results in half of all subjects presenting with a symptom. Several 
competing models have been developed and although each model represents a sigmoidal curve, each is associ-
ated with a different underlying mathematical or biological assumption and the superiority of one over another 
is a matter of current debate.

Computerized X-ray tomography (CT) scans can provide a more objective and early measurement of RILI12–15 
over semi-subjective clinical data16. Pixel-wise changes in CT Hounsfield unit (HU) can be measured as a func-
tion of pixel-wise radiation dose in a graded fashion, where D50 is the dose that leads to 50% of maximal HU 
change for an individual subject. In this paper we compare the efficacy of 4 competing NTCP model formulations, 
each designed for conventional binary outcomes, in matching pixel-size HU changes. This is a subtle but impor-
tant distinction from prior art that is necessary to bridge historical knowledge of radiobiological phenomena 
with state-of-the-art measurement tools.

Stereotactic body radiation therapy (SBRT) provides a unique opportunity to study the response of normal 
tissue to radiation. First, SBRT imparts greatly varying doses in the neighborhood of each lesion with almost no 
radiation to distal sites within the same organ, thereby enabling the determination of full dose/tissue response 
curves for an individual patient (Fig. 1a). Second, chest CT data sets are often prescribed at multiple time points 
post-therapy, as per standard of care, providing the ability to monitor the time course of the tissue response. 
Finally, with the use of lethal radiation doses at the target site there is often no residual tumor mass observed 

Figure 1.   Lung Segmentation and registration results: (a) shows for a representative patient a treatment 
planning chest CT slice through a tumor located within the hilar region. The colorized overlay is the planned 
dose distribution over a 10 × 10 × 10 cm3 region centered on the isocenter. (b) An axial CT slice at approximately 
the same anatomical location at the 8-month follow-up time point and in the same patient as (a). (c) Depicts 
the result of the rigid body registration of the 8-month follow-up CT to the panning CT at the same anatomical 
slice location. (d) The lung volume mask in white and gray for the 8-month follow-up image. The computed 
dose grid is transformed from the planning CT image space to the follow-up CT image space and the gray pixels 
show where the dose grid aligns to pixels in the lung mask of the follow-up image. The region of gray pixels is 
where the dose–response data is computed.
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> 3 months post-treatment; when a mass persists, it is generally much reduced in size and ceases to proliferate, 
suggesting that it remains as a fibrotic core.

Methods
Patient and treatment information.  Chest CT and radiotherapy planning datasets were obtained 
(Fig. 1b) retrospectively in patients who were treated with radiation therapy targets within the lung or hilar 
region at the University of Florida from 2003 to 2013. This study was performed under an UF Institutional 
Review Board (IRB-)-approved protocol abiding by all institutional, federal and state guidelines. A waiver of 
informed consent was granted by the IRB for this data collection because this was a retrospective analysis of 
pre-existing data with minimal risk to subjects. For this study, we separated patients into early CT-changes of 
2–5 months and late CT-changes of 6–9 months after completion of radiotherapy treatment. Patients with mul-
tiple treatment sites or masses were excluded. Each patient received typically 50 Gy to the clinical target volume 
in five fractions of 10 Gy/fraction via SBRT. A total of eight patients and 12 follow-up data sets where included 
in the final analysis: six patients contributing to early changes and six to late changes. All image processing steps 
were performed using dedicated in-house software written in the Java programming language and built upon 
the NIH ImageJ platform17.

Dose calculation and CT image acquisition.  The radiation dose distributions were computed on a 
1 × 1 × 1 mm grid within a ~ 10 × 10 × 10 cm3 region, the dose block, centered at each planning target volume 
(Fig. 1a) using the treatment planning system software (Pinnacle3 RTP, version 9.2, Philips Medical Systems, 
Fitchburg, WI, USA). This planning system used the Collapsed Cone Convolution algorithm for dose calcula-
tion, which has been deemed clinically acceptable for lung dose calculation18. The overall size of the sampled 
dose field was chosen to encompass the entirety of the 20% isodose line (~ 10 Gy) and to include much of the 
10% and lower dose regions. Thus, this dose block included all areas where radiographic and fibrotic changes 
would be expected to occur, including the D50 dose point which is critical for assessing the sigmoidal NTCP 
models under consideration. The dose values were exported as a DICOM file (‘RTDOSE’ export within Pinnacle3 
RTP). The CT scans were obtained using a commercial, clinical CT scanner (GE Genesis Lightspeed CT scan-
ner, GE medical system, Milwaukee, Wisconsin) and with imaging parameters consistent with standard-of-care 
follow-up images at the Department of Radiology at the University of Florida College of Medicine. These param-
eters were typically an in-plane pixel size of 0.94 mm; slice thickness and slice separation of 3 mm; tube voltage 
of 120 kVp; and tube current of 250 mA.

Lung segmentation and image registration.  An automatic lung segmentation algorithm was applied 
to the follow-up CT scans19. The algorithm relies on standard histogram-based thresholding and morphologi-
cal image operations to isolate the lung volume from objects outside the body, the chest wall, diaphragm, and 
the mediastinum, while including all anatomical features inside the lung border (Fig. 1d). This step omits from 
consideration pixels outside of the lung volume when computing the dose–response. A three-dimensional (3D) 
rigid-body registration of the post-radiation treatment (post-RT) to pre-RT data sets was performed (Fig. 1c) 
using the normalized cross-correlation coefficient as the measure of similarity. The reverse transformation was 
used to transform the dose field from the planning CT image to each follow-up image. The dose field was sam-
pled on a 1 × 1 × 1 mm grid so that the center of each pixel in the follow-up image was matched to the nearest 
dose grid point with higher precision. To test the robustness of the outcomes (D50, γ50) on possible registration 
mis-match, artificial shifts of plus and minus 3 mm were applied in each superior-inferior, left–right and ante-
rior–posterior direction of the follow-up CT data set with respect to the pre-treatment CT data set in a repre-
sentative patient data set. The process was repeated for three representative target lesions and the statistics of the 
dose–response outcomes were tabulated using the standard Lyman model.

Dose–response calculations.  Radiation dose exposure versus change in observable CT Hounsfield units 
(HU) was calculated for various time-points post-radiation therapy. Change in CT image intensity was com-
puted for each lung pixel within the dose-block in the follow-up CT image set. Dose values were binned into 
6 Gy-wide bins from 0 to 60 Gy, and the average CT intensity change was computed over all pixels within each 
bin. Change in CT image intensity was computed by subtracting the intensity in each pixel from the baseline 
intensity value within the dose-block. The change was then normalized to a range of 0–1 by scaling to the great-
est change in any dose bin (typically the 54–60 Gy bin), reflective of the maximal possible response for that 
patient. Dose–response data points for each individual patient data set were generated in this manner and fit to 
each NTCP model. The models were fit using the generalized reduced gradient method within Excel (Microsoft 
Excel for Mac, Version 16.36) which employs an iterative least square fitting routine to produce the optimal 
goodness of fit between data and function20. The follow-up CT scans from eight patients were segregated into six 
scans obtained between 2 and 5 months post-radiation therapy (post-RT), typically representative of the time 
of presentation of RP, and six scans obtained between 6- and 9-months post-RT, typically representative of the 
time of presentation of RILF.

To compare the D50 and γ50 values across the NTCP models, fits were first made individually to each of the 
six patient data sets at the early and late time-points to compute the average and range of D50 and γ50 values for 
each time-range. The data sets for all 12 times were then combined and fit to compute the cumulative average 
and range of D50 and γ50 values (Table 1).

Next, to compare the quality of the model fits, for each dose bin the patient-normalized change in CT inten-
sity values was averaged across all six patients for each time-point to generate a cumulative dose–response data 
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set. The cumulative data was normalized to the largest intensity in any bin in any of the patients and the NTCP 
models were then fit to these cumulative dose–response data (Fig. 2).

Dose response models for normal tissue complication probability.  For this paper, we com-
pare the four of the most commonly-implemented models traditionally used for modeling incidence-based 
lung tissue response to radiation (i.e. the presence or absence of clinical RP versus mean lung dose): Lyman, 
Logit, Weibull and Poisson11,22. Each is based on a different statistical distribution, being the Probit (Gauss-
ian), Logistical, Weibull and Poisson, respectively. The Poisson model is cell-survival-based, while the rest are 
phenomenological21. Each model may be expressed in terms of the parameters D50 and γ50. Here, D50 is the dose 
necessary to cause 50% maximal HU change, and γ50 is the gradient of the dose–response curve at the level of the 
50% toxicity. A detailed derivation of each model is outside the scope of this paper but may be found in works 
done by the Karolinska Institute group and others21,23.

The Lyman model is based on the cumulative distribution function of the dose-dependent Gaussian 
distribution24. The integral form representation is:

This function can be solved using a Probit function represented as:

The parallel architecture model, or logit model, is commonly applied to biological processes and is based on 
the cumulative distribution function of the logistic function:

The Poisson model developed by the Karolinska Institute group21,23 has a radiobiology background and is 
based on Poisson statistical model of cell death and is represented as:

The Weibull model is based on a modified Weibull function. Like the Poisson model, the Weibull model is 
biologically based. The cumulative distribution function for the Weibull distribution has been used as a math-
ematical scaffold for several theories of cell death and survival25–27. The Weibull model is represented as:
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Table 1.   D50 and γ50 values. Population average and range values (in parenthesis) for D50 and γ50 at any given 
time point were calculated for Logit, Lyman, Weibull, and Poisson models to the six data sets at each time 
frame. D50 is the dose at which 50% of maximal CT HU change was expected to arise, and γ50 is the normalized 
dose response gradient at the D50 level. Also shown here are the computed sum of squared residuals (SSR), 
Adjusted R2 (Adj-R2), Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for 
each model fit. a The best fit model based on the lowest SSR, AIC and BIC and the highest adj-R2.

Name of model D50 (Gy) γ50 SSR Adj-R2 AIC BIC

2–5 months

 Logit 33.72 (25.97–47.96) 1.76 (0.65–3.93) 0.14 0.92 − 22.65 − 22.04

 Lymana 34.73 (27.40–47.73) 1.38 (0.66–3.36) 0.07 0.95 − 29.16 − 28.56

 Weibull 34.49 (26.68–47.98) 1.40 (0.65–3.48) 0.08 0.95 − 28.26 − 27.66

 Poisson 33.78 (26.10–47.48) 1.42 (0.62–3.66) 0.09 0.94 − 26.62 − 26.02

6–9 months

 Logit 35.13 (22.46–44.07) 0.77 (0.23–1.13) 0.15 0.88 − 21.83 − 21.23

 Lyman 35.85 (23.82–43.64) 1.32 (0.65–2.94) 0.13 0.90 − 23.58 − 22.98

 Weibulla 35.69 (23.3–43.67) 1.32 (0.54–2.79) 0.13 0.90 − 23.63 − 27.66

 Poisson 35.20 (22.79–43.91) 1.78 (0.60–5.93) 0.22 0.85 − 18.16 − 17.56

Cumulative

 Logit 34.43 (22.46–47.96) 1.26 (0.23–3.93) 0.11 0.91 − 25.02 − 24.41

 Lymana 35.29 (23.82–47.73) 1.35 (0.65–3.36) 0.09 0.93 − 26.54 − 25.93

 Weibull 35.09 (23.3–47.98) 1.36 (0.54–3.48) 0.10 0.93 − 26.24 − 25.64

 Poisson 34.49 (22.79–47.48) 1.60 (0.60–5.93) 0.15 0.90 − 21.94 − 21.34
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To calculate the parameters D50 and γ50 the experimental data was normalized to the HU units of the maxi-
mum dose bin to fit a probabilistic model (bin dose value versus bin-averaged CT intensity changes). Once 
normalized each model was solved using generalized reduced gradient method.

Statistical methods.  To assess the quality of fit, a one-way Analysis of Variance (ANOVA) was used to test 
for significance of each model fit to the data. The quality of fits was compared by the computing sum of squared 
residuals (SSR), Adjusted R2 (adj-R2), Akaike information criterion (AIC)28 and the Bayesian information cri-
terion (BIC)29. While SSR is commonly used, it is biased toward models with more parameters. Adj-R2, AIC 
and BIC incur penalties for high parameter number. BIC is best for identifying the true model among a pool of 
candidate models. AIC is best for identifying the best available model among a pool of imperfect models30. Here, 
we compared the models based on low SSR, AIC and BIC, and high adj-R2 values. We did this for the cumulative 
data for all six early time-point data sets, all six late-time frame data sets, and for the cumulative (all 12) data 
sets (Table 1). An analysis of variance (ANOVA) was used to investigate any statistically significant differences 
between the fitted models and the parameters D50 and γ50 between the models.

Results
Model comparison.  An ANOVA revealed that all models individually fitted the true data significantly 
(p < 0.05) well for early effect, late effect and for the cumulative time points. In the model fit comparison, Lyman 
model outperformed other models for both early effects (SSR: 0.07, AIC: − 29.16, BIC: − 28.56, adj-R2: 0.95) and 

(5)P(D) = 1− exp
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−ln2
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D

D50

)
2
ln2 γ50

]

Figure 2.   NTCP modeling of radiation-induced effects to the lung: dose response data and model-fits for 
stereotactic body radiation therapy-induced injury of the lungs. Blue dots (P(D)) represent the radiation-
induced effects, defined as the cumulative change in CT HU over all associated patients, normalized from 0 to 
1 based on the maximal CT HU change seen at the particular time point. Blue, orange, gray, and yellow lines 
represent the Logit, Lyman, Weibull, and Poisson dose response models, respectively, fit to the data points. 
(a) The data and fits of six patients at 2–5 months after radiation therapy. These time points reflect radiation 
pneumonitis. (b) The data and fits of six patients at 6–9 months after radiation therapy. These time points reflect 
radiation-induced lung fibrosis. (c) The data and fits of all 12 patient data sets over all time points.
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over all time-points (SSR: 0.09, AIC: − 26.54, BIC: − 25.93, adj-R2: 0.93) (Table 1), however, the Weibull model 
was the best for late effects (SSR: 0.13, AIC: − 23.63, BIC: − 23.03, adj-R2: 0.90) (Table 1). An ANOVA did not find 
any significant differences (p > 0.05) between any of the four models when determining NTCP for early effect, 
late effect and for the cumulative time points.

Comparison of D50 and γ
50

.  The D50 and γ50 of all models were examined (Table 1 and Fig. 2). One-way 
ANOVA found no significant difference between the models with respect to D50 and γ50. The Weibull model 
exhibited the highest D50 for CT scans obtained at 2–5 months follow-up while the Logit model exhibited the 
highest D50 for CT scans at 6–9 months follow-up (no significant difference). The Logit dose response model 
produced the lowest D50 for all data sets (no significant difference) and exhibited the highest γ50 for CT scans at 
2–5 months. The Poisson model exhibited the highest γ50 for CT scans at 6–9 months (no significant difference). 
The Logit dose response model produced the lowest γ50 for all datasets (no significant difference).

Robustness to error in image registration.  Table 2 summarizes the changes in D50 and γ50 using the 
Lyman model (Eq. 2) after applying, plus and minus 3 mm shifts individually in each superior-inferior, left–right 
and anterior–posterior direction. The process was repeated for three different target lesions and their dose–
response outcomes, labeled Targets 1–3 in the table. For each target, the maximum error over any of the six trials 
(two shifts in each of three directions) was computed and converted to a percentage change from the baseline 
values computed from the optimal registration. The D50 value had a maximal change over all three targets of only 
4.4% for a 3-mm error in registration. The γ50 parameter was much more sensitive to registration error, with a 
maximal change over all three targets of 180% for a 3-mm registration shift.

Discussion
Patient-specific dose–response curves for changes in tissue density have been generated from serial CT scans of 
patients receiving locally high radiation dose for treatment of cancer to or near the lung. The approach involves 
registering a follow-up CT scan to the CT scan used for creating the radiation treatment plan; exporting the 
planned 3D dose field and transforming it to the follow-up time point using the registration information; seg-
menting the lung volume in the CT images; computing, for each pixel in the lung, the dose received during 
treatment and the normalized change in CT pixel intensity at the follow-up time; segregating the pixels by dose 
into 6-Gy bins; and plotting the pixel-averaged change in CT intensity as a function of dose-bin.

The primary objective of this paper was to evaluate which of the four most-common NTCP models best rep-
resent the CT-based dose–response data of pulmonary tissue for a population of eight patients and establish the 
superiority of one model over the other in predicting. The most commonly used NTCP model for predicting RILI 
is the Lyman model which is purely mathematical and fits the data using an underlying Gaussian distribution. 
The aim of this paper was to evaluate whether the cell-survival based models (Poisson) or other mathematically 
based ones (Logit and Weibull) perform almost as well or even better that the Lyman model in predicting NTCP. 
Our analysis showed that all the models statistically fit the true data well (p < 0.05) and there were no statistically 
significant differences in the NTCP predictive capability between any of the four models (p > 0.05).

However, on comparing the individual fits using parameters such as the SSR, adj-R2, AIC and BIC, the Lyman 
model performed best for fitting early changes (3–6 months) and for cumulative time points while the Weibull 
model performed best for fitting late changes (6–9 months). A second objective was to establish the consistency 
in the fitted values for the two model parameters, D50 and γ50, that are common for all four models. When using 
the Lyman model, D50 was robust to registration errors of up to 3 mm while γ50 was very sensitive to registration 
error. Across all four models, no statistically significant differences in the parameter values was found with our 
relatively small sample set. Future studies with additional subjects may be needed to discern whether a small but 
significant difference in parameter values and model fits exist.

The estimated D50 and γ50 values in this study (range 33.7–40.4 for D50, and 0.77–1.78 for γ50) conforms to 
previously computed values in the literature. The QUANTEC (quantitative analysis of normal tissue effects in 
the clinic) data31 estimated D50 as 30.8 Gy (95% CI 28.7, 33.9) and γ50 as 0.97 (95% CI 0.83, 1.12). Appelt et al.31 
computed the baseline D50 and γ50 in an independent dataset consisting of 103 patients and found the reference 
D50 and γ50 for a patient without pulmonary co-morbidities, caudally located tumor, no history of smoking, 
< 63 years old, and receiving no sequential 34.4 Gy (95% CI 30.7, 38.9) and 1.19 (95% CI 1.00, 1.43) respectively. 
Wedenberg et al.32 estimated D50 as 32.4 Gy (95% CI 28.9, 37.3) and γ50 as 0.57 (95% CI 0.47, 0.68) using a Pois-
son-based model, and D50 as 31.4 Gy (95% CI 28.5, 35.6) and γ50 as 0.49 (95% CI 0.42, 0.58) using a Lyman based 

Table 2.   Effect of image registration errors on D50 and γ50 values. Effect of imposing a ± 3 mm registration 
error in each superior-inferior, left–right and anterior–posterior direction on the dose response parameters: 
D50 and γ50. The D50 is robust to registration errors up to 3 mm in any direction, while γ50 is very sensitive to 
such error.

Target 1 2 3

Reference D50 52.12 51.67 42.10

D50 error max 0.9% 4.4% 2.7%

Reference γ50 12.31 6.99 10.7

γ50 error max 10% 180% 12%
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model. However, the parameters values found in this SBRT study relate to tissue density changes observed within 
individual patients in the presence of steep dose gradients33,34, while those of the prior art relate to incidence of 
clinical symptoms across patients receiving conventional, large-field lung RT. The dose-volume characteristics 
of SBRT being quite different from conventional lung RT, as well as there being differences in the biological 
mechanisms and the treatment planning systems over time, caution should be used when attempting to extend 
the parameters values from in this study to patients receiving different treatments and for different outcomes.

The explanation for the robustness of D50 to induced registration error is diagrammed in Fig. 3. If the thin 
maroon curve in Fig. 3 represents the D50 isodose contour (in an ideal scenario), then registration error results 
in a shift of this D50 contour with respect to the true dose-distribution around the target lesion (to the bold red 
curve). The new estimate for D50 is directly related to the average dose along the new red curve. For the case 
where the tissue response is a monotonic function of dose, the average lung tissue response along this curve also 
may not change appreciably. However, the parameter γ50 reflects the heterogeneity in response at the D50 dose 
contour and since the shifted D50 contour now traces over pixels experiencing a wider range of doses, the tissue 
response along the new D50 contour is much more heterogeneous. For this reason, it is recommended to use D50 
as the indicator of choice when measuring tissue response when there is concern for inaccurate registration.

Diot, et al.15 reported the change in pixel-wise CT HU versus regional dose in 62 patients receiving SBRT 
at 3, 6, 12, 18, 24, and 30 months post-treatment. They observed an increase in CT density over time to around 
6 months, followed with a less pronounced late response. They also reported an increase in the CT HU with 
dose, up to 35 Gy, and a plateau at higher doses. Underwood et al.26 and Li et al. 31 compared CT density changes 
over time between proton therapy and traditional X-ray-based therapy, for breast cancer and NSCLC patients, 
respectively. Each of these three prior studies, however, used a linear model (fitted regression line) to what is 
expected to be an intrinsically s-shaped dose–response curve. The current paper extends these prior efforts by 
comparing the accuracy of the four most-common and historically supported sigmoid-shaped NTCP models. 
Moreover, the current paper establishes model parameter robustness as a first step in the greater task of elucidat-
ing the biological and mechanistic underpinnings of the dose-HU response.

The biological link between radiographic changes and radiation response is not fully understood. It is likely 
though that early changes in HU during the radiation pneumonitis phase are dominated by a local inflammatory 
response and damage to microvascular endothelial cells leading to vessel leakiness35. HU changes seen at later 
time points likely reflect radiation-induced fibrosis2–5 and lung tissue consolidation36.

The association between the clinical manifestation of RILI and the measurement of radiographic changes 
is also a topic of great interest. There are several challenges in making this connection. First, the underlying 
biological phenomenon are not necessarily the same and not currently fully understood. Second, additional 
treatment and patient factors may impact them differently. These include the volume of irradiated tissue, the 
fractionation scheme, a patient’s smoking history and presence of comorbidities. Also, as noted above, clinical 
RILI is primarily a binary outcome with subjective interpretation, whereas change in CT HU is a continuous 
variable that can be measured objectively. The challenges are hoped to be addressed in the future in larger and 
more longitudinal studies.

It is hoped that additional studies focusing on quantifying subclinical markers of radiation injury will enable 
us to identify high-risk patients early during treatment to permit treatment modification or early intervention 
to mitigate or delay the progression of RILI.

Figure 3.   Robustness to error in image registration: the effect of mis-registration on the dose–response D50 and 
γ50 outcomes. Shown is the 3-dimensional dose field for an SBRT target, with isodose contours overlaid onto 
the gray-scale dose image. Registration error results in a shift of the d50 contour (bold red curve). Since the new 
D50 estimate is the average dose along the bold red curve and the new curve crosses both higher and lower dose 
regions, the d50 value may not change dramatically. However, since γ50 represents the heterogeneity in response 
along the D50 contour, its value is very sensitive to registration error.
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Conclusion
Using population-averaging of patient-specific full dose–response curves for pulmonary tissue from serial chest 
CT scans, we have determined that all the four models: Lyman, Logit, Weibull and Poisson, fit the data well 
(p < 0.05) however, no statistically significant differences existed between the fits of the four models for early, late 
and cumulative time-point effects. On assessing the fits to individual subjects, the Lyman NTCP model (SSR: 
0.07, AIC: − 29.16, BIC: − 28.56, adj-R2: 0.95) fit better than the Logit, Weibull and Poisson NTCP models when 
considering only early effects (2–5 months post-treatment) while the Weibull model (SSR: 0.13, AIC: − 23.63, 
BIC: − 23.03, adj-R2: 0.90) fit best for late effects (6–9 months post-RT). Additionally, the resulting D50 and γ50 
parameter values were not significantly different between any of the 4 NTCP models tested. Therefore, while these 
models have different cell-survival or mathematical motivations, for the analysis of CT pixel intensity-based dose 
response, either of the four models tested could be used to perform this assessment. The estimated D50 values were 
found to be robust to image registration errors up to 3 mm (the largest shifts that were tested) while the γ50 values 
were highly sensitive to registration error. Thus, for modeling of radiation sensitivity it is recommended that the 
D50 value be used rather than relying solely on γ50. Additional work is needed to ascertain which NTCP model is 
best to distinguish differences in radiation sensitivity across patients, over time, or in response to intervention.
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